Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/t1sv_4.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:06:09 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 4 -name t1sv_4 -include dft/simd/ts.h */ | |
29 | |
30 /* | |
31 * This function contains 22 FP additions, 12 FP multiplications, | |
32 * (or, 16 additions, 6 multiplications, 6 fused multiply/add), | |
33 * 15 stack variables, 0 constants, and 16 memory accesses | |
34 */ | |
35 #include "dft/simd/ts.h" | |
36 | |
37 static void t1sv_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 { | |
40 INT m; | |
41 for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(8, rs)) { | |
42 V T1, Tv, T7, Tu, Te, To, Tk, Tq; | |
43 T1 = LD(&(ri[0]), ms, &(ri[0])); | |
44 Tv = LD(&(ii[0]), ms, &(ii[0])); | |
45 { | |
46 V T3, T6, T4, Tt, T2, T5; | |
47 T3 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); | |
48 T6 = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); | |
49 T2 = LDW(&(W[TWVL * 2])); | |
50 T4 = VMUL(T2, T3); | |
51 Tt = VMUL(T2, T6); | |
52 T5 = LDW(&(W[TWVL * 3])); | |
53 T7 = VFMA(T5, T6, T4); | |
54 Tu = VFNMS(T5, T3, Tt); | |
55 } | |
56 { | |
57 V Ta, Td, Tb, Tn, T9, Tc; | |
58 Ta = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); | |
59 Td = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); | |
60 T9 = LDW(&(W[0])); | |
61 Tb = VMUL(T9, Ta); | |
62 Tn = VMUL(T9, Td); | |
63 Tc = LDW(&(W[TWVL * 1])); | |
64 Te = VFMA(Tc, Td, Tb); | |
65 To = VFNMS(Tc, Ta, Tn); | |
66 } | |
67 { | |
68 V Tg, Tj, Th, Tp, Tf, Ti; | |
69 Tg = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); | |
70 Tj = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); | |
71 Tf = LDW(&(W[TWVL * 4])); | |
72 Th = VMUL(Tf, Tg); | |
73 Tp = VMUL(Tf, Tj); | |
74 Ti = LDW(&(W[TWVL * 5])); | |
75 Tk = VFMA(Ti, Tj, Th); | |
76 Tq = VFNMS(Ti, Tg, Tp); | |
77 } | |
78 { | |
79 V T8, Tl, Ts, Tw; | |
80 T8 = VADD(T1, T7); | |
81 Tl = VADD(Te, Tk); | |
82 ST(&(ri[WS(rs, 2)]), VSUB(T8, Tl), ms, &(ri[0])); | |
83 ST(&(ri[0]), VADD(T8, Tl), ms, &(ri[0])); | |
84 Ts = VADD(To, Tq); | |
85 Tw = VADD(Tu, Tv); | |
86 ST(&(ii[0]), VADD(Ts, Tw), ms, &(ii[0])); | |
87 ST(&(ii[WS(rs, 2)]), VSUB(Tw, Ts), ms, &(ii[0])); | |
88 } | |
89 { | |
90 V Tm, Tr, Tx, Ty; | |
91 Tm = VSUB(T1, T7); | |
92 Tr = VSUB(To, Tq); | |
93 ST(&(ri[WS(rs, 3)]), VSUB(Tm, Tr), ms, &(ri[WS(rs, 1)])); | |
94 ST(&(ri[WS(rs, 1)]), VADD(Tm, Tr), ms, &(ri[WS(rs, 1)])); | |
95 Tx = VSUB(Tv, Tu); | |
96 Ty = VSUB(Te, Tk); | |
97 ST(&(ii[WS(rs, 1)]), VSUB(Tx, Ty), ms, &(ii[WS(rs, 1)])); | |
98 ST(&(ii[WS(rs, 3)]), VADD(Ty, Tx), ms, &(ii[WS(rs, 1)])); | |
99 } | |
100 } | |
101 } | |
102 VLEAVE(); | |
103 } | |
104 | |
105 static const tw_instr twinstr[] = { | |
106 VTW(0, 1), | |
107 VTW(0, 2), | |
108 VTW(0, 3), | |
109 {TW_NEXT, (2 * VL), 0} | |
110 }; | |
111 | |
112 static const ct_desc desc = { 4, XSIMD_STRING("t1sv_4"), twinstr, &GENUS, {16, 6, 6, 0}, 0, 0, 0 }; | |
113 | |
114 void XSIMD(codelet_t1sv_4) (planner *p) { | |
115 X(kdft_dit_register) (p, t1sv_4, &desc); | |
116 } | |
117 #else | |
118 | |
119 /* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -n 4 -name t1sv_4 -include dft/simd/ts.h */ | |
120 | |
121 /* | |
122 * This function contains 22 FP additions, 12 FP multiplications, | |
123 * (or, 16 additions, 6 multiplications, 6 fused multiply/add), | |
124 * 13 stack variables, 0 constants, and 16 memory accesses | |
125 */ | |
126 #include "dft/simd/ts.h" | |
127 | |
128 static void t1sv_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
129 { | |
130 { | |
131 INT m; | |
132 for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(8, rs)) { | |
133 V T1, Tp, T6, To, Tc, Tk, Th, Tl; | |
134 T1 = LD(&(ri[0]), ms, &(ri[0])); | |
135 Tp = LD(&(ii[0]), ms, &(ii[0])); | |
136 { | |
137 V T3, T5, T2, T4; | |
138 T3 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); | |
139 T5 = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); | |
140 T2 = LDW(&(W[TWVL * 2])); | |
141 T4 = LDW(&(W[TWVL * 3])); | |
142 T6 = VFMA(T2, T3, VMUL(T4, T5)); | |
143 To = VFNMS(T4, T3, VMUL(T2, T5)); | |
144 } | |
145 { | |
146 V T9, Tb, T8, Ta; | |
147 T9 = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); | |
148 Tb = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); | |
149 T8 = LDW(&(W[0])); | |
150 Ta = LDW(&(W[TWVL * 1])); | |
151 Tc = VFMA(T8, T9, VMUL(Ta, Tb)); | |
152 Tk = VFNMS(Ta, T9, VMUL(T8, Tb)); | |
153 } | |
154 { | |
155 V Te, Tg, Td, Tf; | |
156 Te = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); | |
157 Tg = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); | |
158 Td = LDW(&(W[TWVL * 4])); | |
159 Tf = LDW(&(W[TWVL * 5])); | |
160 Th = VFMA(Td, Te, VMUL(Tf, Tg)); | |
161 Tl = VFNMS(Tf, Te, VMUL(Td, Tg)); | |
162 } | |
163 { | |
164 V T7, Ti, Tn, Tq; | |
165 T7 = VADD(T1, T6); | |
166 Ti = VADD(Tc, Th); | |
167 ST(&(ri[WS(rs, 2)]), VSUB(T7, Ti), ms, &(ri[0])); | |
168 ST(&(ri[0]), VADD(T7, Ti), ms, &(ri[0])); | |
169 Tn = VADD(Tk, Tl); | |
170 Tq = VADD(To, Tp); | |
171 ST(&(ii[0]), VADD(Tn, Tq), ms, &(ii[0])); | |
172 ST(&(ii[WS(rs, 2)]), VSUB(Tq, Tn), ms, &(ii[0])); | |
173 } | |
174 { | |
175 V Tj, Tm, Tr, Ts; | |
176 Tj = VSUB(T1, T6); | |
177 Tm = VSUB(Tk, Tl); | |
178 ST(&(ri[WS(rs, 3)]), VSUB(Tj, Tm), ms, &(ri[WS(rs, 1)])); | |
179 ST(&(ri[WS(rs, 1)]), VADD(Tj, Tm), ms, &(ri[WS(rs, 1)])); | |
180 Tr = VSUB(Tp, To); | |
181 Ts = VSUB(Tc, Th); | |
182 ST(&(ii[WS(rs, 1)]), VSUB(Tr, Ts), ms, &(ii[WS(rs, 1)])); | |
183 ST(&(ii[WS(rs, 3)]), VADD(Ts, Tr), ms, &(ii[WS(rs, 1)])); | |
184 } | |
185 } | |
186 } | |
187 VLEAVE(); | |
188 } | |
189 | |
190 static const tw_instr twinstr[] = { | |
191 VTW(0, 1), | |
192 VTW(0, 2), | |
193 VTW(0, 3), | |
194 {TW_NEXT, (2 * VL), 0} | |
195 }; | |
196 | |
197 static const ct_desc desc = { 4, XSIMD_STRING("t1sv_4"), twinstr, &GENUS, {16, 6, 6, 0}, 0, 0, 0 }; | |
198 | |
199 void XSIMD(codelet_t1sv_4) (planner *p) { | |
200 X(kdft_dit_register) (p, t1sv_4, &desc); | |
201 } | |
202 #endif |