comparison src/fftw-3.3.8/genfft/to_alist.ml @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 (*
2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
3 * Copyright (c) 2003, 2007-14 Matteo Frigo
4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 *)
21
22 (*************************************************************
23 * Conversion of the dag to an assignment list
24 *************************************************************)
25 (*
26 * This function is messy. The main problem is that we want to
27 * inline dag nodes conditionally, depending on how many times they
28 * are used. The Right Thing to do would be to modify the
29 * state monad to propagate some of the state backwards, so that
30 * we know whether a given node will be used again in the future.
31 * This modification is trivial in a lazy language, but it is
32 * messy in a strict language like ML.
33 *
34 * In this implementation, we just do the obvious thing, i.e., visit
35 * the dag twice, the first to count the node usages, and the second to
36 * produce the output.
37 *)
38
39 open Monads.StateMonad
40 open Monads.MemoMonad
41 open Expr
42
43 let fresh = Variable.make_temporary
44 let node_insert x = Assoctable.insert Expr.hash x
45 let node_lookup x = Assoctable.lookup Expr.hash (==) x
46 let empty = Assoctable.empty
47
48 let fetchAl =
49 fetchState >>= (fun (al, _, _) -> returnM al)
50
51 let storeAl al =
52 fetchState >>= (fun (_, visited, visited') ->
53 storeState (al, visited, visited'))
54
55 let fetchVisited = fetchState >>= (fun (_, v, _) -> returnM v)
56
57 let storeVisited visited =
58 fetchState >>= (fun (al, _, visited') ->
59 storeState (al, visited, visited'))
60
61 let fetchVisited' = fetchState >>= (fun (_, _, v') -> returnM v')
62 let storeVisited' visited' =
63 fetchState >>= (fun (al, visited, _) ->
64 storeState (al, visited, visited'))
65 let lookupVisitedM' key =
66 fetchVisited' >>= fun table ->
67 returnM (node_lookup key table)
68 let insertVisitedM' key value =
69 fetchVisited' >>= fun table ->
70 storeVisited' (node_insert key value table)
71
72 let counting f x =
73 fetchVisited >>= (fun v ->
74 match node_lookup x v with
75 Some count ->
76 let incr_cnt =
77 fetchVisited >>= (fun v' ->
78 storeVisited (node_insert x (count + 1) v'))
79 in
80 begin
81 match x with
82 (* Uminus is always inlined. Visit child *)
83 Uminus y -> f y >> incr_cnt
84 | _ -> incr_cnt
85 end
86 | None ->
87 f x >> fetchVisited >>= (fun v' ->
88 storeVisited (node_insert x 1 v')))
89
90 let with_varM v x =
91 fetchAl >>= (fun al -> storeAl ((v, x) :: al)) >> returnM (Load v)
92
93 let inlineM = returnM
94
95 let with_tempM x = match x with
96 | Load v when Variable.is_temporary v -> inlineM x (* avoid trivial moves *)
97 | _ -> with_varM (fresh ()) x
98
99 (* declare a temporary only if node is used more than once *)
100 let with_temp_maybeM node x =
101 fetchVisited >>= (fun v ->
102 match node_lookup node v with
103 Some count ->
104 if (count = 1 && !Magic.inline_single) then
105 inlineM x
106 else
107 with_tempM x
108 | None ->
109 failwith "with_temp_maybeM")
110 type fma =
111 NO_FMA
112 | FMA of expr * expr * expr (* FMA (a, b, c) => a + b * c *)
113 | FMS of expr * expr * expr (* FMS (a, b, c) => -a + b * c *)
114 | FNMS of expr * expr * expr (* FNMS (a, b, c) => a - b * c *)
115
116 let good_for_fma (a, b) =
117 let good = function
118 | NaN I -> true
119 | NaN CONJ -> true
120 | NaN _ -> false
121 | Times(NaN _, _) -> false
122 | Times(_, NaN _) -> false
123 | _ -> true
124 in good a && good b
125
126 let build_fma l =
127 if (not !Magic.enable_fma) then NO_FMA
128 else match l with
129 | [a; Uminus (Times (b, c))] when good_for_fma (b, c) -> FNMS (a, b, c)
130 | [Uminus (Times (b, c)); a] when good_for_fma (b, c) -> FNMS (a, b, c)
131 | [Uminus a; Times (b, c)] when good_for_fma (b, c) -> FMS (a, b, c)
132 | [Times (b, c); Uminus a] when good_for_fma (b, c) -> FMS (a, b, c)
133 | [a; Times (b, c)] when good_for_fma (b, c) -> FMA (a, b, c)
134 | [Times (b, c); a] when good_for_fma (b, c) -> FMA (a, b, c)
135 | _ -> NO_FMA
136
137 let children_fma l = match build_fma l with
138 | FMA (a, b, c) -> Some (a, b, c)
139 | FMS (a, b, c) -> Some (a, b, c)
140 | FNMS (a, b, c) -> Some (a, b, c)
141 | NO_FMA -> None
142
143
144 let rec visitM x =
145 counting (function
146 | Load v -> returnM ()
147 | Num a -> returnM ()
148 | NaN a -> returnM ()
149 | Store (v, x) -> visitM x
150 | Plus a -> (match children_fma a with
151 None -> mapM visitM a >> returnM ()
152 | Some (a, b, c) ->
153 (* visit fma's arguments twice to make sure they are not inlined *)
154 visitM a >> visitM a >>
155 visitM b >> visitM b >>
156 visitM c >> visitM c)
157 | Times (a, b) -> visitM a >> visitM b
158 | CTimes (a, b) -> visitM a >> visitM b
159 | CTimesJ (a, b) -> visitM a >> visitM b
160 | Uminus a -> visitM a)
161 x
162
163 let visit_rootsM = mapM visitM
164
165
166 let rec expr_of_nodeM x =
167 memoizing lookupVisitedM' insertVisitedM'
168 (function x -> match x with
169 | Load v ->
170 if (Variable.is_temporary v) then
171 inlineM (Load v)
172 else if (Variable.is_locative v && !Magic.inline_loads) then
173 inlineM (Load v)
174 else if (Variable.is_constant v && !Magic.inline_loads_constants) then
175 inlineM (Load v)
176 else
177 with_tempM (Load v)
178 | Num a ->
179 if !Magic.inline_constants then
180 inlineM (Num a)
181 else
182 with_temp_maybeM x (Num a)
183 | NaN a -> inlineM (NaN a)
184 | Store (v, x) ->
185 expr_of_nodeM x >>=
186 (if !Magic.trivial_stores then with_tempM else inlineM) >>=
187 with_varM v
188
189 | Plus a ->
190 begin
191 match build_fma a with
192 FMA (a, b, c) ->
193 expr_of_nodeM a >>= fun a' ->
194 expr_of_nodeM b >>= fun b' ->
195 expr_of_nodeM c >>= fun c' ->
196 with_temp_maybeM x (Plus [a'; Times (b', c')])
197 | FMS (a, b, c) ->
198 expr_of_nodeM a >>= fun a' ->
199 expr_of_nodeM b >>= fun b' ->
200 expr_of_nodeM c >>= fun c' ->
201 with_temp_maybeM x
202 (Plus [Times (b', c'); Uminus a'])
203 | FNMS (a, b, c) ->
204 expr_of_nodeM a >>= fun a' ->
205 expr_of_nodeM b >>= fun b' ->
206 expr_of_nodeM c >>= fun c' ->
207 with_temp_maybeM x
208 (Plus [a'; Uminus (Times (b', c'))])
209 | NO_FMA ->
210 mapM expr_of_nodeM a >>= fun a' ->
211 with_temp_maybeM x (Plus a')
212 end
213 | CTimes (Load _ as a, b) when !Magic.generate_bytw ->
214 expr_of_nodeM b >>= fun b' ->
215 with_tempM (CTimes (a, b'))
216 | CTimes (a, b) ->
217 expr_of_nodeM a >>= fun a' ->
218 expr_of_nodeM b >>= fun b' ->
219 with_tempM (CTimes (a', b'))
220 | CTimesJ (Load _ as a, b) when !Magic.generate_bytw ->
221 expr_of_nodeM b >>= fun b' ->
222 with_tempM (CTimesJ (a, b'))
223 | CTimesJ (a, b) ->
224 expr_of_nodeM a >>= fun a' ->
225 expr_of_nodeM b >>= fun b' ->
226 with_tempM (CTimesJ (a', b'))
227 | Times (a, b) ->
228 expr_of_nodeM a >>= fun a' ->
229 expr_of_nodeM b >>= fun b' ->
230 begin
231 match a' with
232 Num a'' when !Magic.strength_reduce_mul && Number.is_two a'' ->
233 (inlineM b' >>= fun b'' ->
234 with_temp_maybeM x (Plus [b''; b'']))
235 | _ -> with_temp_maybeM x (Times (a', b'))
236 end
237 | Uminus a ->
238 expr_of_nodeM a >>= fun a' ->
239 inlineM (Uminus a'))
240 x
241
242 let expr_of_rootsM = mapM expr_of_nodeM
243
244 let peek_alistM roots =
245 visit_rootsM roots >> expr_of_rootsM roots >> fetchAl
246
247 let wrap_assign (a, b) = Expr.Assign (a, b)
248
249 let to_assignments dag =
250 let () = Util.info "begin to_alist" in
251 let al = List.rev (runM ([], empty, empty) peek_alistM dag) in
252 let res = List.map wrap_assign al in
253 let () = Util.info "end to_alist" in
254 res
255
256
257 (* dump alist in `dot' format *)
258 let dump print alist =
259 let vs v = "\"" ^ (Variable.unparse v) ^ "\"" in
260 begin
261 print "digraph G {\n";
262 print "\tsize=\"6,6\";\n";
263
264 (* all input nodes have the same rank *)
265 print "{ rank = same;\n";
266 List.iter (fun (Expr.Assign (v, x)) ->
267 List.iter (fun y ->
268 if (Variable.is_locative y) then print("\t" ^ (vs y) ^ ";\n"))
269 (Expr.find_vars x))
270 alist;
271 print "}\n";
272
273 (* all output nodes have the same rank *)
274 print "{ rank = same;\n";
275 List.iter (fun (Expr.Assign (v, x)) ->
276 if (Variable.is_locative v) then print("\t" ^ (vs v) ^ ";\n"))
277 alist;
278 print "}\n";
279
280 (* edges *)
281 List.iter (fun (Expr.Assign (v, x)) ->
282 List.iter (fun y -> print("\t" ^ (vs y) ^ " -> " ^ (vs v) ^ ";\n"))
283 (Expr.find_vars x))
284 alist;
285
286 print "}\n";
287 end
288