Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/doc/html/Complex-One_002dDimensional-DFTs.html @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> | |
2 <html> | |
3 <!-- This manual is for FFTW | |
4 (version 3.3.8, 24 May 2018). | |
5 | |
6 Copyright (C) 2003 Matteo Frigo. | |
7 | |
8 Copyright (C) 2003 Massachusetts Institute of Technology. | |
9 | |
10 Permission is granted to make and distribute verbatim copies of this | |
11 manual provided the copyright notice and this permission notice are | |
12 preserved on all copies. | |
13 | |
14 Permission is granted to copy and distribute modified versions of this | |
15 manual under the conditions for verbatim copying, provided that the | |
16 entire resulting derived work is distributed under the terms of a | |
17 permission notice identical to this one. | |
18 | |
19 Permission is granted to copy and distribute translations of this manual | |
20 into another language, under the above conditions for modified versions, | |
21 except that this permission notice may be stated in a translation | |
22 approved by the Free Software Foundation. --> | |
23 <!-- Created by GNU Texinfo 6.3, http://www.gnu.org/software/texinfo/ --> | |
24 <head> | |
25 <title>FFTW 3.3.8: Complex One-Dimensional DFTs</title> | |
26 | |
27 <meta name="description" content="FFTW 3.3.8: Complex One-Dimensional DFTs"> | |
28 <meta name="keywords" content="FFTW 3.3.8: Complex One-Dimensional DFTs"> | |
29 <meta name="resource-type" content="document"> | |
30 <meta name="distribution" content="global"> | |
31 <meta name="Generator" content="makeinfo"> | |
32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> | |
33 <link href="index.html#Top" rel="start" title="Top"> | |
34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index"> | |
35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents"> | |
36 <link href="Tutorial.html#Tutorial" rel="up" title="Tutorial"> | |
37 <link href="Complex-Multi_002dDimensional-DFTs.html#Complex-Multi_002dDimensional-DFTs" rel="next" title="Complex Multi-Dimensional DFTs"> | |
38 <link href="Tutorial.html#Tutorial" rel="prev" title="Tutorial"> | |
39 <style type="text/css"> | |
40 <!-- | |
41 a.summary-letter {text-decoration: none} | |
42 blockquote.indentedblock {margin-right: 0em} | |
43 blockquote.smallindentedblock {margin-right: 0em; font-size: smaller} | |
44 blockquote.smallquotation {font-size: smaller} | |
45 div.display {margin-left: 3.2em} | |
46 div.example {margin-left: 3.2em} | |
47 div.lisp {margin-left: 3.2em} | |
48 div.smalldisplay {margin-left: 3.2em} | |
49 div.smallexample {margin-left: 3.2em} | |
50 div.smalllisp {margin-left: 3.2em} | |
51 kbd {font-style: oblique} | |
52 pre.display {font-family: inherit} | |
53 pre.format {font-family: inherit} | |
54 pre.menu-comment {font-family: serif} | |
55 pre.menu-preformatted {font-family: serif} | |
56 pre.smalldisplay {font-family: inherit; font-size: smaller} | |
57 pre.smallexample {font-size: smaller} | |
58 pre.smallformat {font-family: inherit; font-size: smaller} | |
59 pre.smalllisp {font-size: smaller} | |
60 span.nolinebreak {white-space: nowrap} | |
61 span.roman {font-family: initial; font-weight: normal} | |
62 span.sansserif {font-family: sans-serif; font-weight: normal} | |
63 ul.no-bullet {list-style: none} | |
64 --> | |
65 </style> | |
66 | |
67 | |
68 </head> | |
69 | |
70 <body lang="en"> | |
71 <a name="Complex-One_002dDimensional-DFTs"></a> | |
72 <div class="header"> | |
73 <p> | |
74 Next: <a href="Complex-Multi_002dDimensional-DFTs.html#Complex-Multi_002dDimensional-DFTs" accesskey="n" rel="next">Complex Multi-Dimensional DFTs</a>, Previous: <a href="Tutorial.html#Tutorial" accesskey="p" rel="prev">Tutorial</a>, Up: <a href="Tutorial.html#Tutorial" accesskey="u" rel="up">Tutorial</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> | |
75 </div> | |
76 <hr> | |
77 <a name="Complex-One_002dDimensional-DFTs-1"></a> | |
78 <h3 class="section">2.1 Complex One-Dimensional DFTs</h3> | |
79 | |
80 <blockquote> | |
81 <p>Plan: To bother about the best method of accomplishing an accidental result. | |
82 [Ambrose Bierce, <cite>The Enlarged Devil’s Dictionary</cite>.] | |
83 <a name="index-Devil"></a> | |
84 </p></blockquote> | |
85 | |
86 | |
87 <p>The basic usage of FFTW to compute a one-dimensional DFT of size | |
88 <code>N</code> is simple, and it typically looks something like this code: | |
89 </p> | |
90 <div class="example"> | |
91 <pre class="example">#include <fftw3.h> | |
92 ... | |
93 { | |
94 fftw_complex *in, *out; | |
95 fftw_plan p; | |
96 ... | |
97 in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N); | |
98 out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N); | |
99 p = fftw_plan_dft_1d(N, in, out, FFTW_FORWARD, FFTW_ESTIMATE); | |
100 ... | |
101 fftw_execute(p); /* <span class="roman">repeat as needed</span> */ | |
102 ... | |
103 fftw_destroy_plan(p); | |
104 fftw_free(in); fftw_free(out); | |
105 } | |
106 </pre></div> | |
107 | |
108 <p>You must link this code with the <code>fftw3</code> library. On Unix systems, | |
109 link with <code>-lfftw3 -lm</code>. | |
110 </p> | |
111 <p>The example code first allocates the input and output arrays. You can | |
112 allocate them in any way that you like, but we recommend using | |
113 <code>fftw_malloc</code>, which behaves like | |
114 <a name="index-fftw_005fmalloc"></a> | |
115 <code>malloc</code> except that it properly aligns the array when SIMD | |
116 instructions (such as SSE and Altivec) are available (see <a href="SIMD-alignment-and-fftw_005fmalloc.html#SIMD-alignment-and-fftw_005fmalloc">SIMD alignment and fftw_malloc</a>). [Alternatively, we provide a convenient wrapper function <code>fftw_alloc_complex(N)</code> which has the same effect.] | |
117 <a name="index-fftw_005falloc_005fcomplex"></a> | |
118 <a name="index-SIMD"></a> | |
119 </p> | |
120 | |
121 <p>The data is an array of type <code>fftw_complex</code>, which is by default a | |
122 <code>double[2]</code> composed of the real (<code>in[i][0]</code>) and imaginary | |
123 (<code>in[i][1]</code>) parts of a complex number. | |
124 <a name="index-fftw_005fcomplex"></a> | |
125 </p> | |
126 <p>The next step is to create a <em>plan</em>, which is an object | |
127 <a name="index-plan-1"></a> | |
128 that contains all the data that FFTW needs to compute the FFT. | |
129 This function creates the plan: | |
130 </p> | |
131 <div class="example"> | |
132 <pre class="example">fftw_plan fftw_plan_dft_1d(int n, fftw_complex *in, fftw_complex *out, | |
133 int sign, unsigned flags); | |
134 </pre></div> | |
135 <a name="index-fftw_005fplan_005fdft_005f1d"></a> | |
136 <a name="index-fftw_005fplan"></a> | |
137 | |
138 <p>The first argument, <code>n</code>, is the size of the transform you are | |
139 trying to compute. The size <code>n</code> can be any positive integer, but | |
140 sizes that are products of small factors are transformed most | |
141 efficiently (although prime sizes still use an <i>O</i>(<i>n</i> log <i>n</i>) | |
142 algorithm). | |
143 </p> | |
144 <p>The next two arguments are pointers to the input and output arrays of | |
145 the transform. These pointers can be equal, indicating an | |
146 <em>in-place</em> transform. | |
147 <a name="index-in_002dplace"></a> | |
148 </p> | |
149 | |
150 <p>The fourth argument, <code>sign</code>, can be either <code>FFTW_FORWARD</code> | |
151 (<code>-1</code>) or <code>FFTW_BACKWARD</code> (<code>+1</code>), | |
152 <a name="index-FFTW_005fFORWARD"></a> | |
153 <a name="index-FFTW_005fBACKWARD"></a> | |
154 and indicates the direction of the transform you are interested in; | |
155 technically, it is the sign of the exponent in the transform. | |
156 </p> | |
157 <p>The <code>flags</code> argument is usually either <code>FFTW_MEASURE</code> or | |
158 <a name="index-flags"></a> | |
159 <code>FFTW_ESTIMATE</code>. <code>FFTW_MEASURE</code> instructs FFTW to run | |
160 <a name="index-FFTW_005fMEASURE"></a> | |
161 and measure the execution time of several FFTs in order to find the | |
162 best way to compute the transform of size <code>n</code>. This process takes | |
163 some time (usually a few seconds), depending on your machine and on | |
164 the size of the transform. <code>FFTW_ESTIMATE</code>, on the contrary, | |
165 does not run any computation and just builds a | |
166 <a name="index-FFTW_005fESTIMATE"></a> | |
167 reasonable plan that is probably sub-optimal. In short, if your | |
168 program performs many transforms of the same size and initialization | |
169 time is not important, use <code>FFTW_MEASURE</code>; otherwise use the | |
170 estimate. | |
171 </p> | |
172 <p><em>You must create the plan before initializing the input</em>, because | |
173 <code>FFTW_MEASURE</code> overwrites the <code>in</code>/<code>out</code> arrays. | |
174 (Technically, <code>FFTW_ESTIMATE</code> does not touch your arrays, but you | |
175 should always create plans first just to be sure.) | |
176 </p> | |
177 <p>Once the plan has been created, you can use it as many times as you | |
178 like for transforms on the specified <code>in</code>/<code>out</code> arrays, | |
179 computing the actual transforms via <code>fftw_execute(plan)</code>: | |
180 </p><div class="example"> | |
181 <pre class="example">void fftw_execute(const fftw_plan plan); | |
182 </pre></div> | |
183 <a name="index-fftw_005fexecute"></a> | |
184 | |
185 <p>The DFT results are stored in-order in the array <code>out</code>, with the | |
186 zero-frequency (DC) component in <code>out[0]</code>. | |
187 <a name="index-frequency"></a> | |
188 If <code>in != out</code>, the transform is <em>out-of-place</em> and the input | |
189 array <code>in</code> is not modified. Otherwise, the input array is | |
190 overwritten with the transform. | |
191 </p> | |
192 <a name="index-execute-1"></a> | |
193 <p>If you want to transform a <em>different</em> array of the same size, you | |
194 can create a new plan with <code>fftw_plan_dft_1d</code> and FFTW | |
195 automatically reuses the information from the previous plan, if | |
196 possible. Alternatively, with the “guru” interface you can apply a | |
197 given plan to a different array, if you are careful. | |
198 See <a href="FFTW-Reference.html#FFTW-Reference">FFTW Reference</a>. | |
199 </p> | |
200 <p>When you are done with the plan, you deallocate it by calling | |
201 <code>fftw_destroy_plan(plan)</code>: | |
202 </p><div class="example"> | |
203 <pre class="example">void fftw_destroy_plan(fftw_plan plan); | |
204 </pre></div> | |
205 <a name="index-fftw_005fdestroy_005fplan"></a> | |
206 <p>If you allocate an array with <code>fftw_malloc()</code> you must deallocate | |
207 it with <code>fftw_free()</code>. Do not use <code>free()</code> or, heaven | |
208 forbid, <code>delete</code>. | |
209 <a name="index-fftw_005ffree"></a> | |
210 </p> | |
211 <p>FFTW computes an <em>unnormalized</em> DFT. Thus, computing a forward | |
212 followed by a backward transform (or vice versa) results in the original | |
213 array scaled by <code>n</code>. For the definition of the DFT, see <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>. | |
214 <a name="index-DFT-1"></a> | |
215 <a name="index-normalization"></a> | |
216 </p> | |
217 | |
218 <p>If you have a C compiler, such as <code>gcc</code>, that supports the | |
219 C99 standard, and you <code>#include <complex.h></code> <em>before</em> | |
220 <code><fftw3.h></code>, then <code>fftw_complex</code> is the native | |
221 double-precision complex type and you can manipulate it with ordinary | |
222 arithmetic. Otherwise, FFTW defines its own complex type, which is | |
223 bit-compatible with the C99 complex type. See <a href="Complex-numbers.html#Complex-numbers">Complex numbers</a>. | |
224 (The C++ <code><complex></code> template class may also be usable via a | |
225 typecast.) | |
226 <a name="index-C_002b_002b"></a> | |
227 </p> | |
228 <p>To use single or long-double precision versions of FFTW, replace the | |
229 <code>fftw_</code> prefix by <code>fftwf_</code> or <code>fftwl_</code> and link with | |
230 <code>-lfftw3f</code> or <code>-lfftw3l</code>, but use the <em>same</em> | |
231 <code><fftw3.h></code> header file. | |
232 <a name="index-precision"></a> | |
233 </p> | |
234 | |
235 <p>Many more flags exist besides <code>FFTW_MEASURE</code> and | |
236 <code>FFTW_ESTIMATE</code>. For example, use <code>FFTW_PATIENT</code> if you’re | |
237 willing to wait even longer for a possibly even faster plan (see <a href="FFTW-Reference.html#FFTW-Reference">FFTW Reference</a>). | |
238 <a name="index-FFTW_005fPATIENT"></a> | |
239 You can also save plans for future use, as described by <a href="Words-of-Wisdom_002dSaving-Plans.html#Words-of-Wisdom_002dSaving-Plans">Words of Wisdom-Saving Plans</a>. | |
240 </p> | |
241 <hr> | |
242 <div class="header"> | |
243 <p> | |
244 Next: <a href="Complex-Multi_002dDimensional-DFTs.html#Complex-Multi_002dDimensional-DFTs" accesskey="n" rel="next">Complex Multi-Dimensional DFTs</a>, Previous: <a href="Tutorial.html#Tutorial" accesskey="p" rel="prev">Tutorial</a>, Up: <a href="Tutorial.html#Tutorial" accesskey="u" rel="up">Tutorial</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> | |
245 </div> | |
246 | |
247 | |
248 | |
249 </body> | |
250 </html> |