comparison src/fftw-3.3.8/genfft/oracle.ml @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 (*
2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
3 * Copyright (c) 2003, 2007-14 Matteo Frigo
4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 *)
21
22 (*
23 * the oracle decrees whether the sign of an expression should
24 * be changed.
25 *
26 * Say the expression (A - B) appears somewhere. Elsewhere in the
27 * expression dag the expression (B - A) may appear.
28 * The oracle determines which of the two forms is canonical.
29 *
30 * Algorithm: evaluate the expression at a random input, and
31 * keep the expression with the positive sign.
32 *)
33
34 let make_memoizer hash equal =
35 let table = ref Assoctable.empty
36 in
37 (fun f k ->
38 match Assoctable.lookup hash equal k !table with
39 Some value -> value
40 | None ->
41 let value = f k in
42 begin
43 table := Assoctable.insert hash k value !table;
44 value
45 end)
46
47 let almost_equal x y =
48 let epsilon = 1.0E-8 in
49 (abs_float (x -. y) < epsilon) ||
50 (abs_float (x -. y) < epsilon *. (abs_float x +. abs_float y))
51
52 let absid = make_memoizer
53 (fun x -> Expr.hash_float (abs_float x))
54 (fun a b -> almost_equal a b || almost_equal (-. a) b)
55 (fun x -> x)
56
57 let make_random_oracle () = make_memoizer
58 Variable.hash
59 Variable.same
60 (fun _ -> (float (Random.bits())) /. 1073741824.0)
61
62 let the_random_oracle = make_random_oracle ()
63
64 let sum_list l = List.fold_right (+.) l 0.0
65
66 let eval_aux random_oracle =
67 let memoizing = make_memoizer Expr.hash (==) in
68 let rec eval x =
69 memoizing
70 (function
71 | Expr.Num x -> Number.to_float x
72 | Expr.NaN x -> Expr.transcendent_to_float x
73 | Expr.Load v -> random_oracle v
74 | Expr.Store (v, x) -> eval x
75 | Expr.Plus l -> sum_list (List.map eval l)
76 | Expr.Times (a, b) -> (eval a) *. (eval b)
77 | Expr.CTimes (a, b) ->
78 1.098612288668109691395245236 +.
79 1.609437912434100374600759333 *. (eval a) *. (eval b)
80 | Expr.CTimesJ (a, b) ->
81 0.9102392266268373936142401657 +.
82 0.6213349345596118107071993881 *. (eval a) *. (eval b)
83 | Expr.Uminus x -> -. (eval x))
84 x
85 in eval
86
87 let eval = eval_aux the_random_oracle
88
89 let should_flip_sign node =
90 let v = eval node in
91 let v' = absid v in
92 not (almost_equal v v')
93
94 (*
95 * determine with high probability if two expressions are equal.
96 *
97 * The test is randomized: if the two expressions have the
98 * same value for NTESTS random inputs, then they are proclaimed
99 * equal. (Note that two distinct linear functions L1(x0, x1, ..., xn)
100 * and L2(x0, x1, ..., xn) have the same value with probability
101 * 0 for random x's, and thus this test is way more paranoid than
102 * necessary.)
103 *)
104 let likely_equal a b =
105 let tolerance = 1.0e-8
106 and ntests = 20
107 in
108 let rec loop n =
109 if n = 0 then
110 true
111 else
112 let r = make_random_oracle () in
113 let va = eval_aux r a
114 and vb = eval_aux r b
115 in
116 if (abs_float (va -. vb)) >
117 tolerance *. (abs_float va +. abs_float vb +. 0.0001)
118 then
119 false
120 else
121 loop (n - 1)
122 in
123 match (a, b) with
124
125 (*
126 * Because of the way eval is constructed, we have
127 * eval (Store (v, x)) == eval x
128 * However, we never consider the two expressions equal
129 *)
130 | (Expr.Store _, _) -> false
131 | (_, Expr.Store _) -> false
132
133 (*
134 * Expressions of the form ``Uminus (Store _)''
135 * are artifacts of algsimp
136 *)
137 | ((Expr.Uminus (Expr.Store _)), _) -> false
138 | (_, Expr.Uminus (Expr.Store _)) -> false
139
140 | _ -> loop ntests
141
142 let hash x =
143 let f = eval x in
144 truncate (f *. 65536.0)