Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/t1fv_6.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
| author | Chris Cannam <cannam@all-day-breakfast.com> |
|---|---|
| date | Tue, 19 Nov 2019 14:52:55 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
|---|---|
| 1 /* | |
| 2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
| 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
| 4 * | |
| 5 * This program is free software; you can redistribute it and/or modify | |
| 6 * it under the terms of the GNU General Public License as published by | |
| 7 * the Free Software Foundation; either version 2 of the License, or | |
| 8 * (at your option) any later version. | |
| 9 * | |
| 10 * This program is distributed in the hope that it will be useful, | |
| 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| 13 * GNU General Public License for more details. | |
| 14 * | |
| 15 * You should have received a copy of the GNU General Public License | |
| 16 * along with this program; if not, write to the Free Software | |
| 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
| 18 * | |
| 19 */ | |
| 20 | |
| 21 /* This file was automatically generated --- DO NOT EDIT */ | |
| 22 /* Generated on Thu May 24 08:05:26 EDT 2018 */ | |
| 23 | |
| 24 #include "dft/codelet-dft.h" | |
| 25 | |
| 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
| 27 | |
| 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name t1fv_6 -include dft/simd/t1f.h */ | |
| 29 | |
| 30 /* | |
| 31 * This function contains 23 FP additions, 18 FP multiplications, | |
| 32 * (or, 17 additions, 12 multiplications, 6 fused multiply/add), | |
| 33 * 19 stack variables, 2 constants, and 12 memory accesses | |
| 34 */ | |
| 35 #include "dft/simd/t1f.h" | |
| 36 | |
| 37 static void t1fv_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
| 38 { | |
| 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
| 40 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
| 41 { | |
| 42 INT m; | |
| 43 R *x; | |
| 44 x = ri; | |
| 45 for (m = mb, W = W + (mb * ((TWVL / VL) * 10)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(6, rs)) { | |
| 46 V T4, Ti, Te, Tk, T9, Tj, T1, T3, T2; | |
| 47 T1 = LD(&(x[0]), ms, &(x[0])); | |
| 48 T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
| 49 T3 = BYTWJ(&(W[TWVL * 4]), T2); | |
| 50 T4 = VSUB(T1, T3); | |
| 51 Ti = VADD(T1, T3); | |
| 52 { | |
| 53 V Tb, Td, Ta, Tc; | |
| 54 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
| 55 Tb = BYTWJ(&(W[TWVL * 6]), Ta); | |
| 56 Tc = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
| 57 Td = BYTWJ(&(W[0]), Tc); | |
| 58 Te = VSUB(Tb, Td); | |
| 59 Tk = VADD(Tb, Td); | |
| 60 } | |
| 61 { | |
| 62 V T6, T8, T5, T7; | |
| 63 T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
| 64 T6 = BYTWJ(&(W[TWVL * 2]), T5); | |
| 65 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
| 66 T8 = BYTWJ(&(W[TWVL * 8]), T7); | |
| 67 T9 = VSUB(T6, T8); | |
| 68 Tj = VADD(T6, T8); | |
| 69 } | |
| 70 { | |
| 71 V Th, Tf, Tg, Tn, Tl, Tm; | |
| 72 Th = VMUL(LDK(KP866025403), VSUB(Te, T9)); | |
| 73 Tf = VADD(T9, Te); | |
| 74 Tg = VFNMS(LDK(KP500000000), Tf, T4); | |
| 75 ST(&(x[WS(rs, 3)]), VADD(T4, Tf), ms, &(x[WS(rs, 1)])); | |
| 76 ST(&(x[WS(rs, 1)]), VFMAI(Th, Tg), ms, &(x[WS(rs, 1)])); | |
| 77 ST(&(x[WS(rs, 5)]), VFNMSI(Th, Tg), ms, &(x[WS(rs, 1)])); | |
| 78 Tn = VMUL(LDK(KP866025403), VSUB(Tk, Tj)); | |
| 79 Tl = VADD(Tj, Tk); | |
| 80 Tm = VFNMS(LDK(KP500000000), Tl, Ti); | |
| 81 ST(&(x[0]), VADD(Ti, Tl), ms, &(x[0])); | |
| 82 ST(&(x[WS(rs, 4)]), VFMAI(Tn, Tm), ms, &(x[0])); | |
| 83 ST(&(x[WS(rs, 2)]), VFNMSI(Tn, Tm), ms, &(x[0])); | |
| 84 } | |
| 85 } | |
| 86 } | |
| 87 VLEAVE(); | |
| 88 } | |
| 89 | |
| 90 static const tw_instr twinstr[] = { | |
| 91 VTW(0, 1), | |
| 92 VTW(0, 2), | |
| 93 VTW(0, 3), | |
| 94 VTW(0, 4), | |
| 95 VTW(0, 5), | |
| 96 {TW_NEXT, VL, 0} | |
| 97 }; | |
| 98 | |
| 99 static const ct_desc desc = { 6, XSIMD_STRING("t1fv_6"), twinstr, &GENUS, {17, 12, 6, 0}, 0, 0, 0 }; | |
| 100 | |
| 101 void XSIMD(codelet_t1fv_6) (planner *p) { | |
| 102 X(kdft_dit_register) (p, t1fv_6, &desc); | |
| 103 } | |
| 104 #else | |
| 105 | |
| 106 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name t1fv_6 -include dft/simd/t1f.h */ | |
| 107 | |
| 108 /* | |
| 109 * This function contains 23 FP additions, 14 FP multiplications, | |
| 110 * (or, 21 additions, 12 multiplications, 2 fused multiply/add), | |
| 111 * 19 stack variables, 2 constants, and 12 memory accesses | |
| 112 */ | |
| 113 #include "dft/simd/t1f.h" | |
| 114 | |
| 115 static void t1fv_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
| 116 { | |
| 117 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
| 118 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
| 119 { | |
| 120 INT m; | |
| 121 R *x; | |
| 122 x = ri; | |
| 123 for (m = mb, W = W + (mb * ((TWVL / VL) * 10)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(6, rs)) { | |
| 124 V T4, Ti, Te, Tk, T9, Tj, T1, T3, T2; | |
| 125 T1 = LD(&(x[0]), ms, &(x[0])); | |
| 126 T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
| 127 T3 = BYTWJ(&(W[TWVL * 4]), T2); | |
| 128 T4 = VSUB(T1, T3); | |
| 129 Ti = VADD(T1, T3); | |
| 130 { | |
| 131 V Tb, Td, Ta, Tc; | |
| 132 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
| 133 Tb = BYTWJ(&(W[TWVL * 6]), Ta); | |
| 134 Tc = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
| 135 Td = BYTWJ(&(W[0]), Tc); | |
| 136 Te = VSUB(Tb, Td); | |
| 137 Tk = VADD(Tb, Td); | |
| 138 } | |
| 139 { | |
| 140 V T6, T8, T5, T7; | |
| 141 T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
| 142 T6 = BYTWJ(&(W[TWVL * 2]), T5); | |
| 143 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
| 144 T8 = BYTWJ(&(W[TWVL * 8]), T7); | |
| 145 T9 = VSUB(T6, T8); | |
| 146 Tj = VADD(T6, T8); | |
| 147 } | |
| 148 { | |
| 149 V Th, Tf, Tg, Tn, Tl, Tm; | |
| 150 Th = VBYI(VMUL(LDK(KP866025403), VSUB(Te, T9))); | |
| 151 Tf = VADD(T9, Te); | |
| 152 Tg = VFNMS(LDK(KP500000000), Tf, T4); | |
| 153 ST(&(x[WS(rs, 3)]), VADD(T4, Tf), ms, &(x[WS(rs, 1)])); | |
| 154 ST(&(x[WS(rs, 1)]), VADD(Tg, Th), ms, &(x[WS(rs, 1)])); | |
| 155 ST(&(x[WS(rs, 5)]), VSUB(Tg, Th), ms, &(x[WS(rs, 1)])); | |
| 156 Tn = VBYI(VMUL(LDK(KP866025403), VSUB(Tk, Tj))); | |
| 157 Tl = VADD(Tj, Tk); | |
| 158 Tm = VFNMS(LDK(KP500000000), Tl, Ti); | |
| 159 ST(&(x[0]), VADD(Ti, Tl), ms, &(x[0])); | |
| 160 ST(&(x[WS(rs, 4)]), VADD(Tm, Tn), ms, &(x[0])); | |
| 161 ST(&(x[WS(rs, 2)]), VSUB(Tm, Tn), ms, &(x[0])); | |
| 162 } | |
| 163 } | |
| 164 } | |
| 165 VLEAVE(); | |
| 166 } | |
| 167 | |
| 168 static const tw_instr twinstr[] = { | |
| 169 VTW(0, 1), | |
| 170 VTW(0, 2), | |
| 171 VTW(0, 3), | |
| 172 VTW(0, 4), | |
| 173 VTW(0, 5), | |
| 174 {TW_NEXT, VL, 0} | |
| 175 }; | |
| 176 | |
| 177 static const ct_desc desc = { 6, XSIMD_STRING("t1fv_6"), twinstr, &GENUS, {21, 12, 2, 0}, 0, 0, 0 }; | |
| 178 | |
| 179 void XSIMD(codelet_t1fv_6) (planner *p) { | |
| 180 X(kdft_dit_register) (p, t1fv_6, &desc); | |
| 181 } | |
| 182 #endif |
