comparison src/fftw-3.3.8/dft/simd/common/t2sv_4.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:06:11 EDT 2018 */
23
24 #include "dft/codelet-dft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 4 -name t2sv_4 -include dft/simd/ts.h */
29
30 /*
31 * This function contains 24 FP additions, 16 FP multiplications,
32 * (or, 16 additions, 8 multiplications, 8 fused multiply/add),
33 * 21 stack variables, 0 constants, and 16 memory accesses
34 */
35 #include "dft/simd/ts.h"
36
37 static void t2sv_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 {
40 INT m;
41 for (m = mb, W = W + (mb * 4); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 4), MAKE_VOLATILE_STRIDE(8, rs)) {
42 V T2, T6, T3, T5, T7, Tb, T4, Ta;
43 T2 = LDW(&(W[0]));
44 T6 = LDW(&(W[TWVL * 3]));
45 T3 = LDW(&(W[TWVL * 2]));
46 T4 = VMUL(T2, T3);
47 Ta = VMUL(T2, T6);
48 T5 = LDW(&(W[TWVL * 1]));
49 T7 = VFMA(T5, T6, T4);
50 Tb = VFNMS(T5, T3, Ta);
51 {
52 V T1, Tx, Td, Tw, Ti, Tq, Tm, Ts;
53 T1 = LD(&(ri[0]), ms, &(ri[0]));
54 Tx = LD(&(ii[0]), ms, &(ii[0]));
55 {
56 V T8, T9, Tc, Tv;
57 T8 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
58 T9 = VMUL(T7, T8);
59 Tc = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
60 Tv = VMUL(T7, Tc);
61 Td = VFMA(Tb, Tc, T9);
62 Tw = VFNMS(Tb, T8, Tv);
63 }
64 {
65 V Tf, Tg, Th, Tp;
66 Tf = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
67 Tg = VMUL(T2, Tf);
68 Th = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
69 Tp = VMUL(T2, Th);
70 Ti = VFMA(T5, Th, Tg);
71 Tq = VFNMS(T5, Tf, Tp);
72 }
73 {
74 V Tj, Tk, Tl, Tr;
75 Tj = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
76 Tk = VMUL(T3, Tj);
77 Tl = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
78 Tr = VMUL(T3, Tl);
79 Tm = VFMA(T6, Tl, Tk);
80 Ts = VFNMS(T6, Tj, Tr);
81 }
82 {
83 V Te, Tn, Tu, Ty;
84 Te = VADD(T1, Td);
85 Tn = VADD(Ti, Tm);
86 ST(&(ri[WS(rs, 2)]), VSUB(Te, Tn), ms, &(ri[0]));
87 ST(&(ri[0]), VADD(Te, Tn), ms, &(ri[0]));
88 Tu = VADD(Tq, Ts);
89 Ty = VADD(Tw, Tx);
90 ST(&(ii[0]), VADD(Tu, Ty), ms, &(ii[0]));
91 ST(&(ii[WS(rs, 2)]), VSUB(Ty, Tu), ms, &(ii[0]));
92 }
93 {
94 V To, Tt, Tz, TA;
95 To = VSUB(T1, Td);
96 Tt = VSUB(Tq, Ts);
97 ST(&(ri[WS(rs, 3)]), VSUB(To, Tt), ms, &(ri[WS(rs, 1)]));
98 ST(&(ri[WS(rs, 1)]), VADD(To, Tt), ms, &(ri[WS(rs, 1)]));
99 Tz = VSUB(Tx, Tw);
100 TA = VSUB(Ti, Tm);
101 ST(&(ii[WS(rs, 1)]), VSUB(Tz, TA), ms, &(ii[WS(rs, 1)]));
102 ST(&(ii[WS(rs, 3)]), VADD(TA, Tz), ms, &(ii[WS(rs, 1)]));
103 }
104 }
105 }
106 }
107 VLEAVE();
108 }
109
110 static const tw_instr twinstr[] = {
111 VTW(0, 1),
112 VTW(0, 3),
113 {TW_NEXT, (2 * VL), 0}
114 };
115
116 static const ct_desc desc = { 4, XSIMD_STRING("t2sv_4"), twinstr, &GENUS, {16, 8, 8, 0}, 0, 0, 0 };
117
118 void XSIMD(codelet_t2sv_4) (planner *p) {
119 X(kdft_dit_register) (p, t2sv_4, &desc);
120 }
121 #else
122
123 /* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 4 -name t2sv_4 -include dft/simd/ts.h */
124
125 /*
126 * This function contains 24 FP additions, 16 FP multiplications,
127 * (or, 16 additions, 8 multiplications, 8 fused multiply/add),
128 * 21 stack variables, 0 constants, and 16 memory accesses
129 */
130 #include "dft/simd/ts.h"
131
132 static void t2sv_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
133 {
134 {
135 INT m;
136 for (m = mb, W = W + (mb * 4); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 4), MAKE_VOLATILE_STRIDE(8, rs)) {
137 V T2, T4, T3, T5, T6, T8;
138 T2 = LDW(&(W[0]));
139 T4 = LDW(&(W[TWVL * 1]));
140 T3 = LDW(&(W[TWVL * 2]));
141 T5 = LDW(&(W[TWVL * 3]));
142 T6 = VFMA(T2, T3, VMUL(T4, T5));
143 T8 = VFNMS(T4, T3, VMUL(T2, T5));
144 {
145 V T1, Tp, Ta, To, Te, Tk, Th, Tl, T7, T9;
146 T1 = LD(&(ri[0]), ms, &(ri[0]));
147 Tp = LD(&(ii[0]), ms, &(ii[0]));
148 T7 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
149 T9 = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
150 Ta = VFMA(T6, T7, VMUL(T8, T9));
151 To = VFNMS(T8, T7, VMUL(T6, T9));
152 {
153 V Tc, Td, Tf, Tg;
154 Tc = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
155 Td = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
156 Te = VFMA(T2, Tc, VMUL(T4, Td));
157 Tk = VFNMS(T4, Tc, VMUL(T2, Td));
158 Tf = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
159 Tg = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
160 Th = VFMA(T3, Tf, VMUL(T5, Tg));
161 Tl = VFNMS(T5, Tf, VMUL(T3, Tg));
162 }
163 {
164 V Tb, Ti, Tn, Tq;
165 Tb = VADD(T1, Ta);
166 Ti = VADD(Te, Th);
167 ST(&(ri[WS(rs, 2)]), VSUB(Tb, Ti), ms, &(ri[0]));
168 ST(&(ri[0]), VADD(Tb, Ti), ms, &(ri[0]));
169 Tn = VADD(Tk, Tl);
170 Tq = VADD(To, Tp);
171 ST(&(ii[0]), VADD(Tn, Tq), ms, &(ii[0]));
172 ST(&(ii[WS(rs, 2)]), VSUB(Tq, Tn), ms, &(ii[0]));
173 }
174 {
175 V Tj, Tm, Tr, Ts;
176 Tj = VSUB(T1, Ta);
177 Tm = VSUB(Tk, Tl);
178 ST(&(ri[WS(rs, 3)]), VSUB(Tj, Tm), ms, &(ri[WS(rs, 1)]));
179 ST(&(ri[WS(rs, 1)]), VADD(Tj, Tm), ms, &(ri[WS(rs, 1)]));
180 Tr = VSUB(Tp, To);
181 Ts = VSUB(Te, Th);
182 ST(&(ii[WS(rs, 1)]), VSUB(Tr, Ts), ms, &(ii[WS(rs, 1)]));
183 ST(&(ii[WS(rs, 3)]), VADD(Ts, Tr), ms, &(ii[WS(rs, 1)]));
184 }
185 }
186 }
187 }
188 VLEAVE();
189 }
190
191 static const tw_instr twinstr[] = {
192 VTW(0, 1),
193 VTW(0, 3),
194 {TW_NEXT, (2 * VL), 0}
195 };
196
197 static const ct_desc desc = { 4, XSIMD_STRING("t2sv_4"), twinstr, &GENUS, {16, 8, 8, 0}, 0, 0, 0 };
198
199 void XSIMD(codelet_t2sv_4) (planner *p) {
200 X(kdft_dit_register) (p, t2sv_4, &desc);
201 }
202 #endif