Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/t1sv_8.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:06:09 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1sv_8 -include dft/simd/ts.h */ | |
29 | |
30 /* | |
31 * This function contains 66 FP additions, 36 FP multiplications, | |
32 * (or, 44 additions, 14 multiplications, 22 fused multiply/add), | |
33 * 34 stack variables, 1 constants, and 32 memory accesses | |
34 */ | |
35 #include "dft/simd/ts.h" | |
36 | |
37 static void t1sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
40 { | |
41 INT m; | |
42 for (m = mb, W = W + (mb * 14); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 14), MAKE_VOLATILE_STRIDE(16, rs)) { | |
43 V T1, T1m, T7, T1l, Tk, TS, Te, TQ, TF, T14, TL, T16, T12, T17, Ts; | |
44 V TX, Ty, TZ, TV, T10; | |
45 T1 = LD(&(ri[0]), ms, &(ri[0])); | |
46 T1m = LD(&(ii[0]), ms, &(ii[0])); | |
47 { | |
48 V T3, T6, T4, T1k, T2, T5; | |
49 T3 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0])); | |
50 T6 = LD(&(ii[WS(rs, 4)]), ms, &(ii[0])); | |
51 T2 = LDW(&(W[TWVL * 6])); | |
52 T4 = VMUL(T2, T3); | |
53 T1k = VMUL(T2, T6); | |
54 T5 = LDW(&(W[TWVL * 7])); | |
55 T7 = VFMA(T5, T6, T4); | |
56 T1l = VFNMS(T5, T3, T1k); | |
57 } | |
58 { | |
59 V Tg, Tj, Th, TR, Tf, Ti; | |
60 Tg = LD(&(ri[WS(rs, 6)]), ms, &(ri[0])); | |
61 Tj = LD(&(ii[WS(rs, 6)]), ms, &(ii[0])); | |
62 Tf = LDW(&(W[TWVL * 10])); | |
63 Th = VMUL(Tf, Tg); | |
64 TR = VMUL(Tf, Tj); | |
65 Ti = LDW(&(W[TWVL * 11])); | |
66 Tk = VFMA(Ti, Tj, Th); | |
67 TS = VFNMS(Ti, Tg, TR); | |
68 } | |
69 { | |
70 V Ta, Td, Tb, TP, T9, Tc; | |
71 Ta = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); | |
72 Td = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); | |
73 T9 = LDW(&(W[TWVL * 2])); | |
74 Tb = VMUL(T9, Ta); | |
75 TP = VMUL(T9, Td); | |
76 Tc = LDW(&(W[TWVL * 3])); | |
77 Te = VFMA(Tc, Td, Tb); | |
78 TQ = VFNMS(Tc, Ta, TP); | |
79 } | |
80 { | |
81 V TB, TE, TC, T13, TH, TK, TI, T15, TA, TG, TD, TJ; | |
82 TB = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)])); | |
83 TE = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)])); | |
84 TA = LDW(&(W[TWVL * 12])); | |
85 TC = VMUL(TA, TB); | |
86 T13 = VMUL(TA, TE); | |
87 TH = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); | |
88 TK = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); | |
89 TG = LDW(&(W[TWVL * 4])); | |
90 TI = VMUL(TG, TH); | |
91 T15 = VMUL(TG, TK); | |
92 TD = LDW(&(W[TWVL * 13])); | |
93 TF = VFMA(TD, TE, TC); | |
94 T14 = VFNMS(TD, TB, T13); | |
95 TJ = LDW(&(W[TWVL * 5])); | |
96 TL = VFMA(TJ, TK, TI); | |
97 T16 = VFNMS(TJ, TH, T15); | |
98 T12 = VSUB(TF, TL); | |
99 T17 = VSUB(T14, T16); | |
100 } | |
101 { | |
102 V To, Tr, Tp, TW, Tu, Tx, Tv, TY, Tn, Tt, Tq, Tw; | |
103 To = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); | |
104 Tr = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); | |
105 Tn = LDW(&(W[0])); | |
106 Tp = VMUL(Tn, To); | |
107 TW = VMUL(Tn, Tr); | |
108 Tu = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)])); | |
109 Tx = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)])); | |
110 Tt = LDW(&(W[TWVL * 8])); | |
111 Tv = VMUL(Tt, Tu); | |
112 TY = VMUL(Tt, Tx); | |
113 Tq = LDW(&(W[TWVL * 1])); | |
114 Ts = VFMA(Tq, Tr, Tp); | |
115 TX = VFNMS(Tq, To, TW); | |
116 Tw = LDW(&(W[TWVL * 9])); | |
117 Ty = VFMA(Tw, Tx, Tv); | |
118 TZ = VFNMS(Tw, Tu, TY); | |
119 TV = VSUB(Ts, Ty); | |
120 T10 = VSUB(TX, TZ); | |
121 } | |
122 { | |
123 V TU, T1a, T1t, T1v, T19, T1w, T1d, T1u; | |
124 { | |
125 V TO, TT, T1r, T1s; | |
126 TO = VSUB(T1, T7); | |
127 TT = VSUB(TQ, TS); | |
128 TU = VADD(TO, TT); | |
129 T1a = VSUB(TO, TT); | |
130 T1r = VSUB(T1m, T1l); | |
131 T1s = VSUB(Te, Tk); | |
132 T1t = VSUB(T1r, T1s); | |
133 T1v = VADD(T1s, T1r); | |
134 } | |
135 { | |
136 V T11, T18, T1b, T1c; | |
137 T11 = VADD(TV, T10); | |
138 T18 = VSUB(T12, T17); | |
139 T19 = VADD(T11, T18); | |
140 T1w = VSUB(T18, T11); | |
141 T1b = VSUB(T10, TV); | |
142 T1c = VADD(T12, T17); | |
143 T1d = VSUB(T1b, T1c); | |
144 T1u = VADD(T1b, T1c); | |
145 } | |
146 ST(&(ri[WS(rs, 5)]), VFNMS(LDK(KP707106781), T19, TU), ms, &(ri[WS(rs, 1)])); | |
147 ST(&(ii[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1u, T1t), ms, &(ii[WS(rs, 1)])); | |
148 ST(&(ri[WS(rs, 1)]), VFMA(LDK(KP707106781), T19, TU), ms, &(ri[WS(rs, 1)])); | |
149 ST(&(ii[WS(rs, 1)]), VFMA(LDK(KP707106781), T1u, T1t), ms, &(ii[WS(rs, 1)])); | |
150 ST(&(ri[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1d, T1a), ms, &(ri[WS(rs, 1)])); | |
151 ST(&(ii[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1w, T1v), ms, &(ii[WS(rs, 1)])); | |
152 ST(&(ri[WS(rs, 3)]), VFMA(LDK(KP707106781), T1d, T1a), ms, &(ri[WS(rs, 1)])); | |
153 ST(&(ii[WS(rs, 3)]), VFMA(LDK(KP707106781), T1w, T1v), ms, &(ii[WS(rs, 1)])); | |
154 } | |
155 { | |
156 V Tm, T1e, T1o, T1q, TN, T1p, T1h, T1i; | |
157 { | |
158 V T8, Tl, T1j, T1n; | |
159 T8 = VADD(T1, T7); | |
160 Tl = VADD(Te, Tk); | |
161 Tm = VADD(T8, Tl); | |
162 T1e = VSUB(T8, Tl); | |
163 T1j = VADD(TQ, TS); | |
164 T1n = VADD(T1l, T1m); | |
165 T1o = VADD(T1j, T1n); | |
166 T1q = VSUB(T1n, T1j); | |
167 } | |
168 { | |
169 V Tz, TM, T1f, T1g; | |
170 Tz = VADD(Ts, Ty); | |
171 TM = VADD(TF, TL); | |
172 TN = VADD(Tz, TM); | |
173 T1p = VSUB(TM, Tz); | |
174 T1f = VADD(TX, TZ); | |
175 T1g = VADD(T14, T16); | |
176 T1h = VSUB(T1f, T1g); | |
177 T1i = VADD(T1f, T1g); | |
178 } | |
179 ST(&(ri[WS(rs, 4)]), VSUB(Tm, TN), ms, &(ri[0])); | |
180 ST(&(ii[WS(rs, 4)]), VSUB(T1o, T1i), ms, &(ii[0])); | |
181 ST(&(ri[0]), VADD(Tm, TN), ms, &(ri[0])); | |
182 ST(&(ii[0]), VADD(T1i, T1o), ms, &(ii[0])); | |
183 ST(&(ri[WS(rs, 6)]), VSUB(T1e, T1h), ms, &(ri[0])); | |
184 ST(&(ii[WS(rs, 6)]), VSUB(T1q, T1p), ms, &(ii[0])); | |
185 ST(&(ri[WS(rs, 2)]), VADD(T1e, T1h), ms, &(ri[0])); | |
186 ST(&(ii[WS(rs, 2)]), VADD(T1p, T1q), ms, &(ii[0])); | |
187 } | |
188 } | |
189 } | |
190 VLEAVE(); | |
191 } | |
192 | |
193 static const tw_instr twinstr[] = { | |
194 VTW(0, 1), | |
195 VTW(0, 2), | |
196 VTW(0, 3), | |
197 VTW(0, 4), | |
198 VTW(0, 5), | |
199 VTW(0, 6), | |
200 VTW(0, 7), | |
201 {TW_NEXT, (2 * VL), 0} | |
202 }; | |
203 | |
204 static const ct_desc desc = { 8, XSIMD_STRING("t1sv_8"), twinstr, &GENUS, {44, 14, 22, 0}, 0, 0, 0 }; | |
205 | |
206 void XSIMD(codelet_t1sv_8) (planner *p) { | |
207 X(kdft_dit_register) (p, t1sv_8, &desc); | |
208 } | |
209 #else | |
210 | |
211 /* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1sv_8 -include dft/simd/ts.h */ | |
212 | |
213 /* | |
214 * This function contains 66 FP additions, 32 FP multiplications, | |
215 * (or, 52 additions, 18 multiplications, 14 fused multiply/add), | |
216 * 28 stack variables, 1 constants, and 32 memory accesses | |
217 */ | |
218 #include "dft/simd/ts.h" | |
219 | |
220 static void t1sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
221 { | |
222 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
223 { | |
224 INT m; | |
225 for (m = mb, W = W + (mb * 14); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 14), MAKE_VOLATILE_STRIDE(16, rs)) { | |
226 V T7, T1e, TH, T19, TF, T13, TR, TU, Ti, T1f, TK, T16, Tu, T12, TM; | |
227 V TP; | |
228 { | |
229 V T1, T18, T6, T17; | |
230 T1 = LD(&(ri[0]), ms, &(ri[0])); | |
231 T18 = LD(&(ii[0]), ms, &(ii[0])); | |
232 { | |
233 V T3, T5, T2, T4; | |
234 T3 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0])); | |
235 T5 = LD(&(ii[WS(rs, 4)]), ms, &(ii[0])); | |
236 T2 = LDW(&(W[TWVL * 6])); | |
237 T4 = LDW(&(W[TWVL * 7])); | |
238 T6 = VFMA(T2, T3, VMUL(T4, T5)); | |
239 T17 = VFNMS(T4, T3, VMUL(T2, T5)); | |
240 } | |
241 T7 = VADD(T1, T6); | |
242 T1e = VSUB(T18, T17); | |
243 TH = VSUB(T1, T6); | |
244 T19 = VADD(T17, T18); | |
245 } | |
246 { | |
247 V Tz, TS, TE, TT; | |
248 { | |
249 V Tw, Ty, Tv, Tx; | |
250 Tw = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)])); | |
251 Ty = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)])); | |
252 Tv = LDW(&(W[TWVL * 12])); | |
253 Tx = LDW(&(W[TWVL * 13])); | |
254 Tz = VFMA(Tv, Tw, VMUL(Tx, Ty)); | |
255 TS = VFNMS(Tx, Tw, VMUL(Tv, Ty)); | |
256 } | |
257 { | |
258 V TB, TD, TA, TC; | |
259 TB = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); | |
260 TD = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); | |
261 TA = LDW(&(W[TWVL * 4])); | |
262 TC = LDW(&(W[TWVL * 5])); | |
263 TE = VFMA(TA, TB, VMUL(TC, TD)); | |
264 TT = VFNMS(TC, TB, VMUL(TA, TD)); | |
265 } | |
266 TF = VADD(Tz, TE); | |
267 T13 = VADD(TS, TT); | |
268 TR = VSUB(Tz, TE); | |
269 TU = VSUB(TS, TT); | |
270 } | |
271 { | |
272 V Tc, TI, Th, TJ; | |
273 { | |
274 V T9, Tb, T8, Ta; | |
275 T9 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); | |
276 Tb = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); | |
277 T8 = LDW(&(W[TWVL * 2])); | |
278 Ta = LDW(&(W[TWVL * 3])); | |
279 Tc = VFMA(T8, T9, VMUL(Ta, Tb)); | |
280 TI = VFNMS(Ta, T9, VMUL(T8, Tb)); | |
281 } | |
282 { | |
283 V Te, Tg, Td, Tf; | |
284 Te = LD(&(ri[WS(rs, 6)]), ms, &(ri[0])); | |
285 Tg = LD(&(ii[WS(rs, 6)]), ms, &(ii[0])); | |
286 Td = LDW(&(W[TWVL * 10])); | |
287 Tf = LDW(&(W[TWVL * 11])); | |
288 Th = VFMA(Td, Te, VMUL(Tf, Tg)); | |
289 TJ = VFNMS(Tf, Te, VMUL(Td, Tg)); | |
290 } | |
291 Ti = VADD(Tc, Th); | |
292 T1f = VSUB(Tc, Th); | |
293 TK = VSUB(TI, TJ); | |
294 T16 = VADD(TI, TJ); | |
295 } | |
296 { | |
297 V To, TN, Tt, TO; | |
298 { | |
299 V Tl, Tn, Tk, Tm; | |
300 Tl = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); | |
301 Tn = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); | |
302 Tk = LDW(&(W[0])); | |
303 Tm = LDW(&(W[TWVL * 1])); | |
304 To = VFMA(Tk, Tl, VMUL(Tm, Tn)); | |
305 TN = VFNMS(Tm, Tl, VMUL(Tk, Tn)); | |
306 } | |
307 { | |
308 V Tq, Ts, Tp, Tr; | |
309 Tq = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)])); | |
310 Ts = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)])); | |
311 Tp = LDW(&(W[TWVL * 8])); | |
312 Tr = LDW(&(W[TWVL * 9])); | |
313 Tt = VFMA(Tp, Tq, VMUL(Tr, Ts)); | |
314 TO = VFNMS(Tr, Tq, VMUL(Tp, Ts)); | |
315 } | |
316 Tu = VADD(To, Tt); | |
317 T12 = VADD(TN, TO); | |
318 TM = VSUB(To, Tt); | |
319 TP = VSUB(TN, TO); | |
320 } | |
321 { | |
322 V Tj, TG, T1b, T1c; | |
323 Tj = VADD(T7, Ti); | |
324 TG = VADD(Tu, TF); | |
325 ST(&(ri[WS(rs, 4)]), VSUB(Tj, TG), ms, &(ri[0])); | |
326 ST(&(ri[0]), VADD(Tj, TG), ms, &(ri[0])); | |
327 { | |
328 V T15, T1a, T11, T14; | |
329 T15 = VADD(T12, T13); | |
330 T1a = VADD(T16, T19); | |
331 ST(&(ii[0]), VADD(T15, T1a), ms, &(ii[0])); | |
332 ST(&(ii[WS(rs, 4)]), VSUB(T1a, T15), ms, &(ii[0])); | |
333 T11 = VSUB(T7, Ti); | |
334 T14 = VSUB(T12, T13); | |
335 ST(&(ri[WS(rs, 6)]), VSUB(T11, T14), ms, &(ri[0])); | |
336 ST(&(ri[WS(rs, 2)]), VADD(T11, T14), ms, &(ri[0])); | |
337 } | |
338 T1b = VSUB(TF, Tu); | |
339 T1c = VSUB(T19, T16); | |
340 ST(&(ii[WS(rs, 2)]), VADD(T1b, T1c), ms, &(ii[0])); | |
341 ST(&(ii[WS(rs, 6)]), VSUB(T1c, T1b), ms, &(ii[0])); | |
342 { | |
343 V TX, T1g, T10, T1d, TY, TZ; | |
344 TX = VSUB(TH, TK); | |
345 T1g = VSUB(T1e, T1f); | |
346 TY = VSUB(TP, TM); | |
347 TZ = VADD(TR, TU); | |
348 T10 = VMUL(LDK(KP707106781), VSUB(TY, TZ)); | |
349 T1d = VMUL(LDK(KP707106781), VADD(TY, TZ)); | |
350 ST(&(ri[WS(rs, 7)]), VSUB(TX, T10), ms, &(ri[WS(rs, 1)])); | |
351 ST(&(ii[WS(rs, 5)]), VSUB(T1g, T1d), ms, &(ii[WS(rs, 1)])); | |
352 ST(&(ri[WS(rs, 3)]), VADD(TX, T10), ms, &(ri[WS(rs, 1)])); | |
353 ST(&(ii[WS(rs, 1)]), VADD(T1d, T1g), ms, &(ii[WS(rs, 1)])); | |
354 } | |
355 { | |
356 V TL, T1i, TW, T1h, TQ, TV; | |
357 TL = VADD(TH, TK); | |
358 T1i = VADD(T1f, T1e); | |
359 TQ = VADD(TM, TP); | |
360 TV = VSUB(TR, TU); | |
361 TW = VMUL(LDK(KP707106781), VADD(TQ, TV)); | |
362 T1h = VMUL(LDK(KP707106781), VSUB(TV, TQ)); | |
363 ST(&(ri[WS(rs, 5)]), VSUB(TL, TW), ms, &(ri[WS(rs, 1)])); | |
364 ST(&(ii[WS(rs, 7)]), VSUB(T1i, T1h), ms, &(ii[WS(rs, 1)])); | |
365 ST(&(ri[WS(rs, 1)]), VADD(TL, TW), ms, &(ri[WS(rs, 1)])); | |
366 ST(&(ii[WS(rs, 3)]), VADD(T1h, T1i), ms, &(ii[WS(rs, 1)])); | |
367 } | |
368 } | |
369 } | |
370 } | |
371 VLEAVE(); | |
372 } | |
373 | |
374 static const tw_instr twinstr[] = { | |
375 VTW(0, 1), | |
376 VTW(0, 2), | |
377 VTW(0, 3), | |
378 VTW(0, 4), | |
379 VTW(0, 5), | |
380 VTW(0, 6), | |
381 VTW(0, 7), | |
382 {TW_NEXT, (2 * VL), 0} | |
383 }; | |
384 | |
385 static const ct_desc desc = { 8, XSIMD_STRING("t1sv_8"), twinstr, &GENUS, {52, 18, 14, 0}, 0, 0, 0 }; | |
386 | |
387 void XSIMD(codelet_t1sv_8) (planner *p) { | |
388 X(kdft_dit_register) (p, t1sv_8, &desc); | |
389 } | |
390 #endif |