Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/t2sv_4.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:06:11 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 4 -name t2sv_4 -include dft/simd/ts.h */ | |
29 | |
30 /* | |
31 * This function contains 24 FP additions, 16 FP multiplications, | |
32 * (or, 16 additions, 8 multiplications, 8 fused multiply/add), | |
33 * 21 stack variables, 0 constants, and 16 memory accesses | |
34 */ | |
35 #include "dft/simd/ts.h" | |
36 | |
37 static void t2sv_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 { | |
40 INT m; | |
41 for (m = mb, W = W + (mb * 4); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 4), MAKE_VOLATILE_STRIDE(8, rs)) { | |
42 V T2, T6, T3, T5, T7, Tb, T4, Ta; | |
43 T2 = LDW(&(W[0])); | |
44 T6 = LDW(&(W[TWVL * 3])); | |
45 T3 = LDW(&(W[TWVL * 2])); | |
46 T4 = VMUL(T2, T3); | |
47 Ta = VMUL(T2, T6); | |
48 T5 = LDW(&(W[TWVL * 1])); | |
49 T7 = VFMA(T5, T6, T4); | |
50 Tb = VFNMS(T5, T3, Ta); | |
51 { | |
52 V T1, Tx, Td, Tw, Ti, Tq, Tm, Ts; | |
53 T1 = LD(&(ri[0]), ms, &(ri[0])); | |
54 Tx = LD(&(ii[0]), ms, &(ii[0])); | |
55 { | |
56 V T8, T9, Tc, Tv; | |
57 T8 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); | |
58 T9 = VMUL(T7, T8); | |
59 Tc = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); | |
60 Tv = VMUL(T7, Tc); | |
61 Td = VFMA(Tb, Tc, T9); | |
62 Tw = VFNMS(Tb, T8, Tv); | |
63 } | |
64 { | |
65 V Tf, Tg, Th, Tp; | |
66 Tf = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); | |
67 Tg = VMUL(T2, Tf); | |
68 Th = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); | |
69 Tp = VMUL(T2, Th); | |
70 Ti = VFMA(T5, Th, Tg); | |
71 Tq = VFNMS(T5, Tf, Tp); | |
72 } | |
73 { | |
74 V Tj, Tk, Tl, Tr; | |
75 Tj = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); | |
76 Tk = VMUL(T3, Tj); | |
77 Tl = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); | |
78 Tr = VMUL(T3, Tl); | |
79 Tm = VFMA(T6, Tl, Tk); | |
80 Ts = VFNMS(T6, Tj, Tr); | |
81 } | |
82 { | |
83 V Te, Tn, Tu, Ty; | |
84 Te = VADD(T1, Td); | |
85 Tn = VADD(Ti, Tm); | |
86 ST(&(ri[WS(rs, 2)]), VSUB(Te, Tn), ms, &(ri[0])); | |
87 ST(&(ri[0]), VADD(Te, Tn), ms, &(ri[0])); | |
88 Tu = VADD(Tq, Ts); | |
89 Ty = VADD(Tw, Tx); | |
90 ST(&(ii[0]), VADD(Tu, Ty), ms, &(ii[0])); | |
91 ST(&(ii[WS(rs, 2)]), VSUB(Ty, Tu), ms, &(ii[0])); | |
92 } | |
93 { | |
94 V To, Tt, Tz, TA; | |
95 To = VSUB(T1, Td); | |
96 Tt = VSUB(Tq, Ts); | |
97 ST(&(ri[WS(rs, 3)]), VSUB(To, Tt), ms, &(ri[WS(rs, 1)])); | |
98 ST(&(ri[WS(rs, 1)]), VADD(To, Tt), ms, &(ri[WS(rs, 1)])); | |
99 Tz = VSUB(Tx, Tw); | |
100 TA = VSUB(Ti, Tm); | |
101 ST(&(ii[WS(rs, 1)]), VSUB(Tz, TA), ms, &(ii[WS(rs, 1)])); | |
102 ST(&(ii[WS(rs, 3)]), VADD(TA, Tz), ms, &(ii[WS(rs, 1)])); | |
103 } | |
104 } | |
105 } | |
106 } | |
107 VLEAVE(); | |
108 } | |
109 | |
110 static const tw_instr twinstr[] = { | |
111 VTW(0, 1), | |
112 VTW(0, 3), | |
113 {TW_NEXT, (2 * VL), 0} | |
114 }; | |
115 | |
116 static const ct_desc desc = { 4, XSIMD_STRING("t2sv_4"), twinstr, &GENUS, {16, 8, 8, 0}, 0, 0, 0 }; | |
117 | |
118 void XSIMD(codelet_t2sv_4) (planner *p) { | |
119 X(kdft_dit_register) (p, t2sv_4, &desc); | |
120 } | |
121 #else | |
122 | |
123 /* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 4 -name t2sv_4 -include dft/simd/ts.h */ | |
124 | |
125 /* | |
126 * This function contains 24 FP additions, 16 FP multiplications, | |
127 * (or, 16 additions, 8 multiplications, 8 fused multiply/add), | |
128 * 21 stack variables, 0 constants, and 16 memory accesses | |
129 */ | |
130 #include "dft/simd/ts.h" | |
131 | |
132 static void t2sv_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
133 { | |
134 { | |
135 INT m; | |
136 for (m = mb, W = W + (mb * 4); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 4), MAKE_VOLATILE_STRIDE(8, rs)) { | |
137 V T2, T4, T3, T5, T6, T8; | |
138 T2 = LDW(&(W[0])); | |
139 T4 = LDW(&(W[TWVL * 1])); | |
140 T3 = LDW(&(W[TWVL * 2])); | |
141 T5 = LDW(&(W[TWVL * 3])); | |
142 T6 = VFMA(T2, T3, VMUL(T4, T5)); | |
143 T8 = VFNMS(T4, T3, VMUL(T2, T5)); | |
144 { | |
145 V T1, Tp, Ta, To, Te, Tk, Th, Tl, T7, T9; | |
146 T1 = LD(&(ri[0]), ms, &(ri[0])); | |
147 Tp = LD(&(ii[0]), ms, &(ii[0])); | |
148 T7 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); | |
149 T9 = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); | |
150 Ta = VFMA(T6, T7, VMUL(T8, T9)); | |
151 To = VFNMS(T8, T7, VMUL(T6, T9)); | |
152 { | |
153 V Tc, Td, Tf, Tg; | |
154 Tc = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); | |
155 Td = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); | |
156 Te = VFMA(T2, Tc, VMUL(T4, Td)); | |
157 Tk = VFNMS(T4, Tc, VMUL(T2, Td)); | |
158 Tf = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); | |
159 Tg = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); | |
160 Th = VFMA(T3, Tf, VMUL(T5, Tg)); | |
161 Tl = VFNMS(T5, Tf, VMUL(T3, Tg)); | |
162 } | |
163 { | |
164 V Tb, Ti, Tn, Tq; | |
165 Tb = VADD(T1, Ta); | |
166 Ti = VADD(Te, Th); | |
167 ST(&(ri[WS(rs, 2)]), VSUB(Tb, Ti), ms, &(ri[0])); | |
168 ST(&(ri[0]), VADD(Tb, Ti), ms, &(ri[0])); | |
169 Tn = VADD(Tk, Tl); | |
170 Tq = VADD(To, Tp); | |
171 ST(&(ii[0]), VADD(Tn, Tq), ms, &(ii[0])); | |
172 ST(&(ii[WS(rs, 2)]), VSUB(Tq, Tn), ms, &(ii[0])); | |
173 } | |
174 { | |
175 V Tj, Tm, Tr, Ts; | |
176 Tj = VSUB(T1, Ta); | |
177 Tm = VSUB(Tk, Tl); | |
178 ST(&(ri[WS(rs, 3)]), VSUB(Tj, Tm), ms, &(ri[WS(rs, 1)])); | |
179 ST(&(ri[WS(rs, 1)]), VADD(Tj, Tm), ms, &(ri[WS(rs, 1)])); | |
180 Tr = VSUB(Tp, To); | |
181 Ts = VSUB(Te, Th); | |
182 ST(&(ii[WS(rs, 1)]), VSUB(Tr, Ts), ms, &(ii[WS(rs, 1)])); | |
183 ST(&(ii[WS(rs, 3)]), VADD(Ts, Tr), ms, &(ii[WS(rs, 1)])); | |
184 } | |
185 } | |
186 } | |
187 } | |
188 VLEAVE(); | |
189 } | |
190 | |
191 static const tw_instr twinstr[] = { | |
192 VTW(0, 1), | |
193 VTW(0, 3), | |
194 {TW_NEXT, (2 * VL), 0} | |
195 }; | |
196 | |
197 static const ct_desc desc = { 4, XSIMD_STRING("t2sv_4"), twinstr, &GENUS, {16, 8, 8, 0}, 0, 0, 0 }; | |
198 | |
199 void XSIMD(codelet_t2sv_4) (planner *p) { | |
200 X(kdft_dit_register) (p, t2sv_4, &desc); | |
201 } | |
202 #endif |