Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/genfft/conv.ml @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 (* | |
2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology | |
3 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
5 * | |
6 * This program is free software; you can redistribute it and/or modify | |
7 * it under the terms of the GNU General Public License as published by | |
8 * the Free Software Foundation; either version 2 of the License, or | |
9 * (at your option) any later version. | |
10 * | |
11 * This program is distributed in the hope that it will be useful, | |
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 * GNU General Public License for more details. | |
15 * | |
16 * You should have received a copy of the GNU General Public License | |
17 * along with this program; if not, write to the Free Software | |
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
19 * | |
20 *) | |
21 | |
22 open Complex | |
23 open Util | |
24 | |
25 let polyphase m a ph i = a (m * i + ph) | |
26 | |
27 let rec divmod n i = | |
28 if (i < 0) then | |
29 let (a, b) = divmod n (i + n) | |
30 in (a - 1, b) | |
31 else (i / n, i mod n) | |
32 | |
33 let unpolyphase m a i = let (x, y) = divmod m i in a y x | |
34 | |
35 let lift2 f a b i = f (a i) (b i) | |
36 | |
37 (* convolution of signals A and B *) | |
38 let rec conv na a nb b = | |
39 let rec naive na a nb b i = | |
40 sigma 0 na (fun j -> (a j) @* (b (i - j))) | |
41 | |
42 and recur na a nb b = | |
43 if (na <= 1 || nb <= 1) then | |
44 naive na a nb b | |
45 else | |
46 let p = polyphase 2 in | |
47 let ee = conv (na - na / 2) (p a 0) (nb - nb / 2) (p b 0) | |
48 and eo = conv (na - na / 2) (p a 0) (nb / 2) (p b 1) | |
49 and oe = conv (na / 2) (p a 1) (nb - nb / 2) (p b 0) | |
50 and oo = conv (na / 2) (p a 1) (nb / 2) (p b 1) in | |
51 unpolyphase 2 (function | |
52 0 -> fun i -> (ee i) @+ (oo (i - 1)) | |
53 | 1 -> fun i -> (eo i) @+ (oe i) | |
54 | _ -> failwith "recur") | |
55 | |
56 | |
57 (* Karatsuba variant 1: (a+bx)(c+dx) = (ac+bdxx)+((a+b)(c+d)-ac-bd)x *) | |
58 and karatsuba1 na a nb b = | |
59 let p = polyphase 2 in | |
60 let ae = p a 0 and nae = na - na / 2 | |
61 and ao = p a 1 and nao = na / 2 | |
62 and be = p b 0 and nbe = nb - nb / 2 | |
63 and bo = p b 1 and nbo = nb / 2 in | |
64 let ae = infinite nae ae and ao = infinite nao ao | |
65 and be = infinite nbe be and bo = infinite nbo bo in | |
66 let aeo = lift2 (@+) ae ao and naeo = nae | |
67 and beo = lift2 (@+) be bo and nbeo = nbe in | |
68 let ee = conv nae ae nbe be | |
69 and oo = conv nao ao nbo bo | |
70 and eoeo = conv naeo aeo nbeo beo in | |
71 | |
72 let q = function | |
73 0 -> fun i -> (ee i) @+ (oo (i - 1)) | |
74 | 1 -> fun i -> (eoeo i) @- ((ee i) @+ (oo i)) | |
75 | _ -> failwith "karatsuba1" in | |
76 unpolyphase 2 q | |
77 | |
78 (* Karatsuba variant 2: | |
79 (a+bx)(c+dx) = ((a+b)c-b(c-dxx))+x((a+b)c-a(c-d)) *) | |
80 and karatsuba2 na a nb b = | |
81 let p = polyphase 2 in | |
82 let ae = p a 0 and nae = na - na / 2 | |
83 and ao = p a 1 and nao = na / 2 | |
84 and be = p b 0 and nbe = nb - nb / 2 | |
85 and bo = p b 1 and nbo = nb / 2 in | |
86 let ae = infinite nae ae and ao = infinite nao ao | |
87 and be = infinite nbe be and bo = infinite nbo bo in | |
88 | |
89 let c1 = conv nae (lift2 (@+) ae ao) nbe be | |
90 and c2 = conv nao ao (nbo + 1) (fun i -> be i @- bo (i - 1)) | |
91 and c3 = conv nae ae nbe (lift2 (@-) be bo) in | |
92 | |
93 let q = function | |
94 0 -> lift2 (@-) c1 c2 | |
95 | 1 -> lift2 (@-) c1 c3 | |
96 | _ -> failwith "karatsuba2" in | |
97 unpolyphase 2 q | |
98 | |
99 and karatsuba na a nb b = | |
100 let m = na + nb - 1 in | |
101 if (m < !Magic.karatsuba_min) then | |
102 recur na a nb b | |
103 else | |
104 match !Magic.karatsuba_variant with | |
105 1 -> karatsuba1 na a nb b | |
106 | 2 -> karatsuba2 na a nb b | |
107 | _ -> failwith "unknown karatsuba variant" | |
108 | |
109 and via_circular na a nb b = | |
110 let m = na + nb - 1 in | |
111 if (m < !Magic.circular_min) then | |
112 karatsuba na a nb b | |
113 else | |
114 let rec find_min n = if n >= m then n else find_min (2 * n) in | |
115 circular (find_min 1) a b | |
116 | |
117 in | |
118 let a = infinite na a and b = infinite nb b in | |
119 let res = array (na + nb - 1) (via_circular na a nb b) in | |
120 infinite (na + nb - 1) res | |
121 | |
122 and circular n a b = | |
123 let via_dft n a b = | |
124 let fa = Fft.dft (-1) n a | |
125 and fb = Fft.dft (-1) n b | |
126 and scale = inverse_int n in | |
127 let fab i = ((fa i) @* (fb i)) @* scale in | |
128 Fft.dft 1 n fab | |
129 | |
130 in via_dft n a b |