Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/genfft/schedule.ml @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 (* | |
2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology | |
3 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
5 * | |
6 * This program is free software; you can redistribute it and/or modify | |
7 * it under the terms of the GNU General Public License as published by | |
8 * the Free Software Foundation; either version 2 of the License, or | |
9 * (at your option) any later version. | |
10 * | |
11 * This program is distributed in the hope that it will be useful, | |
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 * GNU General Public License for more details. | |
15 * | |
16 * You should have received a copy of the GNU General Public License | |
17 * along with this program; if not, write to the Free Software | |
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
19 * | |
20 *) | |
21 | |
22 (* This file contains the instruction scheduler, which finds an | |
23 efficient ordering for a given list of instructions. | |
24 | |
25 The scheduler analyzes the DAG (directed acyclic graph) formed by | |
26 the instruction dependencies, and recursively partitions it. The | |
27 resulting schedule data structure expresses a "good" ordering | |
28 and structure for the computation. | |
29 | |
30 The scheduler makes use of utilties in Dag and other packages to | |
31 manipulate the Dag and the instruction list. *) | |
32 | |
33 open Dag | |
34 (************************************************* | |
35 * Dag scheduler | |
36 *************************************************) | |
37 let to_assignment node = (Expr.Assign (node.assigned, node.expression)) | |
38 let makedag l = Dag.makedag | |
39 (List.map (function Expr.Assign (v, x) -> (v, x)) l) | |
40 | |
41 let return x = x | |
42 let has_color c n = (n.color = c) | |
43 let set_color c n = (n.color <- c) | |
44 let has_either_color c1 c2 n = (n.color = c1 || n.color = c2) | |
45 | |
46 let infinity = 100000 | |
47 | |
48 let cc dag inputs = | |
49 begin | |
50 Dag.for_all dag (fun node -> | |
51 node.label <- infinity); | |
52 | |
53 (match inputs with | |
54 a :: _ -> bfs dag a 0 | |
55 | _ -> failwith "connected"); | |
56 | |
57 return | |
58 ((List.map to_assignment (List.filter (fun n -> n.label < infinity) | |
59 (Dag.to_list dag))), | |
60 (List.map to_assignment (List.filter (fun n -> n.label == infinity) | |
61 (Dag.to_list dag)))) | |
62 end | |
63 | |
64 let rec connected_components alist = | |
65 let dag = makedag alist in | |
66 let inputs = | |
67 List.filter (fun node -> Util.null node.predecessors) | |
68 (Dag.to_list dag) in | |
69 match cc dag inputs with | |
70 (a, []) -> [a] | |
71 | (a, b) -> a :: connected_components b | |
72 | |
73 let single_load node = | |
74 match (node.input_variables, node.predecessors) with | |
75 ([x], []) -> | |
76 Variable.is_constant x || | |
77 (!Magic.locations_are_special && Variable.is_locative x) | |
78 | _ -> false | |
79 | |
80 let loads_locative node = | |
81 match (node.input_variables, node.predecessors) with | |
82 | ([x], []) -> Variable.is_locative x | |
83 | _ -> false | |
84 | |
85 let partition alist = | |
86 let dag = makedag alist in | |
87 let dag' = Dag.to_list dag in | |
88 let inputs = | |
89 List.filter (fun node -> Util.null node.predecessors) dag' | |
90 and outputs = | |
91 List.filter (fun node -> Util.null node.successors) dag' | |
92 and special_inputs = List.filter single_load dag' in | |
93 begin | |
94 | |
95 let c = match !Magic.schedule_type with | |
96 | 1 -> RED; (* all nodes in the input partition *) | |
97 | -1 -> BLUE; (* all nodes in the output partition *) | |
98 | _ -> BLACK; (* node color determined by bisection algorithm *) | |
99 in Dag.for_all dag (fun node -> node.color <- c); | |
100 | |
101 Util.for_list inputs (set_color RED); | |
102 | |
103 (* | |
104 The special inputs are those input nodes that load a single | |
105 location or twiddle factor. Special inputs can end up either | |
106 in the blue or in the red part. These inputs are special | |
107 because they inherit a color from their neighbors: If a red | |
108 node needs a special input, the special input becomes red, but | |
109 if all successors of a special input are blue, the special | |
110 input becomes blue. Outputs are always blue, whether they be | |
111 special or not. | |
112 | |
113 Because of the processing of special inputs, however, the final | |
114 partition might end up being composed only of blue nodes (which | |
115 is incorrect). In this case we manually reset all inputs | |
116 (whether special or not) to be red. | |
117 *) | |
118 | |
119 Util.for_list special_inputs (set_color YELLOW); | |
120 | |
121 Util.for_list outputs (set_color BLUE); | |
122 | |
123 let rec loopi donep = | |
124 match (List.filter | |
125 (fun node -> (has_color BLACK node) && | |
126 List.for_all (has_either_color RED YELLOW) node.predecessors) | |
127 dag') with | |
128 [] -> if (donep) then () else loopo true | |
129 | i -> | |
130 begin | |
131 Util.for_list i (fun node -> | |
132 begin | |
133 set_color RED node; | |
134 Util.for_list node.predecessors (set_color RED); | |
135 end); | |
136 loopo false; | |
137 end | |
138 | |
139 and loopo donep = | |
140 match (List.filter | |
141 (fun node -> (has_either_color BLACK YELLOW node) && | |
142 List.for_all (has_color BLUE) node.successors) | |
143 dag') with | |
144 [] -> if (donep) then () else loopi true | |
145 | o -> | |
146 begin | |
147 Util.for_list o (set_color BLUE); | |
148 loopi false; | |
149 end | |
150 | |
151 in loopi false; | |
152 | |
153 (* fix the partition if it is incorrect *) | |
154 if not (List.exists (has_color RED) dag') then | |
155 Util.for_list inputs (set_color RED); | |
156 | |
157 return | |
158 ((List.map to_assignment (List.filter (has_color RED) dag')), | |
159 (List.map to_assignment (List.filter (has_color BLUE) dag'))) | |
160 end | |
161 | |
162 type schedule = | |
163 Done | |
164 | Instr of Expr.assignment | |
165 | Seq of (schedule * schedule) | |
166 | Par of schedule list | |
167 | |
168 | |
169 | |
170 (* produce a sequential schedule determined by the user *) | |
171 let rec sequentially = function | |
172 [] -> Done | |
173 | a :: b -> Seq (Instr a, sequentially b) | |
174 | |
175 let schedule = | |
176 let rec schedule_alist = function | |
177 | [] -> Done | |
178 | [a] -> Instr a | |
179 | alist -> match connected_components alist with | |
180 | ([a]) -> schedule_connected a | |
181 | l -> Par (List.map schedule_alist l) | |
182 | |
183 and schedule_connected alist = | |
184 match partition alist with | |
185 | (a, b) -> Seq (schedule_alist a, schedule_alist b) | |
186 | |
187 in fun x -> | |
188 let () = Util.info "begin schedule" in | |
189 let res = schedule_alist x in | |
190 let () = Util.info "end schedule" in | |
191 res | |
192 | |
193 | |
194 (* partition a dag into two parts: | |
195 | |
196 1) the set of loads from locatives and their successors, | |
197 2) all other nodes | |
198 | |
199 This step separates the ``body'' of the dag, which computes the | |
200 actual fft, from the ``precomputations'' part, which computes e.g. | |
201 twiddle factors. | |
202 *) | |
203 let partition_precomputations alist = | |
204 let dag = makedag alist in | |
205 let dag' = Dag.to_list dag in | |
206 let loads = List.filter loads_locative dag' in | |
207 begin | |
208 | |
209 Dag.for_all dag (set_color BLUE); | |
210 Util.for_list loads (set_color RED); | |
211 | |
212 let rec loop () = | |
213 match (List.filter | |
214 (fun node -> (has_color RED node) && | |
215 List.exists (has_color BLUE) node.successors) | |
216 dag') with | |
217 [] -> () | |
218 | i -> | |
219 begin | |
220 Util.for_list i | |
221 (fun node -> | |
222 Util.for_list node.successors (set_color RED)); | |
223 loop () | |
224 end | |
225 | |
226 in loop (); | |
227 | |
228 return | |
229 ((List.map to_assignment (List.filter (has_color BLUE) dag')), | |
230 (List.map to_assignment (List.filter (has_color RED) dag'))) | |
231 end | |
232 | |
233 let isolate_precomputations_and_schedule alist = | |
234 let (a, b) = partition_precomputations alist in | |
235 Seq (schedule a, schedule b) | |
236 |