Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/t3bv_20.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:06:09 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 20 -name t3bv_20 -include dft/simd/t3b.h -sign 1 */ | |
29 | |
30 /* | |
31 * This function contains 138 FP additions, 118 FP multiplications, | |
32 * (or, 92 additions, 72 multiplications, 46 fused multiply/add), | |
33 * 73 stack variables, 4 constants, and 40 memory accesses | |
34 */ | |
35 #include "dft/simd/t3b.h" | |
36 | |
37 static void t3bv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
40 DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
41 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
42 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
43 { | |
44 INT m; | |
45 R *x; | |
46 x = ii; | |
47 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(20, rs)) { | |
48 V T2, T8, T9, TA, T3, Tc, T4, TV, T14, Tl, Tq, Tx, TQ, Td, Te; | |
49 V T1d, Ti, Tt, T11; | |
50 T2 = LDW(&(W[0])); | |
51 T8 = LDW(&(W[TWVL * 2])); | |
52 T9 = VZMUL(T2, T8); | |
53 TA = VZMULJ(T2, T8); | |
54 T3 = LDW(&(W[TWVL * 4])); | |
55 Tc = VZMULJ(T9, T3); | |
56 T4 = VZMUL(T2, T3); | |
57 TV = VZMUL(T9, T3); | |
58 T14 = VZMULJ(TA, T3); | |
59 Tl = VZMULJ(T8, T3); | |
60 Tq = VZMULJ(T2, T3); | |
61 Tx = VZMUL(T8, T3); | |
62 TQ = VZMUL(TA, T3); | |
63 Td = LDW(&(W[TWVL * 6])); | |
64 Te = VZMULJ(Tc, Td); | |
65 T1d = VZMULJ(T9, Td); | |
66 Ti = VZMULJ(T8, Td); | |
67 Tt = VZMULJ(T2, Td); | |
68 T11 = VZMULJ(TA, Td); | |
69 { | |
70 V T7, T1g, T1F, T23, TU, T1n, T1o, T18, Tp, TE, TF, T27, T28, T29, T1P; | |
71 V T1S, T1T, T1h, T1i, T1j, T24, T25, T26, T1I, T1L, T1M, T1B, T1C; | |
72 { | |
73 V T1, T1f, T6, T1c, T1e, T5, T1b, T1D, T1E; | |
74 T1 = LD(&(x[0]), ms, &(x[0])); | |
75 T1e = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); | |
76 T1f = VZMUL(T1d, T1e); | |
77 T5 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
78 T6 = VZMUL(T4, T5); | |
79 T1b = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
80 T1c = VZMUL(Tc, T1b); | |
81 T7 = VSUB(T1, T6); | |
82 T1g = VSUB(T1c, T1f); | |
83 T1D = VADD(T1, T6); | |
84 T1E = VADD(T1c, T1f); | |
85 T1F = VSUB(T1D, T1E); | |
86 T23 = VADD(T1D, T1E); | |
87 } | |
88 { | |
89 V Th, T1G, T10, T1O, T17, T1R, To, T1J, Tw, T1N, TN, T1H, TT, T1K, TD; | |
90 V T1Q; | |
91 { | |
92 V Tb, Tg, Ta, Tf; | |
93 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
94 Tb = VZMUL(T9, Ta); | |
95 Tf = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | |
96 Tg = VZMUL(Te, Tf); | |
97 Th = VSUB(Tb, Tg); | |
98 T1G = VADD(Tb, Tg); | |
99 } | |
100 { | |
101 V TX, TZ, TW, TY; | |
102 TW = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | |
103 TX = VZMUL(TV, TW); | |
104 TY = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
105 TZ = VZMUL(T8, TY); | |
106 T10 = VSUB(TX, TZ); | |
107 T1O = VADD(TX, TZ); | |
108 } | |
109 { | |
110 V T13, T16, T12, T15; | |
111 T12 = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)])); | |
112 T13 = VZMUL(T11, T12); | |
113 T15 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
114 T16 = VZMUL(T14, T15); | |
115 T17 = VSUB(T13, T16); | |
116 T1R = VADD(T13, T16); | |
117 } | |
118 { | |
119 V Tk, Tn, Tj, Tm; | |
120 Tj = LD(&(x[WS(rs, 16)]), ms, &(x[0])); | |
121 Tk = VZMUL(Ti, Tj); | |
122 Tm = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
123 Tn = VZMUL(Tl, Tm); | |
124 To = VSUB(Tk, Tn); | |
125 T1J = VADD(Tk, Tn); | |
126 } | |
127 { | |
128 V Ts, Tv, Tr, Tu; | |
129 Tr = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
130 Ts = VZMUL(Tq, Tr); | |
131 Tu = LD(&(x[WS(rs, 18)]), ms, &(x[0])); | |
132 Tv = VZMUL(Tt, Tu); | |
133 Tw = VSUB(Ts, Tv); | |
134 T1N = VADD(Ts, Tv); | |
135 } | |
136 { | |
137 V TK, TM, TJ, TL; | |
138 TJ = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
139 TK = VZMUL(T3, TJ); | |
140 TL = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)])); | |
141 TM = VZMUL(Td, TL); | |
142 TN = VSUB(TK, TM); | |
143 T1H = VADD(TK, TM); | |
144 } | |
145 { | |
146 V TP, TS, TO, TR; | |
147 TO = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
148 TP = VZMUL(T2, TO); | |
149 TR = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
150 TS = VZMUL(TQ, TR); | |
151 TT = VSUB(TP, TS); | |
152 T1K = VADD(TP, TS); | |
153 } | |
154 { | |
155 V Tz, TC, Ty, TB; | |
156 Ty = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | |
157 Tz = VZMUL(Tx, Ty); | |
158 TB = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
159 TC = VZMUL(TA, TB); | |
160 TD = VSUB(Tz, TC); | |
161 T1Q = VADD(Tz, TC); | |
162 } | |
163 TU = VSUB(TN, TT); | |
164 T1n = VSUB(Th, To); | |
165 T1o = VSUB(Tw, TD); | |
166 T18 = VSUB(T10, T17); | |
167 Tp = VADD(Th, To); | |
168 TE = VADD(Tw, TD); | |
169 TF = VADD(Tp, TE); | |
170 T27 = VADD(T1N, T1O); | |
171 T28 = VADD(T1Q, T1R); | |
172 T29 = VADD(T27, T28); | |
173 T1P = VSUB(T1N, T1O); | |
174 T1S = VSUB(T1Q, T1R); | |
175 T1T = VADD(T1P, T1S); | |
176 T1h = VADD(TN, TT); | |
177 T1i = VADD(T10, T17); | |
178 T1j = VADD(T1h, T1i); | |
179 T24 = VADD(T1G, T1H); | |
180 T25 = VADD(T1J, T1K); | |
181 T26 = VADD(T24, T25); | |
182 T1I = VSUB(T1G, T1H); | |
183 T1L = VSUB(T1J, T1K); | |
184 T1M = VADD(T1I, T1L); | |
185 } | |
186 T1B = VADD(T7, TF); | |
187 T1C = VADD(T1g, T1j); | |
188 ST(&(x[WS(rs, 15)]), VFNMSI(T1C, T1B), ms, &(x[WS(rs, 1)])); | |
189 ST(&(x[WS(rs, 5)]), VFMAI(T1C, T1B), ms, &(x[WS(rs, 1)])); | |
190 { | |
191 V T2c, T2a, T2b, T2g, T2i, T2e, T2f, T2h, T2d; | |
192 T2c = VSUB(T26, T29); | |
193 T2a = VADD(T26, T29); | |
194 T2b = VFNMS(LDK(KP250000000), T2a, T23); | |
195 T2e = VSUB(T24, T25); | |
196 T2f = VSUB(T27, T28); | |
197 T2g = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T2f, T2e)); | |
198 T2i = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T2e, T2f)); | |
199 ST(&(x[0]), VADD(T23, T2a), ms, &(x[0])); | |
200 T2h = VFNMS(LDK(KP559016994), T2c, T2b); | |
201 ST(&(x[WS(rs, 8)]), VFMAI(T2i, T2h), ms, &(x[0])); | |
202 ST(&(x[WS(rs, 12)]), VFNMSI(T2i, T2h), ms, &(x[0])); | |
203 T2d = VFMA(LDK(KP559016994), T2c, T2b); | |
204 ST(&(x[WS(rs, 4)]), VFNMSI(T2g, T2d), ms, &(x[0])); | |
205 ST(&(x[WS(rs, 16)]), VFMAI(T2g, T2d), ms, &(x[0])); | |
206 } | |
207 { | |
208 V T1W, T1U, T1V, T20, T22, T1Y, T1Z, T21, T1X; | |
209 T1W = VSUB(T1M, T1T); | |
210 T1U = VADD(T1M, T1T); | |
211 T1V = VFNMS(LDK(KP250000000), T1U, T1F); | |
212 T1Y = VSUB(T1P, T1S); | |
213 T1Z = VSUB(T1I, T1L); | |
214 T20 = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1Z, T1Y)); | |
215 T22 = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1Y, T1Z)); | |
216 ST(&(x[WS(rs, 10)]), VADD(T1F, T1U), ms, &(x[0])); | |
217 T21 = VFMA(LDK(KP559016994), T1W, T1V); | |
218 ST(&(x[WS(rs, 6)]), VFMAI(T22, T21), ms, &(x[0])); | |
219 ST(&(x[WS(rs, 14)]), VFNMSI(T22, T21), ms, &(x[0])); | |
220 T1X = VFNMS(LDK(KP559016994), T1W, T1V); | |
221 ST(&(x[WS(rs, 2)]), VFNMSI(T20, T1X), ms, &(x[0])); | |
222 ST(&(x[WS(rs, 18)]), VFMAI(T20, T1X), ms, &(x[0])); | |
223 } | |
224 { | |
225 V T19, T1p, T1x, T1u, T1m, T1w, TI, T1t; | |
226 T19 = VFMA(LDK(KP618033988), T18, TU); | |
227 T1p = VFMA(LDK(KP618033988), T1o, T1n); | |
228 T1x = VFNMS(LDK(KP618033988), T1n, T1o); | |
229 T1u = VFNMS(LDK(KP618033988), TU, T18); | |
230 { | |
231 V T1k, T1l, TG, TH; | |
232 T1k = VFNMS(LDK(KP250000000), T1j, T1g); | |
233 T1l = VSUB(T1h, T1i); | |
234 T1m = VFMA(LDK(KP559016994), T1l, T1k); | |
235 T1w = VFNMS(LDK(KP559016994), T1l, T1k); | |
236 TG = VFNMS(LDK(KP250000000), TF, T7); | |
237 TH = VSUB(Tp, TE); | |
238 TI = VFMA(LDK(KP559016994), TH, TG); | |
239 T1t = VFNMS(LDK(KP559016994), TH, TG); | |
240 } | |
241 { | |
242 V T1a, T1q, T1z, T1A; | |
243 T1a = VFNMS(LDK(KP951056516), T19, TI); | |
244 T1q = VFMA(LDK(KP951056516), T1p, T1m); | |
245 ST(&(x[WS(rs, 19)]), VFNMSI(T1q, T1a), ms, &(x[WS(rs, 1)])); | |
246 ST(&(x[WS(rs, 1)]), VFMAI(T1q, T1a), ms, &(x[WS(rs, 1)])); | |
247 T1z = VFNMS(LDK(KP951056516), T1u, T1t); | |
248 T1A = VFMA(LDK(KP951056516), T1x, T1w); | |
249 ST(&(x[WS(rs, 7)]), VFNMSI(T1A, T1z), ms, &(x[WS(rs, 1)])); | |
250 ST(&(x[WS(rs, 13)]), VFMAI(T1A, T1z), ms, &(x[WS(rs, 1)])); | |
251 } | |
252 { | |
253 V T1r, T1s, T1v, T1y; | |
254 T1r = VFMA(LDK(KP951056516), T19, TI); | |
255 T1s = VFNMS(LDK(KP951056516), T1p, T1m); | |
256 ST(&(x[WS(rs, 11)]), VFNMSI(T1s, T1r), ms, &(x[WS(rs, 1)])); | |
257 ST(&(x[WS(rs, 9)]), VFMAI(T1s, T1r), ms, &(x[WS(rs, 1)])); | |
258 T1v = VFMA(LDK(KP951056516), T1u, T1t); | |
259 T1y = VFNMS(LDK(KP951056516), T1x, T1w); | |
260 ST(&(x[WS(rs, 3)]), VFNMSI(T1y, T1v), ms, &(x[WS(rs, 1)])); | |
261 ST(&(x[WS(rs, 17)]), VFMAI(T1y, T1v), ms, &(x[WS(rs, 1)])); | |
262 } | |
263 } | |
264 } | |
265 } | |
266 } | |
267 VLEAVE(); | |
268 } | |
269 | |
270 static const tw_instr twinstr[] = { | |
271 VTW(0, 1), | |
272 VTW(0, 3), | |
273 VTW(0, 9), | |
274 VTW(0, 19), | |
275 {TW_NEXT, VL, 0} | |
276 }; | |
277 | |
278 static const ct_desc desc = { 20, XSIMD_STRING("t3bv_20"), twinstr, &GENUS, {92, 72, 46, 0}, 0, 0, 0 }; | |
279 | |
280 void XSIMD(codelet_t3bv_20) (planner *p) { | |
281 X(kdft_dit_register) (p, t3bv_20, &desc); | |
282 } | |
283 #else | |
284 | |
285 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 20 -name t3bv_20 -include dft/simd/t3b.h -sign 1 */ | |
286 | |
287 /* | |
288 * This function contains 138 FP additions, 92 FP multiplications, | |
289 * (or, 126 additions, 80 multiplications, 12 fused multiply/add), | |
290 * 73 stack variables, 4 constants, and 40 memory accesses | |
291 */ | |
292 #include "dft/simd/t3b.h" | |
293 | |
294 static void t3bv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
295 { | |
296 DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
297 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
298 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
299 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
300 { | |
301 INT m; | |
302 R *x; | |
303 x = ii; | |
304 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(20, rs)) { | |
305 V T2, T8, T9, TA, T3, Tc, T4, TV, T14, Tl, Tq, Tx, TQ, Td, Te; | |
306 V T1g, Ti, Tt, T11; | |
307 T2 = LDW(&(W[0])); | |
308 T8 = LDW(&(W[TWVL * 2])); | |
309 T9 = VZMUL(T2, T8); | |
310 TA = VZMULJ(T2, T8); | |
311 T3 = LDW(&(W[TWVL * 4])); | |
312 Tc = VZMULJ(T9, T3); | |
313 T4 = VZMUL(T2, T3); | |
314 TV = VZMUL(T9, T3); | |
315 T14 = VZMULJ(TA, T3); | |
316 Tl = VZMULJ(T8, T3); | |
317 Tq = VZMULJ(T2, T3); | |
318 Tx = VZMUL(T8, T3); | |
319 TQ = VZMUL(TA, T3); | |
320 Td = LDW(&(W[TWVL * 6])); | |
321 Te = VZMULJ(Tc, Td); | |
322 T1g = VZMULJ(T9, Td); | |
323 Ti = VZMULJ(T8, Td); | |
324 Tt = VZMULJ(T2, Td); | |
325 T11 = VZMULJ(TA, Td); | |
326 { | |
327 V T7, T1j, T1U, T2a, TU, T1n, T1o, T18, Tp, TE, TF, T26, T27, T28, T1M; | |
328 V T1P, T1W, T1b, T1c, T1k, T23, T24, T25, T1F, T1I, T1V, T1B, T1C; | |
329 { | |
330 V T1, T1i, T6, T1f, T1h, T5, T1e, T1S, T1T; | |
331 T1 = LD(&(x[0]), ms, &(x[0])); | |
332 T1h = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); | |
333 T1i = VZMUL(T1g, T1h); | |
334 T5 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
335 T6 = VZMUL(T4, T5); | |
336 T1e = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
337 T1f = VZMUL(Tc, T1e); | |
338 T7 = VSUB(T1, T6); | |
339 T1j = VSUB(T1f, T1i); | |
340 T1S = VADD(T1, T6); | |
341 T1T = VADD(T1f, T1i); | |
342 T1U = VSUB(T1S, T1T); | |
343 T2a = VADD(T1S, T1T); | |
344 } | |
345 { | |
346 V Th, T1D, T10, T1L, T17, T1O, To, T1G, Tw, T1K, TN, T1E, TT, T1H, TD; | |
347 V T1N; | |
348 { | |
349 V Tb, Tg, Ta, Tf; | |
350 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
351 Tb = VZMUL(T9, Ta); | |
352 Tf = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | |
353 Tg = VZMUL(Te, Tf); | |
354 Th = VSUB(Tb, Tg); | |
355 T1D = VADD(Tb, Tg); | |
356 } | |
357 { | |
358 V TX, TZ, TW, TY; | |
359 TW = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | |
360 TX = VZMUL(TV, TW); | |
361 TY = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
362 TZ = VZMUL(T8, TY); | |
363 T10 = VSUB(TX, TZ); | |
364 T1L = VADD(TX, TZ); | |
365 } | |
366 { | |
367 V T13, T16, T12, T15; | |
368 T12 = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)])); | |
369 T13 = VZMUL(T11, T12); | |
370 T15 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
371 T16 = VZMUL(T14, T15); | |
372 T17 = VSUB(T13, T16); | |
373 T1O = VADD(T13, T16); | |
374 } | |
375 { | |
376 V Tk, Tn, Tj, Tm; | |
377 Tj = LD(&(x[WS(rs, 16)]), ms, &(x[0])); | |
378 Tk = VZMUL(Ti, Tj); | |
379 Tm = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
380 Tn = VZMUL(Tl, Tm); | |
381 To = VSUB(Tk, Tn); | |
382 T1G = VADD(Tk, Tn); | |
383 } | |
384 { | |
385 V Ts, Tv, Tr, Tu; | |
386 Tr = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
387 Ts = VZMUL(Tq, Tr); | |
388 Tu = LD(&(x[WS(rs, 18)]), ms, &(x[0])); | |
389 Tv = VZMUL(Tt, Tu); | |
390 Tw = VSUB(Ts, Tv); | |
391 T1K = VADD(Ts, Tv); | |
392 } | |
393 { | |
394 V TK, TM, TJ, TL; | |
395 TJ = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
396 TK = VZMUL(T3, TJ); | |
397 TL = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)])); | |
398 TM = VZMUL(Td, TL); | |
399 TN = VSUB(TK, TM); | |
400 T1E = VADD(TK, TM); | |
401 } | |
402 { | |
403 V TP, TS, TO, TR; | |
404 TO = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
405 TP = VZMUL(T2, TO); | |
406 TR = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
407 TS = VZMUL(TQ, TR); | |
408 TT = VSUB(TP, TS); | |
409 T1H = VADD(TP, TS); | |
410 } | |
411 { | |
412 V Tz, TC, Ty, TB; | |
413 Ty = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | |
414 Tz = VZMUL(Tx, Ty); | |
415 TB = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
416 TC = VZMUL(TA, TB); | |
417 TD = VSUB(Tz, TC); | |
418 T1N = VADD(Tz, TC); | |
419 } | |
420 TU = VSUB(TN, TT); | |
421 T1n = VSUB(Th, To); | |
422 T1o = VSUB(Tw, TD); | |
423 T18 = VSUB(T10, T17); | |
424 Tp = VADD(Th, To); | |
425 TE = VADD(Tw, TD); | |
426 TF = VADD(Tp, TE); | |
427 T26 = VADD(T1K, T1L); | |
428 T27 = VADD(T1N, T1O); | |
429 T28 = VADD(T26, T27); | |
430 T1M = VSUB(T1K, T1L); | |
431 T1P = VSUB(T1N, T1O); | |
432 T1W = VADD(T1M, T1P); | |
433 T1b = VADD(TN, TT); | |
434 T1c = VADD(T10, T17); | |
435 T1k = VADD(T1b, T1c); | |
436 T23 = VADD(T1D, T1E); | |
437 T24 = VADD(T1G, T1H); | |
438 T25 = VADD(T23, T24); | |
439 T1F = VSUB(T1D, T1E); | |
440 T1I = VSUB(T1G, T1H); | |
441 T1V = VADD(T1F, T1I); | |
442 } | |
443 T1B = VADD(T7, TF); | |
444 T1C = VBYI(VADD(T1j, T1k)); | |
445 ST(&(x[WS(rs, 15)]), VSUB(T1B, T1C), ms, &(x[WS(rs, 1)])); | |
446 ST(&(x[WS(rs, 5)]), VADD(T1B, T1C), ms, &(x[WS(rs, 1)])); | |
447 { | |
448 V T29, T2b, T2c, T2g, T2i, T2e, T2f, T2h, T2d; | |
449 T29 = VMUL(LDK(KP559016994), VSUB(T25, T28)); | |
450 T2b = VADD(T25, T28); | |
451 T2c = VFNMS(LDK(KP250000000), T2b, T2a); | |
452 T2e = VSUB(T23, T24); | |
453 T2f = VSUB(T26, T27); | |
454 T2g = VBYI(VFMA(LDK(KP951056516), T2e, VMUL(LDK(KP587785252), T2f))); | |
455 T2i = VBYI(VFNMS(LDK(KP951056516), T2f, VMUL(LDK(KP587785252), T2e))); | |
456 ST(&(x[0]), VADD(T2a, T2b), ms, &(x[0])); | |
457 T2h = VSUB(T2c, T29); | |
458 ST(&(x[WS(rs, 8)]), VSUB(T2h, T2i), ms, &(x[0])); | |
459 ST(&(x[WS(rs, 12)]), VADD(T2i, T2h), ms, &(x[0])); | |
460 T2d = VADD(T29, T2c); | |
461 ST(&(x[WS(rs, 4)]), VSUB(T2d, T2g), ms, &(x[0])); | |
462 ST(&(x[WS(rs, 16)]), VADD(T2g, T2d), ms, &(x[0])); | |
463 } | |
464 { | |
465 V T1Z, T1X, T1Y, T1R, T21, T1J, T1Q, T22, T20; | |
466 T1Z = VMUL(LDK(KP559016994), VSUB(T1V, T1W)); | |
467 T1X = VADD(T1V, T1W); | |
468 T1Y = VFNMS(LDK(KP250000000), T1X, T1U); | |
469 T1J = VSUB(T1F, T1I); | |
470 T1Q = VSUB(T1M, T1P); | |
471 T1R = VBYI(VFNMS(LDK(KP951056516), T1Q, VMUL(LDK(KP587785252), T1J))); | |
472 T21 = VBYI(VFMA(LDK(KP951056516), T1J, VMUL(LDK(KP587785252), T1Q))); | |
473 ST(&(x[WS(rs, 10)]), VADD(T1U, T1X), ms, &(x[0])); | |
474 T22 = VADD(T1Z, T1Y); | |
475 ST(&(x[WS(rs, 6)]), VADD(T21, T22), ms, &(x[0])); | |
476 ST(&(x[WS(rs, 14)]), VSUB(T22, T21), ms, &(x[0])); | |
477 T20 = VSUB(T1Y, T1Z); | |
478 ST(&(x[WS(rs, 2)]), VADD(T1R, T20), ms, &(x[0])); | |
479 ST(&(x[WS(rs, 18)]), VSUB(T20, T1R), ms, &(x[0])); | |
480 } | |
481 { | |
482 V T19, T1p, T1w, T1u, T1m, T1x, TI, T1t; | |
483 T19 = VFNMS(LDK(KP951056516), T18, VMUL(LDK(KP587785252), TU)); | |
484 T1p = VFNMS(LDK(KP951056516), T1o, VMUL(LDK(KP587785252), T1n)); | |
485 T1w = VFMA(LDK(KP951056516), T1n, VMUL(LDK(KP587785252), T1o)); | |
486 T1u = VFMA(LDK(KP951056516), TU, VMUL(LDK(KP587785252), T18)); | |
487 { | |
488 V T1d, T1l, TG, TH; | |
489 T1d = VMUL(LDK(KP559016994), VSUB(T1b, T1c)); | |
490 T1l = VFNMS(LDK(KP250000000), T1k, T1j); | |
491 T1m = VSUB(T1d, T1l); | |
492 T1x = VADD(T1d, T1l); | |
493 TG = VFNMS(LDK(KP250000000), TF, T7); | |
494 TH = VMUL(LDK(KP559016994), VSUB(Tp, TE)); | |
495 TI = VSUB(TG, TH); | |
496 T1t = VADD(TH, TG); | |
497 } | |
498 { | |
499 V T1a, T1q, T1z, T1A; | |
500 T1a = VSUB(TI, T19); | |
501 T1q = VBYI(VSUB(T1m, T1p)); | |
502 ST(&(x[WS(rs, 17)]), VSUB(T1a, T1q), ms, &(x[WS(rs, 1)])); | |
503 ST(&(x[WS(rs, 3)]), VADD(T1a, T1q), ms, &(x[WS(rs, 1)])); | |
504 T1z = VADD(T1t, T1u); | |
505 T1A = VBYI(VSUB(T1x, T1w)); | |
506 ST(&(x[WS(rs, 11)]), VSUB(T1z, T1A), ms, &(x[WS(rs, 1)])); | |
507 ST(&(x[WS(rs, 9)]), VADD(T1z, T1A), ms, &(x[WS(rs, 1)])); | |
508 } | |
509 { | |
510 V T1r, T1s, T1v, T1y; | |
511 T1r = VADD(TI, T19); | |
512 T1s = VBYI(VADD(T1p, T1m)); | |
513 ST(&(x[WS(rs, 13)]), VSUB(T1r, T1s), ms, &(x[WS(rs, 1)])); | |
514 ST(&(x[WS(rs, 7)]), VADD(T1r, T1s), ms, &(x[WS(rs, 1)])); | |
515 T1v = VSUB(T1t, T1u); | |
516 T1y = VBYI(VADD(T1w, T1x)); | |
517 ST(&(x[WS(rs, 19)]), VSUB(T1v, T1y), ms, &(x[WS(rs, 1)])); | |
518 ST(&(x[WS(rs, 1)]), VADD(T1v, T1y), ms, &(x[WS(rs, 1)])); | |
519 } | |
520 } | |
521 } | |
522 } | |
523 } | |
524 VLEAVE(); | |
525 } | |
526 | |
527 static const tw_instr twinstr[] = { | |
528 VTW(0, 1), | |
529 VTW(0, 3), | |
530 VTW(0, 9), | |
531 VTW(0, 19), | |
532 {TW_NEXT, VL, 0} | |
533 }; | |
534 | |
535 static const ct_desc desc = { 20, XSIMD_STRING("t3bv_20"), twinstr, &GENUS, {126, 80, 12, 0}, 0, 0, 0 }; | |
536 | |
537 void XSIMD(codelet_t3bv_20) (planner *p) { | |
538 X(kdft_dit_register) (p, t3bv_20, &desc); | |
539 } | |
540 #endif |