Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/t1sv_16.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:06:10 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name t1sv_16 -include dft/simd/ts.h */ | |
29 | |
30 /* | |
31 * This function contains 174 FP additions, 100 FP multiplications, | |
32 * (or, 104 additions, 30 multiplications, 70 fused multiply/add), | |
33 * 60 stack variables, 3 constants, and 64 memory accesses | |
34 */ | |
35 #include "dft/simd/ts.h" | |
36 | |
37 static void t1sv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
40 DVK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
41 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
42 { | |
43 INT m; | |
44 for (m = mb, W = W + (mb * 30); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 30), MAKE_VOLATILE_STRIDE(32, rs)) { | |
45 V T8, T3z, T1I, T3o, T1s, T35, T2o, T2r, T1F, T36, T2p, T2w, Tl, T3A, T1N; | |
46 V T3k, Tz, T2V, T1T, T1U, T11, T30, T29, T2c, T1e, T31, T2a, T2h, TM, T2W; | |
47 V T1W, T21; | |
48 { | |
49 V T1, T3n, T3, T6, T4, T3l, T2, T7, T3m, T5; | |
50 T1 = LD(&(ri[0]), ms, &(ri[0])); | |
51 T3n = LD(&(ii[0]), ms, &(ii[0])); | |
52 T3 = LD(&(ri[WS(rs, 8)]), ms, &(ri[0])); | |
53 T6 = LD(&(ii[WS(rs, 8)]), ms, &(ii[0])); | |
54 T2 = LDW(&(W[TWVL * 14])); | |
55 T4 = VMUL(T2, T3); | |
56 T3l = VMUL(T2, T6); | |
57 T5 = LDW(&(W[TWVL * 15])); | |
58 T7 = VFMA(T5, T6, T4); | |
59 T3m = VFNMS(T5, T3, T3l); | |
60 T8 = VADD(T1, T7); | |
61 T3z = VSUB(T3n, T3m); | |
62 T1I = VSUB(T1, T7); | |
63 T3o = VADD(T3m, T3n); | |
64 } | |
65 { | |
66 V T1h, T1k, T1i, T2k, T1n, T1q, T1o, T2m, T1g, T1m; | |
67 T1h = LD(&(ri[WS(rs, 15)]), ms, &(ri[WS(rs, 1)])); | |
68 T1k = LD(&(ii[WS(rs, 15)]), ms, &(ii[WS(rs, 1)])); | |
69 T1g = LDW(&(W[TWVL * 28])); | |
70 T1i = VMUL(T1g, T1h); | |
71 T2k = VMUL(T1g, T1k); | |
72 T1n = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)])); | |
73 T1q = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)])); | |
74 T1m = LDW(&(W[TWVL * 12])); | |
75 T1o = VMUL(T1m, T1n); | |
76 T2m = VMUL(T1m, T1q); | |
77 { | |
78 V T1l, T2l, T1r, T2n, T1j, T1p; | |
79 T1j = LDW(&(W[TWVL * 29])); | |
80 T1l = VFMA(T1j, T1k, T1i); | |
81 T2l = VFNMS(T1j, T1h, T2k); | |
82 T1p = LDW(&(W[TWVL * 13])); | |
83 T1r = VFMA(T1p, T1q, T1o); | |
84 T2n = VFNMS(T1p, T1n, T2m); | |
85 T1s = VADD(T1l, T1r); | |
86 T35 = VADD(T2l, T2n); | |
87 T2o = VSUB(T2l, T2n); | |
88 T2r = VSUB(T1l, T1r); | |
89 } | |
90 } | |
91 { | |
92 V T1u, T1x, T1v, T2s, T1A, T1D, T1B, T2u, T1t, T1z; | |
93 T1u = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); | |
94 T1x = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); | |
95 T1t = LDW(&(W[TWVL * 4])); | |
96 T1v = VMUL(T1t, T1u); | |
97 T2s = VMUL(T1t, T1x); | |
98 T1A = LD(&(ri[WS(rs, 11)]), ms, &(ri[WS(rs, 1)])); | |
99 T1D = LD(&(ii[WS(rs, 11)]), ms, &(ii[WS(rs, 1)])); | |
100 T1z = LDW(&(W[TWVL * 20])); | |
101 T1B = VMUL(T1z, T1A); | |
102 T2u = VMUL(T1z, T1D); | |
103 { | |
104 V T1y, T2t, T1E, T2v, T1w, T1C; | |
105 T1w = LDW(&(W[TWVL * 5])); | |
106 T1y = VFMA(T1w, T1x, T1v); | |
107 T2t = VFNMS(T1w, T1u, T2s); | |
108 T1C = LDW(&(W[TWVL * 21])); | |
109 T1E = VFMA(T1C, T1D, T1B); | |
110 T2v = VFNMS(T1C, T1A, T2u); | |
111 T1F = VADD(T1y, T1E); | |
112 T36 = VADD(T2t, T2v); | |
113 T2p = VSUB(T1y, T1E); | |
114 T2w = VSUB(T2t, T2v); | |
115 } | |
116 } | |
117 { | |
118 V Ta, Td, Tb, T1J, Tg, Tj, Th, T1L, T9, Tf; | |
119 Ta = LD(&(ri[WS(rs, 4)]), ms, &(ri[0])); | |
120 Td = LD(&(ii[WS(rs, 4)]), ms, &(ii[0])); | |
121 T9 = LDW(&(W[TWVL * 6])); | |
122 Tb = VMUL(T9, Ta); | |
123 T1J = VMUL(T9, Td); | |
124 Tg = LD(&(ri[WS(rs, 12)]), ms, &(ri[0])); | |
125 Tj = LD(&(ii[WS(rs, 12)]), ms, &(ii[0])); | |
126 Tf = LDW(&(W[TWVL * 22])); | |
127 Th = VMUL(Tf, Tg); | |
128 T1L = VMUL(Tf, Tj); | |
129 { | |
130 V Te, T1K, Tk, T1M, Tc, Ti; | |
131 Tc = LDW(&(W[TWVL * 7])); | |
132 Te = VFMA(Tc, Td, Tb); | |
133 T1K = VFNMS(Tc, Ta, T1J); | |
134 Ti = LDW(&(W[TWVL * 23])); | |
135 Tk = VFMA(Ti, Tj, Th); | |
136 T1M = VFNMS(Ti, Tg, T1L); | |
137 Tl = VADD(Te, Tk); | |
138 T3A = VSUB(Te, Tk); | |
139 T1N = VSUB(T1K, T1M); | |
140 T3k = VADD(T1K, T1M); | |
141 } | |
142 } | |
143 { | |
144 V To, Tr, Tp, T1P, Tu, Tx, Tv, T1R, Tn, Tt; | |
145 To = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); | |
146 Tr = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); | |
147 Tn = LDW(&(W[TWVL * 2])); | |
148 Tp = VMUL(Tn, To); | |
149 T1P = VMUL(Tn, Tr); | |
150 Tu = LD(&(ri[WS(rs, 10)]), ms, &(ri[0])); | |
151 Tx = LD(&(ii[WS(rs, 10)]), ms, &(ii[0])); | |
152 Tt = LDW(&(W[TWVL * 18])); | |
153 Tv = VMUL(Tt, Tu); | |
154 T1R = VMUL(Tt, Tx); | |
155 { | |
156 V Ts, T1Q, Ty, T1S, Tq, Tw; | |
157 Tq = LDW(&(W[TWVL * 3])); | |
158 Ts = VFMA(Tq, Tr, Tp); | |
159 T1Q = VFNMS(Tq, To, T1P); | |
160 Tw = LDW(&(W[TWVL * 19])); | |
161 Ty = VFMA(Tw, Tx, Tv); | |
162 T1S = VFNMS(Tw, Tu, T1R); | |
163 Tz = VADD(Ts, Ty); | |
164 T2V = VADD(T1Q, T1S); | |
165 T1T = VSUB(T1Q, T1S); | |
166 T1U = VSUB(Ts, Ty); | |
167 } | |
168 } | |
169 { | |
170 V TQ, TT, TR, T25, TW, TZ, TX, T27, TP, TV; | |
171 TQ = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); | |
172 TT = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); | |
173 TP = LDW(&(W[0])); | |
174 TR = VMUL(TP, TQ); | |
175 T25 = VMUL(TP, TT); | |
176 TW = LD(&(ri[WS(rs, 9)]), ms, &(ri[WS(rs, 1)])); | |
177 TZ = LD(&(ii[WS(rs, 9)]), ms, &(ii[WS(rs, 1)])); | |
178 TV = LDW(&(W[TWVL * 16])); | |
179 TX = VMUL(TV, TW); | |
180 T27 = VMUL(TV, TZ); | |
181 { | |
182 V TU, T26, T10, T28, TS, TY; | |
183 TS = LDW(&(W[TWVL * 1])); | |
184 TU = VFMA(TS, TT, TR); | |
185 T26 = VFNMS(TS, TQ, T25); | |
186 TY = LDW(&(W[TWVL * 17])); | |
187 T10 = VFMA(TY, TZ, TX); | |
188 T28 = VFNMS(TY, TW, T27); | |
189 T11 = VADD(TU, T10); | |
190 T30 = VADD(T26, T28); | |
191 T29 = VSUB(T26, T28); | |
192 T2c = VSUB(TU, T10); | |
193 } | |
194 } | |
195 { | |
196 V T13, T16, T14, T2d, T19, T1c, T1a, T2f, T12, T18; | |
197 T13 = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)])); | |
198 T16 = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)])); | |
199 T12 = LDW(&(W[TWVL * 8])); | |
200 T14 = VMUL(T12, T13); | |
201 T2d = VMUL(T12, T16); | |
202 T19 = LD(&(ri[WS(rs, 13)]), ms, &(ri[WS(rs, 1)])); | |
203 T1c = LD(&(ii[WS(rs, 13)]), ms, &(ii[WS(rs, 1)])); | |
204 T18 = LDW(&(W[TWVL * 24])); | |
205 T1a = VMUL(T18, T19); | |
206 T2f = VMUL(T18, T1c); | |
207 { | |
208 V T17, T2e, T1d, T2g, T15, T1b; | |
209 T15 = LDW(&(W[TWVL * 9])); | |
210 T17 = VFMA(T15, T16, T14); | |
211 T2e = VFNMS(T15, T13, T2d); | |
212 T1b = LDW(&(W[TWVL * 25])); | |
213 T1d = VFMA(T1b, T1c, T1a); | |
214 T2g = VFNMS(T1b, T19, T2f); | |
215 T1e = VADD(T17, T1d); | |
216 T31 = VADD(T2e, T2g); | |
217 T2a = VSUB(T17, T1d); | |
218 T2h = VSUB(T2e, T2g); | |
219 } | |
220 } | |
221 { | |
222 V TB, TE, TC, T1X, TH, TK, TI, T1Z, TA, TG; | |
223 TB = LD(&(ri[WS(rs, 14)]), ms, &(ri[0])); | |
224 TE = LD(&(ii[WS(rs, 14)]), ms, &(ii[0])); | |
225 TA = LDW(&(W[TWVL * 26])); | |
226 TC = VMUL(TA, TB); | |
227 T1X = VMUL(TA, TE); | |
228 TH = LD(&(ri[WS(rs, 6)]), ms, &(ri[0])); | |
229 TK = LD(&(ii[WS(rs, 6)]), ms, &(ii[0])); | |
230 TG = LDW(&(W[TWVL * 10])); | |
231 TI = VMUL(TG, TH); | |
232 T1Z = VMUL(TG, TK); | |
233 { | |
234 V TF, T1Y, TL, T20, TD, TJ; | |
235 TD = LDW(&(W[TWVL * 27])); | |
236 TF = VFMA(TD, TE, TC); | |
237 T1Y = VFNMS(TD, TB, T1X); | |
238 TJ = LDW(&(W[TWVL * 11])); | |
239 TL = VFMA(TJ, TK, TI); | |
240 T20 = VFNMS(TJ, TH, T1Z); | |
241 TM = VADD(TF, TL); | |
242 T2W = VADD(T1Y, T20); | |
243 T1W = VSUB(TF, TL); | |
244 T21 = VSUB(T1Y, T20); | |
245 } | |
246 } | |
247 { | |
248 V TO, T3e, T3q, T3s, T1H, T3r, T3h, T3i; | |
249 { | |
250 V Tm, TN, T3j, T3p; | |
251 Tm = VADD(T8, Tl); | |
252 TN = VADD(Tz, TM); | |
253 TO = VADD(Tm, TN); | |
254 T3e = VSUB(Tm, TN); | |
255 T3j = VADD(T2V, T2W); | |
256 T3p = VADD(T3k, T3o); | |
257 T3q = VADD(T3j, T3p); | |
258 T3s = VSUB(T3p, T3j); | |
259 } | |
260 { | |
261 V T1f, T1G, T3f, T3g; | |
262 T1f = VADD(T11, T1e); | |
263 T1G = VADD(T1s, T1F); | |
264 T1H = VADD(T1f, T1G); | |
265 T3r = VSUB(T1G, T1f); | |
266 T3f = VADD(T30, T31); | |
267 T3g = VADD(T35, T36); | |
268 T3h = VSUB(T3f, T3g); | |
269 T3i = VADD(T3f, T3g); | |
270 } | |
271 ST(&(ri[WS(rs, 8)]), VSUB(TO, T1H), ms, &(ri[0])); | |
272 ST(&(ii[WS(rs, 8)]), VSUB(T3q, T3i), ms, &(ii[0])); | |
273 ST(&(ri[0]), VADD(TO, T1H), ms, &(ri[0])); | |
274 ST(&(ii[0]), VADD(T3i, T3q), ms, &(ii[0])); | |
275 ST(&(ri[WS(rs, 12)]), VSUB(T3e, T3h), ms, &(ri[0])); | |
276 ST(&(ii[WS(rs, 12)]), VSUB(T3s, T3r), ms, &(ii[0])); | |
277 ST(&(ri[WS(rs, 4)]), VADD(T3e, T3h), ms, &(ri[0])); | |
278 ST(&(ii[WS(rs, 4)]), VADD(T3r, T3s), ms, &(ii[0])); | |
279 } | |
280 { | |
281 V T2Y, T3a, T3v, T3x, T33, T3b, T38, T3c; | |
282 { | |
283 V T2U, T2X, T3t, T3u; | |
284 T2U = VSUB(T8, Tl); | |
285 T2X = VSUB(T2V, T2W); | |
286 T2Y = VADD(T2U, T2X); | |
287 T3a = VSUB(T2U, T2X); | |
288 T3t = VSUB(TM, Tz); | |
289 T3u = VSUB(T3o, T3k); | |
290 T3v = VADD(T3t, T3u); | |
291 T3x = VSUB(T3u, T3t); | |
292 } | |
293 { | |
294 V T2Z, T32, T34, T37; | |
295 T2Z = VSUB(T11, T1e); | |
296 T32 = VSUB(T30, T31); | |
297 T33 = VADD(T2Z, T32); | |
298 T3b = VSUB(T32, T2Z); | |
299 T34 = VSUB(T1s, T1F); | |
300 T37 = VSUB(T35, T36); | |
301 T38 = VSUB(T34, T37); | |
302 T3c = VADD(T34, T37); | |
303 } | |
304 { | |
305 V T39, T3w, T3d, T3y; | |
306 T39 = VADD(T33, T38); | |
307 ST(&(ri[WS(rs, 10)]), VFNMS(LDK(KP707106781), T39, T2Y), ms, &(ri[0])); | |
308 ST(&(ri[WS(rs, 2)]), VFMA(LDK(KP707106781), T39, T2Y), ms, &(ri[0])); | |
309 T3w = VADD(T3b, T3c); | |
310 ST(&(ii[WS(rs, 2)]), VFMA(LDK(KP707106781), T3w, T3v), ms, &(ii[0])); | |
311 ST(&(ii[WS(rs, 10)]), VFNMS(LDK(KP707106781), T3w, T3v), ms, &(ii[0])); | |
312 T3d = VSUB(T3b, T3c); | |
313 ST(&(ri[WS(rs, 14)]), VFNMS(LDK(KP707106781), T3d, T3a), ms, &(ri[0])); | |
314 ST(&(ri[WS(rs, 6)]), VFMA(LDK(KP707106781), T3d, T3a), ms, &(ri[0])); | |
315 T3y = VSUB(T38, T33); | |
316 ST(&(ii[WS(rs, 6)]), VFMA(LDK(KP707106781), T3y, T3x), ms, &(ii[0])); | |
317 ST(&(ii[WS(rs, 14)]), VFNMS(LDK(KP707106781), T3y, T3x), ms, &(ii[0])); | |
318 } | |
319 } | |
320 { | |
321 V T1O, T3B, T3H, T2E, T23, T3C, T2O, T2S, T2H, T3I, T2j, T2B, T2L, T2R, T2y; | |
322 V T2C; | |
323 { | |
324 V T1V, T22, T2b, T2i; | |
325 T1O = VSUB(T1I, T1N); | |
326 T3B = VSUB(T3z, T3A); | |
327 T3H = VADD(T3A, T3z); | |
328 T2E = VADD(T1I, T1N); | |
329 T1V = VSUB(T1T, T1U); | |
330 T22 = VADD(T1W, T21); | |
331 T23 = VSUB(T1V, T22); | |
332 T3C = VADD(T1V, T22); | |
333 { | |
334 V T2M, T2N, T2F, T2G; | |
335 T2M = VADD(T2r, T2w); | |
336 T2N = VSUB(T2o, T2p); | |
337 T2O = VFNMS(LDK(KP414213562), T2N, T2M); | |
338 T2S = VFMA(LDK(KP414213562), T2M, T2N); | |
339 T2F = VADD(T1U, T1T); | |
340 T2G = VSUB(T1W, T21); | |
341 T2H = VADD(T2F, T2G); | |
342 T3I = VSUB(T2G, T2F); | |
343 } | |
344 T2b = VADD(T29, T2a); | |
345 T2i = VSUB(T2c, T2h); | |
346 T2j = VFMA(LDK(KP414213562), T2i, T2b); | |
347 T2B = VFNMS(LDK(KP414213562), T2b, T2i); | |
348 { | |
349 V T2J, T2K, T2q, T2x; | |
350 T2J = VADD(T2c, T2h); | |
351 T2K = VSUB(T29, T2a); | |
352 T2L = VFMA(LDK(KP414213562), T2K, T2J); | |
353 T2R = VFNMS(LDK(KP414213562), T2J, T2K); | |
354 T2q = VADD(T2o, T2p); | |
355 T2x = VSUB(T2r, T2w); | |
356 T2y = VFNMS(LDK(KP414213562), T2x, T2q); | |
357 T2C = VFMA(LDK(KP414213562), T2q, T2x); | |
358 } | |
359 } | |
360 { | |
361 V T24, T2z, T3J, T3K; | |
362 T24 = VFMA(LDK(KP707106781), T23, T1O); | |
363 T2z = VSUB(T2j, T2y); | |
364 ST(&(ri[WS(rs, 11)]), VFNMS(LDK(KP923879532), T2z, T24), ms, &(ri[WS(rs, 1)])); | |
365 ST(&(ri[WS(rs, 3)]), VFMA(LDK(KP923879532), T2z, T24), ms, &(ri[WS(rs, 1)])); | |
366 T3J = VFMA(LDK(KP707106781), T3I, T3H); | |
367 T3K = VSUB(T2C, T2B); | |
368 ST(&(ii[WS(rs, 3)]), VFMA(LDK(KP923879532), T3K, T3J), ms, &(ii[WS(rs, 1)])); | |
369 ST(&(ii[WS(rs, 11)]), VFNMS(LDK(KP923879532), T3K, T3J), ms, &(ii[WS(rs, 1)])); | |
370 } | |
371 { | |
372 V T2A, T2D, T3L, T3M; | |
373 T2A = VFNMS(LDK(KP707106781), T23, T1O); | |
374 T2D = VADD(T2B, T2C); | |
375 ST(&(ri[WS(rs, 7)]), VFNMS(LDK(KP923879532), T2D, T2A), ms, &(ri[WS(rs, 1)])); | |
376 ST(&(ri[WS(rs, 15)]), VFMA(LDK(KP923879532), T2D, T2A), ms, &(ri[WS(rs, 1)])); | |
377 T3L = VFNMS(LDK(KP707106781), T3I, T3H); | |
378 T3M = VADD(T2j, T2y); | |
379 ST(&(ii[WS(rs, 7)]), VFNMS(LDK(KP923879532), T3M, T3L), ms, &(ii[WS(rs, 1)])); | |
380 ST(&(ii[WS(rs, 15)]), VFMA(LDK(KP923879532), T3M, T3L), ms, &(ii[WS(rs, 1)])); | |
381 } | |
382 { | |
383 V T2I, T2P, T3D, T3E; | |
384 T2I = VFMA(LDK(KP707106781), T2H, T2E); | |
385 T2P = VADD(T2L, T2O); | |
386 ST(&(ri[WS(rs, 9)]), VFNMS(LDK(KP923879532), T2P, T2I), ms, &(ri[WS(rs, 1)])); | |
387 ST(&(ri[WS(rs, 1)]), VFMA(LDK(KP923879532), T2P, T2I), ms, &(ri[WS(rs, 1)])); | |
388 T3D = VFMA(LDK(KP707106781), T3C, T3B); | |
389 T3E = VADD(T2R, T2S); | |
390 ST(&(ii[WS(rs, 1)]), VFMA(LDK(KP923879532), T3E, T3D), ms, &(ii[WS(rs, 1)])); | |
391 ST(&(ii[WS(rs, 9)]), VFNMS(LDK(KP923879532), T3E, T3D), ms, &(ii[WS(rs, 1)])); | |
392 } | |
393 { | |
394 V T2Q, T2T, T3F, T3G; | |
395 T2Q = VFNMS(LDK(KP707106781), T2H, T2E); | |
396 T2T = VSUB(T2R, T2S); | |
397 ST(&(ri[WS(rs, 13)]), VFNMS(LDK(KP923879532), T2T, T2Q), ms, &(ri[WS(rs, 1)])); | |
398 ST(&(ri[WS(rs, 5)]), VFMA(LDK(KP923879532), T2T, T2Q), ms, &(ri[WS(rs, 1)])); | |
399 T3F = VFNMS(LDK(KP707106781), T3C, T3B); | |
400 T3G = VSUB(T2O, T2L); | |
401 ST(&(ii[WS(rs, 5)]), VFMA(LDK(KP923879532), T3G, T3F), ms, &(ii[WS(rs, 1)])); | |
402 ST(&(ii[WS(rs, 13)]), VFNMS(LDK(KP923879532), T3G, T3F), ms, &(ii[WS(rs, 1)])); | |
403 } | |
404 } | |
405 } | |
406 } | |
407 VLEAVE(); | |
408 } | |
409 | |
410 static const tw_instr twinstr[] = { | |
411 VTW(0, 1), | |
412 VTW(0, 2), | |
413 VTW(0, 3), | |
414 VTW(0, 4), | |
415 VTW(0, 5), | |
416 VTW(0, 6), | |
417 VTW(0, 7), | |
418 VTW(0, 8), | |
419 VTW(0, 9), | |
420 VTW(0, 10), | |
421 VTW(0, 11), | |
422 VTW(0, 12), | |
423 VTW(0, 13), | |
424 VTW(0, 14), | |
425 VTW(0, 15), | |
426 {TW_NEXT, (2 * VL), 0} | |
427 }; | |
428 | |
429 static const ct_desc desc = { 16, XSIMD_STRING("t1sv_16"), twinstr, &GENUS, {104, 30, 70, 0}, 0, 0, 0 }; | |
430 | |
431 void XSIMD(codelet_t1sv_16) (planner *p) { | |
432 X(kdft_dit_register) (p, t1sv_16, &desc); | |
433 } | |
434 #else | |
435 | |
436 /* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name t1sv_16 -include dft/simd/ts.h */ | |
437 | |
438 /* | |
439 * This function contains 174 FP additions, 84 FP multiplications, | |
440 * (or, 136 additions, 46 multiplications, 38 fused multiply/add), | |
441 * 52 stack variables, 3 constants, and 64 memory accesses | |
442 */ | |
443 #include "dft/simd/ts.h" | |
444 | |
445 static void t1sv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
446 { | |
447 DVK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
448 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
449 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
450 { | |
451 INT m; | |
452 for (m = mb, W = W + (mb * 30); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 30), MAKE_VOLATILE_STRIDE(32, rs)) { | |
453 V T7, T37, T1t, T2U, Ti, T38, T1w, T2R, Tu, T2s, T1C, T2c, TF, T2t, T1H; | |
454 V T2d, T1f, T1q, T2B, T2C, T2D, T2E, T1Z, T2j, T24, T2k, TS, T13, T2w, T2x; | |
455 V T2y, T2z, T1O, T2g, T1T, T2h; | |
456 { | |
457 V T1, T2T, T6, T2S; | |
458 T1 = LD(&(ri[0]), ms, &(ri[0])); | |
459 T2T = LD(&(ii[0]), ms, &(ii[0])); | |
460 { | |
461 V T3, T5, T2, T4; | |
462 T3 = LD(&(ri[WS(rs, 8)]), ms, &(ri[0])); | |
463 T5 = LD(&(ii[WS(rs, 8)]), ms, &(ii[0])); | |
464 T2 = LDW(&(W[TWVL * 14])); | |
465 T4 = LDW(&(W[TWVL * 15])); | |
466 T6 = VFMA(T2, T3, VMUL(T4, T5)); | |
467 T2S = VFNMS(T4, T3, VMUL(T2, T5)); | |
468 } | |
469 T7 = VADD(T1, T6); | |
470 T37 = VSUB(T2T, T2S); | |
471 T1t = VSUB(T1, T6); | |
472 T2U = VADD(T2S, T2T); | |
473 } | |
474 { | |
475 V Tc, T1u, Th, T1v; | |
476 { | |
477 V T9, Tb, T8, Ta; | |
478 T9 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0])); | |
479 Tb = LD(&(ii[WS(rs, 4)]), ms, &(ii[0])); | |
480 T8 = LDW(&(W[TWVL * 6])); | |
481 Ta = LDW(&(W[TWVL * 7])); | |
482 Tc = VFMA(T8, T9, VMUL(Ta, Tb)); | |
483 T1u = VFNMS(Ta, T9, VMUL(T8, Tb)); | |
484 } | |
485 { | |
486 V Te, Tg, Td, Tf; | |
487 Te = LD(&(ri[WS(rs, 12)]), ms, &(ri[0])); | |
488 Tg = LD(&(ii[WS(rs, 12)]), ms, &(ii[0])); | |
489 Td = LDW(&(W[TWVL * 22])); | |
490 Tf = LDW(&(W[TWVL * 23])); | |
491 Th = VFMA(Td, Te, VMUL(Tf, Tg)); | |
492 T1v = VFNMS(Tf, Te, VMUL(Td, Tg)); | |
493 } | |
494 Ti = VADD(Tc, Th); | |
495 T38 = VSUB(Tc, Th); | |
496 T1w = VSUB(T1u, T1v); | |
497 T2R = VADD(T1u, T1v); | |
498 } | |
499 { | |
500 V To, T1y, Tt, T1z, T1A, T1B; | |
501 { | |
502 V Tl, Tn, Tk, Tm; | |
503 Tl = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); | |
504 Tn = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); | |
505 Tk = LDW(&(W[TWVL * 2])); | |
506 Tm = LDW(&(W[TWVL * 3])); | |
507 To = VFMA(Tk, Tl, VMUL(Tm, Tn)); | |
508 T1y = VFNMS(Tm, Tl, VMUL(Tk, Tn)); | |
509 } | |
510 { | |
511 V Tq, Ts, Tp, Tr; | |
512 Tq = LD(&(ri[WS(rs, 10)]), ms, &(ri[0])); | |
513 Ts = LD(&(ii[WS(rs, 10)]), ms, &(ii[0])); | |
514 Tp = LDW(&(W[TWVL * 18])); | |
515 Tr = LDW(&(W[TWVL * 19])); | |
516 Tt = VFMA(Tp, Tq, VMUL(Tr, Ts)); | |
517 T1z = VFNMS(Tr, Tq, VMUL(Tp, Ts)); | |
518 } | |
519 Tu = VADD(To, Tt); | |
520 T2s = VADD(T1y, T1z); | |
521 T1A = VSUB(T1y, T1z); | |
522 T1B = VSUB(To, Tt); | |
523 T1C = VSUB(T1A, T1B); | |
524 T2c = VADD(T1B, T1A); | |
525 } | |
526 { | |
527 V Tz, T1E, TE, T1F, T1D, T1G; | |
528 { | |
529 V Tw, Ty, Tv, Tx; | |
530 Tw = LD(&(ri[WS(rs, 14)]), ms, &(ri[0])); | |
531 Ty = LD(&(ii[WS(rs, 14)]), ms, &(ii[0])); | |
532 Tv = LDW(&(W[TWVL * 26])); | |
533 Tx = LDW(&(W[TWVL * 27])); | |
534 Tz = VFMA(Tv, Tw, VMUL(Tx, Ty)); | |
535 T1E = VFNMS(Tx, Tw, VMUL(Tv, Ty)); | |
536 } | |
537 { | |
538 V TB, TD, TA, TC; | |
539 TB = LD(&(ri[WS(rs, 6)]), ms, &(ri[0])); | |
540 TD = LD(&(ii[WS(rs, 6)]), ms, &(ii[0])); | |
541 TA = LDW(&(W[TWVL * 10])); | |
542 TC = LDW(&(W[TWVL * 11])); | |
543 TE = VFMA(TA, TB, VMUL(TC, TD)); | |
544 T1F = VFNMS(TC, TB, VMUL(TA, TD)); | |
545 } | |
546 TF = VADD(Tz, TE); | |
547 T2t = VADD(T1E, T1F); | |
548 T1D = VSUB(Tz, TE); | |
549 T1G = VSUB(T1E, T1F); | |
550 T1H = VADD(T1D, T1G); | |
551 T2d = VSUB(T1D, T1G); | |
552 } | |
553 { | |
554 V T19, T20, T1p, T1X, T1e, T21, T1k, T1W; | |
555 { | |
556 V T16, T18, T15, T17; | |
557 T16 = LD(&(ri[WS(rs, 15)]), ms, &(ri[WS(rs, 1)])); | |
558 T18 = LD(&(ii[WS(rs, 15)]), ms, &(ii[WS(rs, 1)])); | |
559 T15 = LDW(&(W[TWVL * 28])); | |
560 T17 = LDW(&(W[TWVL * 29])); | |
561 T19 = VFMA(T15, T16, VMUL(T17, T18)); | |
562 T20 = VFNMS(T17, T16, VMUL(T15, T18)); | |
563 } | |
564 { | |
565 V T1m, T1o, T1l, T1n; | |
566 T1m = LD(&(ri[WS(rs, 11)]), ms, &(ri[WS(rs, 1)])); | |
567 T1o = LD(&(ii[WS(rs, 11)]), ms, &(ii[WS(rs, 1)])); | |
568 T1l = LDW(&(W[TWVL * 20])); | |
569 T1n = LDW(&(W[TWVL * 21])); | |
570 T1p = VFMA(T1l, T1m, VMUL(T1n, T1o)); | |
571 T1X = VFNMS(T1n, T1m, VMUL(T1l, T1o)); | |
572 } | |
573 { | |
574 V T1b, T1d, T1a, T1c; | |
575 T1b = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)])); | |
576 T1d = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)])); | |
577 T1a = LDW(&(W[TWVL * 12])); | |
578 T1c = LDW(&(W[TWVL * 13])); | |
579 T1e = VFMA(T1a, T1b, VMUL(T1c, T1d)); | |
580 T21 = VFNMS(T1c, T1b, VMUL(T1a, T1d)); | |
581 } | |
582 { | |
583 V T1h, T1j, T1g, T1i; | |
584 T1h = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); | |
585 T1j = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); | |
586 T1g = LDW(&(W[TWVL * 4])); | |
587 T1i = LDW(&(W[TWVL * 5])); | |
588 T1k = VFMA(T1g, T1h, VMUL(T1i, T1j)); | |
589 T1W = VFNMS(T1i, T1h, VMUL(T1g, T1j)); | |
590 } | |
591 T1f = VADD(T19, T1e); | |
592 T1q = VADD(T1k, T1p); | |
593 T2B = VSUB(T1f, T1q); | |
594 T2C = VADD(T20, T21); | |
595 T2D = VADD(T1W, T1X); | |
596 T2E = VSUB(T2C, T2D); | |
597 { | |
598 V T1V, T1Y, T22, T23; | |
599 T1V = VSUB(T19, T1e); | |
600 T1Y = VSUB(T1W, T1X); | |
601 T1Z = VSUB(T1V, T1Y); | |
602 T2j = VADD(T1V, T1Y); | |
603 T22 = VSUB(T20, T21); | |
604 T23 = VSUB(T1k, T1p); | |
605 T24 = VADD(T22, T23); | |
606 T2k = VSUB(T22, T23); | |
607 } | |
608 } | |
609 { | |
610 V TM, T1K, T12, T1R, TR, T1L, TX, T1Q; | |
611 { | |
612 V TJ, TL, TI, TK; | |
613 TJ = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); | |
614 TL = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); | |
615 TI = LDW(&(W[0])); | |
616 TK = LDW(&(W[TWVL * 1])); | |
617 TM = VFMA(TI, TJ, VMUL(TK, TL)); | |
618 T1K = VFNMS(TK, TJ, VMUL(TI, TL)); | |
619 } | |
620 { | |
621 V TZ, T11, TY, T10; | |
622 TZ = LD(&(ri[WS(rs, 13)]), ms, &(ri[WS(rs, 1)])); | |
623 T11 = LD(&(ii[WS(rs, 13)]), ms, &(ii[WS(rs, 1)])); | |
624 TY = LDW(&(W[TWVL * 24])); | |
625 T10 = LDW(&(W[TWVL * 25])); | |
626 T12 = VFMA(TY, TZ, VMUL(T10, T11)); | |
627 T1R = VFNMS(T10, TZ, VMUL(TY, T11)); | |
628 } | |
629 { | |
630 V TO, TQ, TN, TP; | |
631 TO = LD(&(ri[WS(rs, 9)]), ms, &(ri[WS(rs, 1)])); | |
632 TQ = LD(&(ii[WS(rs, 9)]), ms, &(ii[WS(rs, 1)])); | |
633 TN = LDW(&(W[TWVL * 16])); | |
634 TP = LDW(&(W[TWVL * 17])); | |
635 TR = VFMA(TN, TO, VMUL(TP, TQ)); | |
636 T1L = VFNMS(TP, TO, VMUL(TN, TQ)); | |
637 } | |
638 { | |
639 V TU, TW, TT, TV; | |
640 TU = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)])); | |
641 TW = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)])); | |
642 TT = LDW(&(W[TWVL * 8])); | |
643 TV = LDW(&(W[TWVL * 9])); | |
644 TX = VFMA(TT, TU, VMUL(TV, TW)); | |
645 T1Q = VFNMS(TV, TU, VMUL(TT, TW)); | |
646 } | |
647 TS = VADD(TM, TR); | |
648 T13 = VADD(TX, T12); | |
649 T2w = VSUB(TS, T13); | |
650 T2x = VADD(T1K, T1L); | |
651 T2y = VADD(T1Q, T1R); | |
652 T2z = VSUB(T2x, T2y); | |
653 { | |
654 V T1M, T1N, T1P, T1S; | |
655 T1M = VSUB(T1K, T1L); | |
656 T1N = VSUB(TX, T12); | |
657 T1O = VADD(T1M, T1N); | |
658 T2g = VSUB(T1M, T1N); | |
659 T1P = VSUB(TM, TR); | |
660 T1S = VSUB(T1Q, T1R); | |
661 T1T = VSUB(T1P, T1S); | |
662 T2h = VADD(T1P, T1S); | |
663 } | |
664 } | |
665 { | |
666 V T1J, T27, T3g, T3i, T26, T3h, T2a, T3d; | |
667 { | |
668 V T1x, T1I, T3e, T3f; | |
669 T1x = VSUB(T1t, T1w); | |
670 T1I = VMUL(LDK(KP707106781), VSUB(T1C, T1H)); | |
671 T1J = VADD(T1x, T1I); | |
672 T27 = VSUB(T1x, T1I); | |
673 T3e = VMUL(LDK(KP707106781), VSUB(T2d, T2c)); | |
674 T3f = VADD(T38, T37); | |
675 T3g = VADD(T3e, T3f); | |
676 T3i = VSUB(T3f, T3e); | |
677 } | |
678 { | |
679 V T1U, T25, T28, T29; | |
680 T1U = VFMA(LDK(KP923879532), T1O, VMUL(LDK(KP382683432), T1T)); | |
681 T25 = VFNMS(LDK(KP923879532), T24, VMUL(LDK(KP382683432), T1Z)); | |
682 T26 = VADD(T1U, T25); | |
683 T3h = VSUB(T25, T1U); | |
684 T28 = VFNMS(LDK(KP923879532), T1T, VMUL(LDK(KP382683432), T1O)); | |
685 T29 = VFMA(LDK(KP382683432), T24, VMUL(LDK(KP923879532), T1Z)); | |
686 T2a = VSUB(T28, T29); | |
687 T3d = VADD(T28, T29); | |
688 } | |
689 ST(&(ri[WS(rs, 11)]), VSUB(T1J, T26), ms, &(ri[WS(rs, 1)])); | |
690 ST(&(ii[WS(rs, 11)]), VSUB(T3g, T3d), ms, &(ii[WS(rs, 1)])); | |
691 ST(&(ri[WS(rs, 3)]), VADD(T1J, T26), ms, &(ri[WS(rs, 1)])); | |
692 ST(&(ii[WS(rs, 3)]), VADD(T3d, T3g), ms, &(ii[WS(rs, 1)])); | |
693 ST(&(ri[WS(rs, 15)]), VSUB(T27, T2a), ms, &(ri[WS(rs, 1)])); | |
694 ST(&(ii[WS(rs, 15)]), VSUB(T3i, T3h), ms, &(ii[WS(rs, 1)])); | |
695 ST(&(ri[WS(rs, 7)]), VADD(T27, T2a), ms, &(ri[WS(rs, 1)])); | |
696 ST(&(ii[WS(rs, 7)]), VADD(T3h, T3i), ms, &(ii[WS(rs, 1)])); | |
697 } | |
698 { | |
699 V T2v, T2H, T32, T34, T2G, T33, T2K, T2Z; | |
700 { | |
701 V T2r, T2u, T30, T31; | |
702 T2r = VSUB(T7, Ti); | |
703 T2u = VSUB(T2s, T2t); | |
704 T2v = VADD(T2r, T2u); | |
705 T2H = VSUB(T2r, T2u); | |
706 T30 = VSUB(TF, Tu); | |
707 T31 = VSUB(T2U, T2R); | |
708 T32 = VADD(T30, T31); | |
709 T34 = VSUB(T31, T30); | |
710 } | |
711 { | |
712 V T2A, T2F, T2I, T2J; | |
713 T2A = VADD(T2w, T2z); | |
714 T2F = VSUB(T2B, T2E); | |
715 T2G = VMUL(LDK(KP707106781), VADD(T2A, T2F)); | |
716 T33 = VMUL(LDK(KP707106781), VSUB(T2F, T2A)); | |
717 T2I = VSUB(T2z, T2w); | |
718 T2J = VADD(T2B, T2E); | |
719 T2K = VMUL(LDK(KP707106781), VSUB(T2I, T2J)); | |
720 T2Z = VMUL(LDK(KP707106781), VADD(T2I, T2J)); | |
721 } | |
722 ST(&(ri[WS(rs, 10)]), VSUB(T2v, T2G), ms, &(ri[0])); | |
723 ST(&(ii[WS(rs, 10)]), VSUB(T32, T2Z), ms, &(ii[0])); | |
724 ST(&(ri[WS(rs, 2)]), VADD(T2v, T2G), ms, &(ri[0])); | |
725 ST(&(ii[WS(rs, 2)]), VADD(T2Z, T32), ms, &(ii[0])); | |
726 ST(&(ri[WS(rs, 14)]), VSUB(T2H, T2K), ms, &(ri[0])); | |
727 ST(&(ii[WS(rs, 14)]), VSUB(T34, T33), ms, &(ii[0])); | |
728 ST(&(ri[WS(rs, 6)]), VADD(T2H, T2K), ms, &(ri[0])); | |
729 ST(&(ii[WS(rs, 6)]), VADD(T33, T34), ms, &(ii[0])); | |
730 } | |
731 { | |
732 V T2f, T2n, T3a, T3c, T2m, T3b, T2q, T35; | |
733 { | |
734 V T2b, T2e, T36, T39; | |
735 T2b = VADD(T1t, T1w); | |
736 T2e = VMUL(LDK(KP707106781), VADD(T2c, T2d)); | |
737 T2f = VADD(T2b, T2e); | |
738 T2n = VSUB(T2b, T2e); | |
739 T36 = VMUL(LDK(KP707106781), VADD(T1C, T1H)); | |
740 T39 = VSUB(T37, T38); | |
741 T3a = VADD(T36, T39); | |
742 T3c = VSUB(T39, T36); | |
743 } | |
744 { | |
745 V T2i, T2l, T2o, T2p; | |
746 T2i = VFMA(LDK(KP382683432), T2g, VMUL(LDK(KP923879532), T2h)); | |
747 T2l = VFNMS(LDK(KP382683432), T2k, VMUL(LDK(KP923879532), T2j)); | |
748 T2m = VADD(T2i, T2l); | |
749 T3b = VSUB(T2l, T2i); | |
750 T2o = VFNMS(LDK(KP382683432), T2h, VMUL(LDK(KP923879532), T2g)); | |
751 T2p = VFMA(LDK(KP923879532), T2k, VMUL(LDK(KP382683432), T2j)); | |
752 T2q = VSUB(T2o, T2p); | |
753 T35 = VADD(T2o, T2p); | |
754 } | |
755 ST(&(ri[WS(rs, 9)]), VSUB(T2f, T2m), ms, &(ri[WS(rs, 1)])); | |
756 ST(&(ii[WS(rs, 9)]), VSUB(T3a, T35), ms, &(ii[WS(rs, 1)])); | |
757 ST(&(ri[WS(rs, 1)]), VADD(T2f, T2m), ms, &(ri[WS(rs, 1)])); | |
758 ST(&(ii[WS(rs, 1)]), VADD(T35, T3a), ms, &(ii[WS(rs, 1)])); | |
759 ST(&(ri[WS(rs, 13)]), VSUB(T2n, T2q), ms, &(ri[WS(rs, 1)])); | |
760 ST(&(ii[WS(rs, 13)]), VSUB(T3c, T3b), ms, &(ii[WS(rs, 1)])); | |
761 ST(&(ri[WS(rs, 5)]), VADD(T2n, T2q), ms, &(ri[WS(rs, 1)])); | |
762 ST(&(ii[WS(rs, 5)]), VADD(T3b, T3c), ms, &(ii[WS(rs, 1)])); | |
763 } | |
764 { | |
765 V TH, T2L, T2W, T2Y, T1s, T2X, T2O, T2P; | |
766 { | |
767 V Tj, TG, T2Q, T2V; | |
768 Tj = VADD(T7, Ti); | |
769 TG = VADD(Tu, TF); | |
770 TH = VADD(Tj, TG); | |
771 T2L = VSUB(Tj, TG); | |
772 T2Q = VADD(T2s, T2t); | |
773 T2V = VADD(T2R, T2U); | |
774 T2W = VADD(T2Q, T2V); | |
775 T2Y = VSUB(T2V, T2Q); | |
776 } | |
777 { | |
778 V T14, T1r, T2M, T2N; | |
779 T14 = VADD(TS, T13); | |
780 T1r = VADD(T1f, T1q); | |
781 T1s = VADD(T14, T1r); | |
782 T2X = VSUB(T1r, T14); | |
783 T2M = VADD(T2x, T2y); | |
784 T2N = VADD(T2C, T2D); | |
785 T2O = VSUB(T2M, T2N); | |
786 T2P = VADD(T2M, T2N); | |
787 } | |
788 ST(&(ri[WS(rs, 8)]), VSUB(TH, T1s), ms, &(ri[0])); | |
789 ST(&(ii[WS(rs, 8)]), VSUB(T2W, T2P), ms, &(ii[0])); | |
790 ST(&(ri[0]), VADD(TH, T1s), ms, &(ri[0])); | |
791 ST(&(ii[0]), VADD(T2P, T2W), ms, &(ii[0])); | |
792 ST(&(ri[WS(rs, 12)]), VSUB(T2L, T2O), ms, &(ri[0])); | |
793 ST(&(ii[WS(rs, 12)]), VSUB(T2Y, T2X), ms, &(ii[0])); | |
794 ST(&(ri[WS(rs, 4)]), VADD(T2L, T2O), ms, &(ri[0])); | |
795 ST(&(ii[WS(rs, 4)]), VADD(T2X, T2Y), ms, &(ii[0])); | |
796 } | |
797 } | |
798 } | |
799 VLEAVE(); | |
800 } | |
801 | |
802 static const tw_instr twinstr[] = { | |
803 VTW(0, 1), | |
804 VTW(0, 2), | |
805 VTW(0, 3), | |
806 VTW(0, 4), | |
807 VTW(0, 5), | |
808 VTW(0, 6), | |
809 VTW(0, 7), | |
810 VTW(0, 8), | |
811 VTW(0, 9), | |
812 VTW(0, 10), | |
813 VTW(0, 11), | |
814 VTW(0, 12), | |
815 VTW(0, 13), | |
816 VTW(0, 14), | |
817 VTW(0, 15), | |
818 {TW_NEXT, (2 * VL), 0} | |
819 }; | |
820 | |
821 static const ct_desc desc = { 16, XSIMD_STRING("t1sv_16"), twinstr, &GENUS, {136, 46, 38, 0}, 0, 0, 0 }; | |
822 | |
823 void XSIMD(codelet_t1sv_16) (planner *p) { | |
824 X(kdft_dit_register) (p, t1sv_16, &desc); | |
825 } | |
826 #endif |