Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/t2fv_16.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:05:42 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name t2fv_16 -include dft/simd/t2f.h */ | |
29 | |
30 /* | |
31 * This function contains 87 FP additions, 64 FP multiplications, | |
32 * (or, 53 additions, 30 multiplications, 34 fused multiply/add), | |
33 * 36 stack variables, 3 constants, and 32 memory accesses | |
34 */ | |
35 #include "dft/simd/t2f.h" | |
36 | |
37 static void t2fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
40 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
41 DVK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
42 { | |
43 INT m; | |
44 R *x; | |
45 x = ri; | |
46 for (m = mb, W = W + (mb * ((TWVL / VL) * 30)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(16, rs)) { | |
47 V T4, TW, T9, T19, TD, TI, TZ, T1a, Tf, Tk, Tl, T13, T1c, Tq, Tv; | |
48 V Tw, T16, T1d, T1, T3, T2; | |
49 T1 = LD(&(x[0]), ms, &(x[0])); | |
50 T2 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
51 T3 = BYTWJ(&(W[TWVL * 14]), T2); | |
52 T4 = VADD(T1, T3); | |
53 TW = VSUB(T1, T3); | |
54 { | |
55 V T6, T8, T5, T7; | |
56 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
57 T6 = BYTWJ(&(W[TWVL * 6]), T5); | |
58 T7 = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | |
59 T8 = BYTWJ(&(W[TWVL * 22]), T7); | |
60 T9 = VADD(T6, T8); | |
61 T19 = VSUB(T6, T8); | |
62 } | |
63 { | |
64 V TA, TH, TC, TF, TX, TY; | |
65 { | |
66 V Tz, TG, TB, TE; | |
67 Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | |
68 TA = BYTWJ(&(W[TWVL * 26]), Tz); | |
69 TG = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
70 TH = BYTWJ(&(W[TWVL * 18]), TG); | |
71 TB = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
72 TC = BYTWJ(&(W[TWVL * 10]), TB); | |
73 TE = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
74 TF = BYTWJ(&(W[TWVL * 2]), TE); | |
75 } | |
76 TD = VADD(TA, TC); | |
77 TI = VADD(TF, TH); | |
78 TX = VSUB(TF, TH); | |
79 TY = VSUB(TA, TC); | |
80 TZ = VADD(TX, TY); | |
81 T1a = VSUB(TY, TX); | |
82 } | |
83 { | |
84 V Tc, Tj, Te, Th, T11, T12; | |
85 { | |
86 V Tb, Ti, Td, Tg; | |
87 Tb = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
88 Tc = BYTWJ(&(W[0]), Tb); | |
89 Ti = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | |
90 Tj = BYTWJ(&(W[TWVL * 24]), Ti); | |
91 Td = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
92 Te = BYTWJ(&(W[TWVL * 16]), Td); | |
93 Tg = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
94 Th = BYTWJ(&(W[TWVL * 8]), Tg); | |
95 } | |
96 Tf = VADD(Tc, Te); | |
97 Tk = VADD(Th, Tj); | |
98 Tl = VSUB(Tf, Tk); | |
99 T11 = VSUB(Tc, Te); | |
100 T12 = VSUB(Th, Tj); | |
101 T13 = VFNMS(LDK(KP414213562), T12, T11); | |
102 T1c = VFMA(LDK(KP414213562), T11, T12); | |
103 } | |
104 { | |
105 V Tn, Tu, Tp, Ts, T14, T15; | |
106 { | |
107 V Tm, Tt, To, Tr; | |
108 Tm = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); | |
109 Tn = BYTWJ(&(W[TWVL * 28]), Tm); | |
110 Tt = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
111 Tu = BYTWJ(&(W[TWVL * 20]), Tt); | |
112 To = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
113 Tp = BYTWJ(&(W[TWVL * 12]), To); | |
114 Tr = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
115 Ts = BYTWJ(&(W[TWVL * 4]), Tr); | |
116 } | |
117 Tq = VADD(Tn, Tp); | |
118 Tv = VADD(Ts, Tu); | |
119 Tw = VSUB(Tq, Tv); | |
120 T14 = VSUB(Tn, Tp); | |
121 T15 = VSUB(Tu, Ts); | |
122 T16 = VFNMS(LDK(KP414213562), T15, T14); | |
123 T1d = VFMA(LDK(KP414213562), T14, T15); | |
124 } | |
125 { | |
126 V Ty, TM, TL, TN; | |
127 { | |
128 V Ta, Tx, TJ, TK; | |
129 Ta = VSUB(T4, T9); | |
130 Tx = VADD(Tl, Tw); | |
131 Ty = VFNMS(LDK(KP707106781), Tx, Ta); | |
132 TM = VFMA(LDK(KP707106781), Tx, Ta); | |
133 TJ = VSUB(TD, TI); | |
134 TK = VSUB(Tw, Tl); | |
135 TL = VFNMS(LDK(KP707106781), TK, TJ); | |
136 TN = VFMA(LDK(KP707106781), TK, TJ); | |
137 } | |
138 ST(&(x[WS(rs, 6)]), VFNMSI(TL, Ty), ms, &(x[0])); | |
139 ST(&(x[WS(rs, 2)]), VFMAI(TN, TM), ms, &(x[0])); | |
140 ST(&(x[WS(rs, 10)]), VFMAI(TL, Ty), ms, &(x[0])); | |
141 ST(&(x[WS(rs, 14)]), VFNMSI(TN, TM), ms, &(x[0])); | |
142 } | |
143 { | |
144 V T1k, T1o, T1n, T1p; | |
145 { | |
146 V T1i, T1j, T1l, T1m; | |
147 T1i = VFNMS(LDK(KP707106781), TZ, TW); | |
148 T1j = VADD(T1c, T1d); | |
149 T1k = VFNMS(LDK(KP923879532), T1j, T1i); | |
150 T1o = VFMA(LDK(KP923879532), T1j, T1i); | |
151 T1l = VFMA(LDK(KP707106781), T1a, T19); | |
152 T1m = VSUB(T16, T13); | |
153 T1n = VFNMS(LDK(KP923879532), T1m, T1l); | |
154 T1p = VFMA(LDK(KP923879532), T1m, T1l); | |
155 } | |
156 ST(&(x[WS(rs, 5)]), VFNMSI(T1n, T1k), ms, &(x[WS(rs, 1)])); | |
157 ST(&(x[WS(rs, 13)]), VFNMSI(T1p, T1o), ms, &(x[WS(rs, 1)])); | |
158 ST(&(x[WS(rs, 11)]), VFMAI(T1n, T1k), ms, &(x[WS(rs, 1)])); | |
159 ST(&(x[WS(rs, 3)]), VFMAI(T1p, T1o), ms, &(x[WS(rs, 1)])); | |
160 } | |
161 { | |
162 V TQ, TU, TT, TV; | |
163 { | |
164 V TO, TP, TR, TS; | |
165 TO = VADD(T4, T9); | |
166 TP = VADD(TI, TD); | |
167 TQ = VADD(TO, TP); | |
168 TU = VSUB(TO, TP); | |
169 TR = VADD(Tf, Tk); | |
170 TS = VADD(Tq, Tv); | |
171 TT = VADD(TR, TS); | |
172 TV = VSUB(TS, TR); | |
173 } | |
174 ST(&(x[WS(rs, 8)]), VSUB(TQ, TT), ms, &(x[0])); | |
175 ST(&(x[WS(rs, 4)]), VFMAI(TV, TU), ms, &(x[0])); | |
176 ST(&(x[0]), VADD(TQ, TT), ms, &(x[0])); | |
177 ST(&(x[WS(rs, 12)]), VFNMSI(TV, TU), ms, &(x[0])); | |
178 } | |
179 { | |
180 V T18, T1g, T1f, T1h; | |
181 { | |
182 V T10, T17, T1b, T1e; | |
183 T10 = VFMA(LDK(KP707106781), TZ, TW); | |
184 T17 = VADD(T13, T16); | |
185 T18 = VFNMS(LDK(KP923879532), T17, T10); | |
186 T1g = VFMA(LDK(KP923879532), T17, T10); | |
187 T1b = VFNMS(LDK(KP707106781), T1a, T19); | |
188 T1e = VSUB(T1c, T1d); | |
189 T1f = VFNMS(LDK(KP923879532), T1e, T1b); | |
190 T1h = VFMA(LDK(KP923879532), T1e, T1b); | |
191 } | |
192 ST(&(x[WS(rs, 9)]), VFNMSI(T1f, T18), ms, &(x[WS(rs, 1)])); | |
193 ST(&(x[WS(rs, 15)]), VFMAI(T1h, T1g), ms, &(x[WS(rs, 1)])); | |
194 ST(&(x[WS(rs, 7)]), VFMAI(T1f, T18), ms, &(x[WS(rs, 1)])); | |
195 ST(&(x[WS(rs, 1)]), VFNMSI(T1h, T1g), ms, &(x[WS(rs, 1)])); | |
196 } | |
197 } | |
198 } | |
199 VLEAVE(); | |
200 } | |
201 | |
202 static const tw_instr twinstr[] = { | |
203 VTW(0, 1), | |
204 VTW(0, 2), | |
205 VTW(0, 3), | |
206 VTW(0, 4), | |
207 VTW(0, 5), | |
208 VTW(0, 6), | |
209 VTW(0, 7), | |
210 VTW(0, 8), | |
211 VTW(0, 9), | |
212 VTW(0, 10), | |
213 VTW(0, 11), | |
214 VTW(0, 12), | |
215 VTW(0, 13), | |
216 VTW(0, 14), | |
217 VTW(0, 15), | |
218 {TW_NEXT, VL, 0} | |
219 }; | |
220 | |
221 static const ct_desc desc = { 16, XSIMD_STRING("t2fv_16"), twinstr, &GENUS, {53, 30, 34, 0}, 0, 0, 0 }; | |
222 | |
223 void XSIMD(codelet_t2fv_16) (planner *p) { | |
224 X(kdft_dit_register) (p, t2fv_16, &desc); | |
225 } | |
226 #else | |
227 | |
228 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name t2fv_16 -include dft/simd/t2f.h */ | |
229 | |
230 /* | |
231 * This function contains 87 FP additions, 42 FP multiplications, | |
232 * (or, 83 additions, 38 multiplications, 4 fused multiply/add), | |
233 * 36 stack variables, 3 constants, and 32 memory accesses | |
234 */ | |
235 #include "dft/simd/t2f.h" | |
236 | |
237 static void t2fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
238 { | |
239 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
240 DVK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
241 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
242 { | |
243 INT m; | |
244 R *x; | |
245 x = ri; | |
246 for (m = mb, W = W + (mb * ((TWVL / VL) * 30)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(16, rs)) { | |
247 V TJ, T10, TD, T11, T1b, T1c, Ty, TK, T16, T17, T18, Tb, TN, T13, T14; | |
248 V T15, Tm, TM, TG, TI, TH; | |
249 TG = LD(&(x[0]), ms, &(x[0])); | |
250 TH = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
251 TI = BYTWJ(&(W[TWVL * 14]), TH); | |
252 TJ = VSUB(TG, TI); | |
253 T10 = VADD(TG, TI); | |
254 { | |
255 V TA, TC, Tz, TB; | |
256 Tz = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
257 TA = BYTWJ(&(W[TWVL * 6]), Tz); | |
258 TB = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | |
259 TC = BYTWJ(&(W[TWVL * 22]), TB); | |
260 TD = VSUB(TA, TC); | |
261 T11 = VADD(TA, TC); | |
262 } | |
263 { | |
264 V Tp, Tw, Tr, Tu, Ts, Tx; | |
265 { | |
266 V To, Tv, Tq, Tt; | |
267 To = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | |
268 Tp = BYTWJ(&(W[TWVL * 26]), To); | |
269 Tv = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
270 Tw = BYTWJ(&(W[TWVL * 18]), Tv); | |
271 Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
272 Tr = BYTWJ(&(W[TWVL * 10]), Tq); | |
273 Tt = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
274 Tu = BYTWJ(&(W[TWVL * 2]), Tt); | |
275 } | |
276 T1b = VADD(Tp, Tr); | |
277 T1c = VADD(Tu, Tw); | |
278 Ts = VSUB(Tp, Tr); | |
279 Tx = VSUB(Tu, Tw); | |
280 Ty = VMUL(LDK(KP707106781), VSUB(Ts, Tx)); | |
281 TK = VMUL(LDK(KP707106781), VADD(Tx, Ts)); | |
282 } | |
283 { | |
284 V T2, T9, T4, T7, T5, Ta; | |
285 { | |
286 V T1, T8, T3, T6; | |
287 T1 = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); | |
288 T2 = BYTWJ(&(W[TWVL * 28]), T1); | |
289 T8 = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
290 T9 = BYTWJ(&(W[TWVL * 20]), T8); | |
291 T3 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
292 T4 = BYTWJ(&(W[TWVL * 12]), T3); | |
293 T6 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
294 T7 = BYTWJ(&(W[TWVL * 4]), T6); | |
295 } | |
296 T16 = VADD(T2, T4); | |
297 T17 = VADD(T7, T9); | |
298 T18 = VSUB(T16, T17); | |
299 T5 = VSUB(T2, T4); | |
300 Ta = VSUB(T7, T9); | |
301 Tb = VFNMS(LDK(KP923879532), Ta, VMUL(LDK(KP382683432), T5)); | |
302 TN = VFMA(LDK(KP923879532), T5, VMUL(LDK(KP382683432), Ta)); | |
303 } | |
304 { | |
305 V Td, Tk, Tf, Ti, Tg, Tl; | |
306 { | |
307 V Tc, Tj, Te, Th; | |
308 Tc = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
309 Td = BYTWJ(&(W[0]), Tc); | |
310 Tj = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | |
311 Tk = BYTWJ(&(W[TWVL * 24]), Tj); | |
312 Te = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
313 Tf = BYTWJ(&(W[TWVL * 16]), Te); | |
314 Th = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
315 Ti = BYTWJ(&(W[TWVL * 8]), Th); | |
316 } | |
317 T13 = VADD(Td, Tf); | |
318 T14 = VADD(Ti, Tk); | |
319 T15 = VSUB(T13, T14); | |
320 Tg = VSUB(Td, Tf); | |
321 Tl = VSUB(Ti, Tk); | |
322 Tm = VFMA(LDK(KP382683432), Tg, VMUL(LDK(KP923879532), Tl)); | |
323 TM = VFNMS(LDK(KP382683432), Tl, VMUL(LDK(KP923879532), Tg)); | |
324 } | |
325 { | |
326 V T1a, T1g, T1f, T1h; | |
327 { | |
328 V T12, T19, T1d, T1e; | |
329 T12 = VSUB(T10, T11); | |
330 T19 = VMUL(LDK(KP707106781), VADD(T15, T18)); | |
331 T1a = VADD(T12, T19); | |
332 T1g = VSUB(T12, T19); | |
333 T1d = VSUB(T1b, T1c); | |
334 T1e = VMUL(LDK(KP707106781), VSUB(T18, T15)); | |
335 T1f = VBYI(VADD(T1d, T1e)); | |
336 T1h = VBYI(VSUB(T1e, T1d)); | |
337 } | |
338 ST(&(x[WS(rs, 14)]), VSUB(T1a, T1f), ms, &(x[0])); | |
339 ST(&(x[WS(rs, 6)]), VADD(T1g, T1h), ms, &(x[0])); | |
340 ST(&(x[WS(rs, 2)]), VADD(T1a, T1f), ms, &(x[0])); | |
341 ST(&(x[WS(rs, 10)]), VSUB(T1g, T1h), ms, &(x[0])); | |
342 } | |
343 { | |
344 V T1k, T1o, T1n, T1p; | |
345 { | |
346 V T1i, T1j, T1l, T1m; | |
347 T1i = VADD(T10, T11); | |
348 T1j = VADD(T1c, T1b); | |
349 T1k = VADD(T1i, T1j); | |
350 T1o = VSUB(T1i, T1j); | |
351 T1l = VADD(T13, T14); | |
352 T1m = VADD(T16, T17); | |
353 T1n = VADD(T1l, T1m); | |
354 T1p = VBYI(VSUB(T1m, T1l)); | |
355 } | |
356 ST(&(x[WS(rs, 8)]), VSUB(T1k, T1n), ms, &(x[0])); | |
357 ST(&(x[WS(rs, 4)]), VADD(T1o, T1p), ms, &(x[0])); | |
358 ST(&(x[0]), VADD(T1k, T1n), ms, &(x[0])); | |
359 ST(&(x[WS(rs, 12)]), VSUB(T1o, T1p), ms, &(x[0])); | |
360 } | |
361 { | |
362 V TF, TQ, TP, TR; | |
363 { | |
364 V Tn, TE, TL, TO; | |
365 Tn = VSUB(Tb, Tm); | |
366 TE = VSUB(Ty, TD); | |
367 TF = VBYI(VSUB(Tn, TE)); | |
368 TQ = VBYI(VADD(TE, Tn)); | |
369 TL = VADD(TJ, TK); | |
370 TO = VADD(TM, TN); | |
371 TP = VSUB(TL, TO); | |
372 TR = VADD(TL, TO); | |
373 } | |
374 ST(&(x[WS(rs, 7)]), VADD(TF, TP), ms, &(x[WS(rs, 1)])); | |
375 ST(&(x[WS(rs, 15)]), VSUB(TR, TQ), ms, &(x[WS(rs, 1)])); | |
376 ST(&(x[WS(rs, 9)]), VSUB(TP, TF), ms, &(x[WS(rs, 1)])); | |
377 ST(&(x[WS(rs, 1)]), VADD(TQ, TR), ms, &(x[WS(rs, 1)])); | |
378 } | |
379 { | |
380 V TU, TY, TX, TZ; | |
381 { | |
382 V TS, TT, TV, TW; | |
383 TS = VSUB(TJ, TK); | |
384 TT = VADD(Tm, Tb); | |
385 TU = VADD(TS, TT); | |
386 TY = VSUB(TS, TT); | |
387 TV = VADD(TD, Ty); | |
388 TW = VSUB(TN, TM); | |
389 TX = VBYI(VADD(TV, TW)); | |
390 TZ = VBYI(VSUB(TW, TV)); | |
391 } | |
392 ST(&(x[WS(rs, 13)]), VSUB(TU, TX), ms, &(x[WS(rs, 1)])); | |
393 ST(&(x[WS(rs, 5)]), VADD(TY, TZ), ms, &(x[WS(rs, 1)])); | |
394 ST(&(x[WS(rs, 3)]), VADD(TU, TX), ms, &(x[WS(rs, 1)])); | |
395 ST(&(x[WS(rs, 11)]), VSUB(TY, TZ), ms, &(x[WS(rs, 1)])); | |
396 } | |
397 } | |
398 } | |
399 VLEAVE(); | |
400 } | |
401 | |
402 static const tw_instr twinstr[] = { | |
403 VTW(0, 1), | |
404 VTW(0, 2), | |
405 VTW(0, 3), | |
406 VTW(0, 4), | |
407 VTW(0, 5), | |
408 VTW(0, 6), | |
409 VTW(0, 7), | |
410 VTW(0, 8), | |
411 VTW(0, 9), | |
412 VTW(0, 10), | |
413 VTW(0, 11), | |
414 VTW(0, 12), | |
415 VTW(0, 13), | |
416 VTW(0, 14), | |
417 VTW(0, 15), | |
418 {TW_NEXT, VL, 0} | |
419 }; | |
420 | |
421 static const ct_desc desc = { 16, XSIMD_STRING("t2fv_16"), twinstr, &GENUS, {83, 38, 4, 0}, 0, 0, 0 }; | |
422 | |
423 void XSIMD(codelet_t2fv_16) (planner *p) { | |
424 X(kdft_dit_register) (p, t2fv_16, &desc); | |
425 } | |
426 #endif |