Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/doc/html/1d-Real_002dodd-DFTs-_0028DSTs_0029.html @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> | |
2 <html> | |
3 <!-- This manual is for FFTW | |
4 (version 3.3.8, 24 May 2018). | |
5 | |
6 Copyright (C) 2003 Matteo Frigo. | |
7 | |
8 Copyright (C) 2003 Massachusetts Institute of Technology. | |
9 | |
10 Permission is granted to make and distribute verbatim copies of this | |
11 manual provided the copyright notice and this permission notice are | |
12 preserved on all copies. | |
13 | |
14 Permission is granted to copy and distribute modified versions of this | |
15 manual under the conditions for verbatim copying, provided that the | |
16 entire resulting derived work is distributed under the terms of a | |
17 permission notice identical to this one. | |
18 | |
19 Permission is granted to copy and distribute translations of this manual | |
20 into another language, under the above conditions for modified versions, | |
21 except that this permission notice may be stated in a translation | |
22 approved by the Free Software Foundation. --> | |
23 <!-- Created by GNU Texinfo 6.3, http://www.gnu.org/software/texinfo/ --> | |
24 <head> | |
25 <title>FFTW 3.3.8: 1d Real-odd DFTs (DSTs)</title> | |
26 | |
27 <meta name="description" content="FFTW 3.3.8: 1d Real-odd DFTs (DSTs)"> | |
28 <meta name="keywords" content="FFTW 3.3.8: 1d Real-odd DFTs (DSTs)"> | |
29 <meta name="resource-type" content="document"> | |
30 <meta name="distribution" content="global"> | |
31 <meta name="Generator" content="makeinfo"> | |
32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> | |
33 <link href="index.html#Top" rel="start" title="Top"> | |
34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index"> | |
35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents"> | |
36 <link href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" rel="up" title="What FFTW Really Computes"> | |
37 <link href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" rel="next" title="1d Discrete Hartley Transforms (DHTs)"> | |
38 <link href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" rel="prev" title="1d Real-even DFTs (DCTs)"> | |
39 <style type="text/css"> | |
40 <!-- | |
41 a.summary-letter {text-decoration: none} | |
42 blockquote.indentedblock {margin-right: 0em} | |
43 blockquote.smallindentedblock {margin-right: 0em; font-size: smaller} | |
44 blockquote.smallquotation {font-size: smaller} | |
45 div.display {margin-left: 3.2em} | |
46 div.example {margin-left: 3.2em} | |
47 div.lisp {margin-left: 3.2em} | |
48 div.smalldisplay {margin-left: 3.2em} | |
49 div.smallexample {margin-left: 3.2em} | |
50 div.smalllisp {margin-left: 3.2em} | |
51 kbd {font-style: oblique} | |
52 pre.display {font-family: inherit} | |
53 pre.format {font-family: inherit} | |
54 pre.menu-comment {font-family: serif} | |
55 pre.menu-preformatted {font-family: serif} | |
56 pre.smalldisplay {font-family: inherit; font-size: smaller} | |
57 pre.smallexample {font-size: smaller} | |
58 pre.smallformat {font-family: inherit; font-size: smaller} | |
59 pre.smalllisp {font-size: smaller} | |
60 span.nolinebreak {white-space: nowrap} | |
61 span.roman {font-family: initial; font-weight: normal} | |
62 span.sansserif {font-family: sans-serif; font-weight: normal} | |
63 ul.no-bullet {list-style: none} | |
64 --> | |
65 </style> | |
66 | |
67 | |
68 </head> | |
69 | |
70 <body lang="en"> | |
71 <a name="g_t1d-Real_002dodd-DFTs-_0028DSTs_0029"></a> | |
72 <div class="header"> | |
73 <p> | |
74 Next: <a href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" accesskey="n" rel="next">1d Discrete Hartley Transforms (DHTs)</a>, Previous: <a href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" accesskey="p" rel="prev">1d Real-even DFTs (DCTs)</a>, Up: <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" accesskey="u" rel="up">What FFTW Really Computes</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> | |
75 </div> | |
76 <hr> | |
77 <a name="g_t1d-Real_002dodd-DFTs-_0028DSTs_0029-1"></a> | |
78 <h4 class="subsection">4.8.4 1d Real-odd DFTs (DSTs)</h4> | |
79 | |
80 <p>The Real-odd symmetry DFTs in FFTW are exactly equivalent to the unnormalized | |
81 forward (and backward) DFTs as defined above, where the input array | |
82 <em>X</em> of length <em>N</em> is purely real and is also <em>odd</em> symmetry. In | |
83 this case, the output is odd symmetry and purely imaginary. | |
84 <a name="index-real_002dodd-DFT-1"></a> | |
85 <a name="index-RODFT-1"></a> | |
86 </p> | |
87 | |
88 <a name="index-RODFT00"></a> | |
89 <p>For the case of <code>RODFT00</code>, this odd symmetry means that | |
90 <i>X<sub>j</sub> = -X<sub>N-j</sub></i>, | |
91 where we take <em>X</em> to be periodic so that | |
92 <i>X<sub>N</sub> = X</i><sub>0</sub>. | |
93 Because of this redundancy, only the first <em>n</em> real numbers | |
94 starting at <em>j=1</em> are actually stored (the <em>j=0</em> element is | |
95 zero), where <em>N = 2(n+1)</em>. | |
96 </p> | |
97 <p>The proper definition of odd symmetry for <code>RODFT10</code>, | |
98 <code>RODFT01</code>, and <code>RODFT11</code> transforms is somewhat more intricate | |
99 because of the shifts by <em>1/2</em> of the input and/or output, although | |
100 the corresponding boundary conditions are given in <a href="Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029.html#Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029">Real even/odd DFTs (cosine/sine transforms)</a>. Because of the odd symmetry, however, | |
101 the cosine terms in the DFT all cancel and the remaining sine terms are | |
102 written explicitly below. This formulation often leads people to call | |
103 such a transform a <em>discrete sine transform</em> (DST), although it is | |
104 really just a special case of the DFT. | |
105 <a name="index-discrete-sine-transform-2"></a> | |
106 <a name="index-DST-2"></a> | |
107 </p> | |
108 | |
109 <p>In each of the definitions below, we transform a real array <em>X</em> of | |
110 length <em>n</em> to a real array <em>Y</em> of length <em>n</em>: | |
111 </p> | |
112 <a name="RODFT00-_0028DST_002dI_0029"></a> | |
113 <h4 class="subsubheading">RODFT00 (DST-I)</h4> | |
114 <a name="index-RODFT00-1"></a> | |
115 <p>An <code>RODFT00</code> transform (type-I DST) in FFTW is defined by: | |
116 <center><img src="equation-rodft00.png" align="top">.</center> | |
117 </p> | |
118 <a name="RODFT10-_0028DST_002dII_0029"></a> | |
119 <h4 class="subsubheading">RODFT10 (DST-II)</h4> | |
120 <a name="index-RODFT10"></a> | |
121 <p>An <code>RODFT10</code> transform (type-II DST) in FFTW is defined by: | |
122 <center><img src="equation-rodft10.png" align="top">.</center> | |
123 </p> | |
124 <a name="RODFT01-_0028DST_002dIII_0029"></a> | |
125 <h4 class="subsubheading">RODFT01 (DST-III)</h4> | |
126 <a name="index-RODFT01"></a> | |
127 <p>An <code>RODFT01</code> transform (type-III DST) in FFTW is defined by: | |
128 <center><img src="equation-rodft01.png" align="top">.</center> | |
129 In the case of <em>n=1</em>, this reduces to | |
130 <i>Y</i><sub>0</sub> = <i>X</i><sub>0</sub>. | |
131 </p> | |
132 <a name="RODFT11-_0028DST_002dIV_0029"></a> | |
133 <h4 class="subsubheading">RODFT11 (DST-IV)</h4> | |
134 <a name="index-RODFT11"></a> | |
135 <p>An <code>RODFT11</code> transform (type-IV DST) in FFTW is defined by: | |
136 <center><img src="equation-rodft11.png" align="top">.</center> | |
137 </p> | |
138 <a name="Inverses-and-Normalization-1"></a> | |
139 <h4 class="subsubheading">Inverses and Normalization</h4> | |
140 | |
141 <p>These definitions correspond directly to the unnormalized DFTs used | |
142 elsewhere in FFTW (hence the factors of <em>2</em> in front of the | |
143 summations). The unnormalized inverse of <code>RODFT00</code> is | |
144 <code>RODFT00</code>, of <code>RODFT10</code> is <code>RODFT01</code> and vice versa, and | |
145 of <code>RODFT11</code> is <code>RODFT11</code>. Each unnormalized inverse results | |
146 in the original array multiplied by <em>N</em>, where <em>N</em> is the | |
147 <em>logical</em> DFT size. For <code>RODFT00</code>, <em>N=2(n+1)</em>; | |
148 otherwise, <em>N=2n</em>. | |
149 <a name="index-normalization-11"></a> | |
150 </p> | |
151 | |
152 <p>In defining the discrete sine transform, some authors also include | |
153 additional factors of | |
154 √2 | |
155 (or its inverse) multiplying selected inputs and/or outputs. This is a | |
156 mostly cosmetic change that makes the transform orthogonal, but | |
157 sacrifices the direct equivalence to an antisymmetric DFT. | |
158 </p> | |
159 <hr> | |
160 <div class="header"> | |
161 <p> | |
162 Next: <a href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" accesskey="n" rel="next">1d Discrete Hartley Transforms (DHTs)</a>, Previous: <a href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" accesskey="p" rel="prev">1d Real-even DFTs (DCTs)</a>, Up: <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" accesskey="u" rel="up">What FFTW Really Computes</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> | |
163 </div> | |
164 | |
165 | |
166 | |
167 </body> | |
168 </html> |