Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/t3bv_16.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:06:06 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3bv_16 -include dft/simd/t3b.h -sign 1 */ | |
29 | |
30 /* | |
31 * This function contains 98 FP additions, 86 FP multiplications, | |
32 * (or, 64 additions, 52 multiplications, 34 fused multiply/add), | |
33 * 51 stack variables, 3 constants, and 32 memory accesses | |
34 */ | |
35 #include "dft/simd/t3b.h" | |
36 | |
37 static void t3bv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
40 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
41 DVK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
42 { | |
43 INT m; | |
44 R *x; | |
45 x = ii; | |
46 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) { | |
47 V T2, T8, T9, Tx, Tu, TR, T3, T4, TN, TU, Tc, Tm, Ty, TE, Tp; | |
48 T2 = LDW(&(W[0])); | |
49 T8 = LDW(&(W[TWVL * 2])); | |
50 T9 = VZMUL(T2, T8); | |
51 Tx = VZMULJ(T2, T8); | |
52 Tu = LDW(&(W[TWVL * 6])); | |
53 TR = VZMULJ(T2, Tu); | |
54 T3 = LDW(&(W[TWVL * 4])); | |
55 T4 = VZMULJ(T2, T3); | |
56 TN = VZMUL(T2, T3); | |
57 TU = VZMULJ(T8, T3); | |
58 Tc = VZMUL(T8, T3); | |
59 Tm = VZMULJ(T9, T3); | |
60 Ty = VZMULJ(Tx, T3); | |
61 TE = VZMUL(Tx, T3); | |
62 Tp = VZMUL(T9, T3); | |
63 { | |
64 V T7, T1b, Tf, T1o, TQ, TX, T1e, T1p, Tl, Ts, Tt, T1i, T1r, TB, TH; | |
65 V TI, T1l, T1s, T1, T6, T5; | |
66 T1 = LD(&(x[0]), ms, &(x[0])); | |
67 T5 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
68 T6 = VZMUL(T4, T5); | |
69 T7 = VADD(T1, T6); | |
70 T1b = VSUB(T1, T6); | |
71 { | |
72 V Tb, Te, Ta, Td; | |
73 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
74 Tb = VZMUL(T9, Ta); | |
75 Td = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | |
76 Te = VZMUL(Tc, Td); | |
77 Tf = VADD(Tb, Te); | |
78 T1o = VSUB(Tb, Te); | |
79 } | |
80 { | |
81 V TM, TW, TP, TT, T1c, T1d; | |
82 { | |
83 V TL, TV, TO, TS; | |
84 TL = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
85 TM = VZMUL(Tx, TL); | |
86 TV = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
87 TW = VZMUL(TU, TV); | |
88 TO = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
89 TP = VZMUL(TN, TO); | |
90 TS = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | |
91 TT = VZMUL(TR, TS); | |
92 } | |
93 TQ = VADD(TM, TP); | |
94 TX = VADD(TT, TW); | |
95 T1c = VSUB(TM, TP); | |
96 T1d = VSUB(TT, TW); | |
97 T1e = VADD(T1c, T1d); | |
98 T1p = VSUB(T1c, T1d); | |
99 } | |
100 { | |
101 V Ti, Tr, Tk, To, T1g, T1h; | |
102 { | |
103 V Th, Tq, Tj, Tn; | |
104 Th = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
105 Ti = VZMUL(T2, Th); | |
106 Tq = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | |
107 Tr = VZMUL(Tp, Tq); | |
108 Tj = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
109 Tk = VZMUL(T3, Tj); | |
110 Tn = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
111 To = VZMUL(Tm, Tn); | |
112 } | |
113 Tl = VADD(Ti, Tk); | |
114 Ts = VADD(To, Tr); | |
115 Tt = VSUB(Tl, Ts); | |
116 T1g = VSUB(Ti, Tk); | |
117 T1h = VSUB(To, Tr); | |
118 T1i = VFNMS(LDK(KP414213562), T1h, T1g); | |
119 T1r = VFMA(LDK(KP414213562), T1g, T1h); | |
120 } | |
121 { | |
122 V Tw, TG, TA, TD, T1j, T1k; | |
123 { | |
124 V Tv, TF, Tz, TC; | |
125 Tv = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); | |
126 Tw = VZMUL(Tu, Tv); | |
127 TF = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
128 TG = VZMUL(TE, TF); | |
129 Tz = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
130 TA = VZMUL(Ty, Tz); | |
131 TC = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
132 TD = VZMUL(T8, TC); | |
133 } | |
134 TB = VADD(Tw, TA); | |
135 TH = VADD(TD, TG); | |
136 TI = VSUB(TB, TH); | |
137 T1j = VSUB(Tw, TA); | |
138 T1k = VSUB(TG, TD); | |
139 T1l = VFNMS(LDK(KP414213562), T1k, T1j); | |
140 T1s = VFMA(LDK(KP414213562), T1j, T1k); | |
141 } | |
142 { | |
143 V TK, T11, T10, T12; | |
144 { | |
145 V Tg, TJ, TY, TZ; | |
146 Tg = VSUB(T7, Tf); | |
147 TJ = VADD(Tt, TI); | |
148 TK = VFNMS(LDK(KP707106781), TJ, Tg); | |
149 T11 = VFMA(LDK(KP707106781), TJ, Tg); | |
150 TY = VSUB(TQ, TX); | |
151 TZ = VSUB(Tt, TI); | |
152 T10 = VFNMS(LDK(KP707106781), TZ, TY); | |
153 T12 = VFMA(LDK(KP707106781), TZ, TY); | |
154 } | |
155 ST(&(x[WS(rs, 6)]), VFNMSI(T10, TK), ms, &(x[0])); | |
156 ST(&(x[WS(rs, 14)]), VFNMSI(T12, T11), ms, &(x[0])); | |
157 ST(&(x[WS(rs, 10)]), VFMAI(T10, TK), ms, &(x[0])); | |
158 ST(&(x[WS(rs, 2)]), VFMAI(T12, T11), ms, &(x[0])); | |
159 } | |
160 { | |
161 V T1z, T1D, T1C, T1E; | |
162 { | |
163 V T1x, T1y, T1A, T1B; | |
164 T1x = VFNMS(LDK(KP707106781), T1e, T1b); | |
165 T1y = VADD(T1r, T1s); | |
166 T1z = VFNMS(LDK(KP923879532), T1y, T1x); | |
167 T1D = VFMA(LDK(KP923879532), T1y, T1x); | |
168 T1A = VFNMS(LDK(KP707106781), T1p, T1o); | |
169 T1B = VSUB(T1i, T1l); | |
170 T1C = VFMA(LDK(KP923879532), T1B, T1A); | |
171 T1E = VFNMS(LDK(KP923879532), T1B, T1A); | |
172 } | |
173 ST(&(x[WS(rs, 5)]), VFMAI(T1C, T1z), ms, &(x[WS(rs, 1)])); | |
174 ST(&(x[WS(rs, 13)]), VFMAI(T1E, T1D), ms, &(x[WS(rs, 1)])); | |
175 ST(&(x[WS(rs, 11)]), VFNMSI(T1C, T1z), ms, &(x[WS(rs, 1)])); | |
176 ST(&(x[WS(rs, 3)]), VFNMSI(T1E, T1D), ms, &(x[WS(rs, 1)])); | |
177 } | |
178 { | |
179 V T15, T19, T18, T1a; | |
180 { | |
181 V T13, T14, T16, T17; | |
182 T13 = VADD(T7, Tf); | |
183 T14 = VADD(TQ, TX); | |
184 T15 = VSUB(T13, T14); | |
185 T19 = VADD(T13, T14); | |
186 T16 = VADD(Tl, Ts); | |
187 T17 = VADD(TB, TH); | |
188 T18 = VSUB(T16, T17); | |
189 T1a = VADD(T16, T17); | |
190 } | |
191 ST(&(x[WS(rs, 12)]), VFNMSI(T18, T15), ms, &(x[0])); | |
192 ST(&(x[0]), VADD(T19, T1a), ms, &(x[0])); | |
193 ST(&(x[WS(rs, 4)]), VFMAI(T18, T15), ms, &(x[0])); | |
194 ST(&(x[WS(rs, 8)]), VSUB(T19, T1a), ms, &(x[0])); | |
195 } | |
196 { | |
197 V T1n, T1v, T1u, T1w; | |
198 { | |
199 V T1f, T1m, T1q, T1t; | |
200 T1f = VFMA(LDK(KP707106781), T1e, T1b); | |
201 T1m = VADD(T1i, T1l); | |
202 T1n = VFNMS(LDK(KP923879532), T1m, T1f); | |
203 T1v = VFMA(LDK(KP923879532), T1m, T1f); | |
204 T1q = VFMA(LDK(KP707106781), T1p, T1o); | |
205 T1t = VSUB(T1r, T1s); | |
206 T1u = VFNMS(LDK(KP923879532), T1t, T1q); | |
207 T1w = VFMA(LDK(KP923879532), T1t, T1q); | |
208 } | |
209 ST(&(x[WS(rs, 7)]), VFNMSI(T1u, T1n), ms, &(x[WS(rs, 1)])); | |
210 ST(&(x[WS(rs, 1)]), VFMAI(T1w, T1v), ms, &(x[WS(rs, 1)])); | |
211 ST(&(x[WS(rs, 9)]), VFMAI(T1u, T1n), ms, &(x[WS(rs, 1)])); | |
212 ST(&(x[WS(rs, 15)]), VFNMSI(T1w, T1v), ms, &(x[WS(rs, 1)])); | |
213 } | |
214 } | |
215 } | |
216 } | |
217 VLEAVE(); | |
218 } | |
219 | |
220 static const tw_instr twinstr[] = { | |
221 VTW(0, 1), | |
222 VTW(0, 3), | |
223 VTW(0, 9), | |
224 VTW(0, 15), | |
225 {TW_NEXT, VL, 0} | |
226 }; | |
227 | |
228 static const ct_desc desc = { 16, XSIMD_STRING("t3bv_16"), twinstr, &GENUS, {64, 52, 34, 0}, 0, 0, 0 }; | |
229 | |
230 void XSIMD(codelet_t3bv_16) (planner *p) { | |
231 X(kdft_dit_register) (p, t3bv_16, &desc); | |
232 } | |
233 #else | |
234 | |
235 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3bv_16 -include dft/simd/t3b.h -sign 1 */ | |
236 | |
237 /* | |
238 * This function contains 98 FP additions, 64 FP multiplications, | |
239 * (or, 94 additions, 60 multiplications, 4 fused multiply/add), | |
240 * 51 stack variables, 3 constants, and 32 memory accesses | |
241 */ | |
242 #include "dft/simd/t3b.h" | |
243 | |
244 static void t3bv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
245 { | |
246 DVK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
247 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
248 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
249 { | |
250 INT m; | |
251 R *x; | |
252 x = ii; | |
253 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) { | |
254 V T1, T8, T9, Tl, Ti, TE, T4, Ta, TO, TV, Td, Tm, TA, TH, Ts; | |
255 T1 = LDW(&(W[0])); | |
256 T8 = LDW(&(W[TWVL * 2])); | |
257 T9 = VZMUL(T1, T8); | |
258 Tl = VZMULJ(T1, T8); | |
259 Ti = LDW(&(W[TWVL * 6])); | |
260 TE = VZMULJ(T1, Ti); | |
261 T4 = LDW(&(W[TWVL * 4])); | |
262 Ta = VZMULJ(T9, T4); | |
263 TO = VZMUL(T8, T4); | |
264 TV = VZMULJ(T1, T4); | |
265 Td = VZMUL(T9, T4); | |
266 Tm = VZMULJ(Tl, T4); | |
267 TA = VZMUL(T1, T4); | |
268 TH = VZMULJ(T8, T4); | |
269 Ts = VZMUL(Tl, T4); | |
270 { | |
271 V TY, T1q, TR, T1r, T1m, T1n, TL, TZ, T1f, T1g, T1h, Th, T11, T1i, T1j; | |
272 V T1k, Tw, T12, TU, TX, TW; | |
273 TU = LD(&(x[0]), ms, &(x[0])); | |
274 TW = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
275 TX = VZMUL(TV, TW); | |
276 TY = VSUB(TU, TX); | |
277 T1q = VADD(TU, TX); | |
278 { | |
279 V TN, TQ, TM, TP; | |
280 TM = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
281 TN = VZMUL(T9, TM); | |
282 TP = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | |
283 TQ = VZMUL(TO, TP); | |
284 TR = VSUB(TN, TQ); | |
285 T1r = VADD(TN, TQ); | |
286 } | |
287 { | |
288 V Tz, TJ, TC, TG, TD, TK; | |
289 { | |
290 V Ty, TI, TB, TF; | |
291 Ty = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
292 Tz = VZMUL(Tl, Ty); | |
293 TI = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
294 TJ = VZMUL(TH, TI); | |
295 TB = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
296 TC = VZMUL(TA, TB); | |
297 TF = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | |
298 TG = VZMUL(TE, TF); | |
299 } | |
300 T1m = VADD(Tz, TC); | |
301 T1n = VADD(TG, TJ); | |
302 TD = VSUB(Tz, TC); | |
303 TK = VSUB(TG, TJ); | |
304 TL = VMUL(LDK(KP707106781), VSUB(TD, TK)); | |
305 TZ = VMUL(LDK(KP707106781), VADD(TD, TK)); | |
306 } | |
307 { | |
308 V T3, Tf, T6, Tc, T7, Tg; | |
309 { | |
310 V T2, Te, T5, Tb; | |
311 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
312 T3 = VZMUL(T1, T2); | |
313 Te = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | |
314 Tf = VZMUL(Td, Te); | |
315 T5 = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
316 T6 = VZMUL(T4, T5); | |
317 Tb = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
318 Tc = VZMUL(Ta, Tb); | |
319 } | |
320 T1f = VADD(T3, T6); | |
321 T1g = VADD(Tc, Tf); | |
322 T1h = VSUB(T1f, T1g); | |
323 T7 = VSUB(T3, T6); | |
324 Tg = VSUB(Tc, Tf); | |
325 Th = VFNMS(LDK(KP382683432), Tg, VMUL(LDK(KP923879532), T7)); | |
326 T11 = VFMA(LDK(KP382683432), T7, VMUL(LDK(KP923879532), Tg)); | |
327 } | |
328 { | |
329 V Tk, Tu, To, Tr, Tp, Tv; | |
330 { | |
331 V Tj, Tt, Tn, Tq; | |
332 Tj = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); | |
333 Tk = VZMUL(Ti, Tj); | |
334 Tt = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
335 Tu = VZMUL(Ts, Tt); | |
336 Tn = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
337 To = VZMUL(Tm, Tn); | |
338 Tq = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
339 Tr = VZMUL(T8, Tq); | |
340 } | |
341 T1i = VADD(Tk, To); | |
342 T1j = VADD(Tr, Tu); | |
343 T1k = VSUB(T1i, T1j); | |
344 Tp = VSUB(Tk, To); | |
345 Tv = VSUB(Tr, Tu); | |
346 Tw = VFMA(LDK(KP923879532), Tp, VMUL(LDK(KP382683432), Tv)); | |
347 T12 = VFNMS(LDK(KP382683432), Tp, VMUL(LDK(KP923879532), Tv)); | |
348 } | |
349 { | |
350 V T1p, T1v, T1u, T1w; | |
351 { | |
352 V T1l, T1o, T1s, T1t; | |
353 T1l = VMUL(LDK(KP707106781), VSUB(T1h, T1k)); | |
354 T1o = VSUB(T1m, T1n); | |
355 T1p = VBYI(VSUB(T1l, T1o)); | |
356 T1v = VBYI(VADD(T1o, T1l)); | |
357 T1s = VSUB(T1q, T1r); | |
358 T1t = VMUL(LDK(KP707106781), VADD(T1h, T1k)); | |
359 T1u = VSUB(T1s, T1t); | |
360 T1w = VADD(T1s, T1t); | |
361 } | |
362 ST(&(x[WS(rs, 6)]), VADD(T1p, T1u), ms, &(x[0])); | |
363 ST(&(x[WS(rs, 14)]), VSUB(T1w, T1v), ms, &(x[0])); | |
364 ST(&(x[WS(rs, 10)]), VSUB(T1u, T1p), ms, &(x[0])); | |
365 ST(&(x[WS(rs, 2)]), VADD(T1v, T1w), ms, &(x[0])); | |
366 } | |
367 { | |
368 V T1z, T1D, T1C, T1E; | |
369 { | |
370 V T1x, T1y, T1A, T1B; | |
371 T1x = VADD(T1q, T1r); | |
372 T1y = VADD(T1m, T1n); | |
373 T1z = VSUB(T1x, T1y); | |
374 T1D = VADD(T1x, T1y); | |
375 T1A = VADD(T1f, T1g); | |
376 T1B = VADD(T1i, T1j); | |
377 T1C = VBYI(VSUB(T1A, T1B)); | |
378 T1E = VADD(T1A, T1B); | |
379 } | |
380 ST(&(x[WS(rs, 12)]), VSUB(T1z, T1C), ms, &(x[0])); | |
381 ST(&(x[0]), VADD(T1D, T1E), ms, &(x[0])); | |
382 ST(&(x[WS(rs, 4)]), VADD(T1z, T1C), ms, &(x[0])); | |
383 ST(&(x[WS(rs, 8)]), VSUB(T1D, T1E), ms, &(x[0])); | |
384 } | |
385 { | |
386 V TT, T15, T14, T16; | |
387 { | |
388 V Tx, TS, T10, T13; | |
389 Tx = VSUB(Th, Tw); | |
390 TS = VSUB(TL, TR); | |
391 TT = VBYI(VSUB(Tx, TS)); | |
392 T15 = VBYI(VADD(TS, Tx)); | |
393 T10 = VSUB(TY, TZ); | |
394 T13 = VSUB(T11, T12); | |
395 T14 = VSUB(T10, T13); | |
396 T16 = VADD(T10, T13); | |
397 } | |
398 ST(&(x[WS(rs, 5)]), VADD(TT, T14), ms, &(x[WS(rs, 1)])); | |
399 ST(&(x[WS(rs, 13)]), VSUB(T16, T15), ms, &(x[WS(rs, 1)])); | |
400 ST(&(x[WS(rs, 11)]), VSUB(T14, TT), ms, &(x[WS(rs, 1)])); | |
401 ST(&(x[WS(rs, 3)]), VADD(T15, T16), ms, &(x[WS(rs, 1)])); | |
402 } | |
403 { | |
404 V T19, T1d, T1c, T1e; | |
405 { | |
406 V T17, T18, T1a, T1b; | |
407 T17 = VADD(TY, TZ); | |
408 T18 = VADD(Th, Tw); | |
409 T19 = VADD(T17, T18); | |
410 T1d = VSUB(T17, T18); | |
411 T1a = VADD(TR, TL); | |
412 T1b = VADD(T11, T12); | |
413 T1c = VBYI(VADD(T1a, T1b)); | |
414 T1e = VBYI(VSUB(T1b, T1a)); | |
415 } | |
416 ST(&(x[WS(rs, 15)]), VSUB(T19, T1c), ms, &(x[WS(rs, 1)])); | |
417 ST(&(x[WS(rs, 7)]), VADD(T1d, T1e), ms, &(x[WS(rs, 1)])); | |
418 ST(&(x[WS(rs, 1)]), VADD(T19, T1c), ms, &(x[WS(rs, 1)])); | |
419 ST(&(x[WS(rs, 9)]), VSUB(T1d, T1e), ms, &(x[WS(rs, 1)])); | |
420 } | |
421 } | |
422 } | |
423 } | |
424 VLEAVE(); | |
425 } | |
426 | |
427 static const tw_instr twinstr[] = { | |
428 VTW(0, 1), | |
429 VTW(0, 3), | |
430 VTW(0, 9), | |
431 VTW(0, 15), | |
432 {TW_NEXT, VL, 0} | |
433 }; | |
434 | |
435 static const ct_desc desc = { 16, XSIMD_STRING("t3bv_16"), twinstr, &GENUS, {94, 60, 4, 0}, 0, 0, 0 }; | |
436 | |
437 void XSIMD(codelet_t3bv_16) (planner *p) { | |
438 X(kdft_dit_register) (p, t3bv_16, &desc); | |
439 } | |
440 #endif |