Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/t1fv_20.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:05:41 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 20 -name t1fv_20 -include dft/simd/t1f.h */ | |
29 | |
30 /* | |
31 * This function contains 123 FP additions, 88 FP multiplications, | |
32 * (or, 77 additions, 42 multiplications, 46 fused multiply/add), | |
33 * 54 stack variables, 4 constants, and 40 memory accesses | |
34 */ | |
35 #include "dft/simd/t1f.h" | |
36 | |
37 static void t1fv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
40 DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
41 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
42 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
43 { | |
44 INT m; | |
45 R *x; | |
46 x = ri; | |
47 for (m = mb, W = W + (mb * ((TWVL / VL) * 38)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 38), MAKE_VOLATILE_STRIDE(20, rs)) { | |
48 V T4, Tx, T1m, T1K, TZ, T16, T17, T10, Tf, Tq, Tr, T1O, T1P, T1Q, T1w; | |
49 V T1z, T1A, TI, TT, TU, T1L, T1M, T1N, T1p, T1s, T1t, Ts, TV; | |
50 { | |
51 V T1, Tw, T3, Tu, Tv, T2, Tt, T1k, T1l; | |
52 T1 = LD(&(x[0]), ms, &(x[0])); | |
53 Tv = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); | |
54 Tw = BYTWJ(&(W[TWVL * 28]), Tv); | |
55 T2 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
56 T3 = BYTWJ(&(W[TWVL * 18]), T2); | |
57 Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
58 Tu = BYTWJ(&(W[TWVL * 8]), Tt); | |
59 T4 = VSUB(T1, T3); | |
60 Tx = VSUB(Tu, Tw); | |
61 T1k = VADD(T1, T3); | |
62 T1l = VADD(Tu, Tw); | |
63 T1m = VSUB(T1k, T1l); | |
64 T1K = VADD(T1k, T1l); | |
65 } | |
66 { | |
67 V T9, T1n, TN, T1v, TS, T1y, Te, T1q, Tk, T1u, TC, T1o, TH, T1r, Tp; | |
68 V T1x; | |
69 { | |
70 V T6, T8, T5, T7; | |
71 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
72 T6 = BYTWJ(&(W[TWVL * 6]), T5); | |
73 T7 = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | |
74 T8 = BYTWJ(&(W[TWVL * 26]), T7); | |
75 T9 = VSUB(T6, T8); | |
76 T1n = VADD(T6, T8); | |
77 } | |
78 { | |
79 V TK, TM, TJ, TL; | |
80 TJ = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | |
81 TK = BYTWJ(&(W[TWVL * 24]), TJ); | |
82 TL = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
83 TM = BYTWJ(&(W[TWVL * 4]), TL); | |
84 TN = VSUB(TK, TM); | |
85 T1v = VADD(TK, TM); | |
86 } | |
87 { | |
88 V TP, TR, TO, TQ; | |
89 TO = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)])); | |
90 TP = BYTWJ(&(W[TWVL * 32]), TO); | |
91 TQ = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
92 TR = BYTWJ(&(W[TWVL * 12]), TQ); | |
93 TS = VSUB(TP, TR); | |
94 T1y = VADD(TP, TR); | |
95 } | |
96 { | |
97 V Tb, Td, Ta, Tc; | |
98 Ta = LD(&(x[WS(rs, 16)]), ms, &(x[0])); | |
99 Tb = BYTWJ(&(W[TWVL * 30]), Ta); | |
100 Tc = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
101 Td = BYTWJ(&(W[TWVL * 10]), Tc); | |
102 Te = VSUB(Tb, Td); | |
103 T1q = VADD(Tb, Td); | |
104 } | |
105 { | |
106 V Th, Tj, Tg, Ti; | |
107 Tg = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
108 Th = BYTWJ(&(W[TWVL * 14]), Tg); | |
109 Ti = LD(&(x[WS(rs, 18)]), ms, &(x[0])); | |
110 Tj = BYTWJ(&(W[TWVL * 34]), Ti); | |
111 Tk = VSUB(Th, Tj); | |
112 T1u = VADD(Th, Tj); | |
113 } | |
114 { | |
115 V Tz, TB, Ty, TA; | |
116 Ty = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
117 Tz = BYTWJ(&(W[TWVL * 16]), Ty); | |
118 TA = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)])); | |
119 TB = BYTWJ(&(W[TWVL * 36]), TA); | |
120 TC = VSUB(Tz, TB); | |
121 T1o = VADD(Tz, TB); | |
122 } | |
123 { | |
124 V TE, TG, TD, TF; | |
125 TD = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
126 TE = BYTWJ(&(W[0]), TD); | |
127 TF = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
128 TG = BYTWJ(&(W[TWVL * 20]), TF); | |
129 TH = VSUB(TE, TG); | |
130 T1r = VADD(TE, TG); | |
131 } | |
132 { | |
133 V Tm, To, Tl, Tn; | |
134 Tl = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | |
135 Tm = BYTWJ(&(W[TWVL * 22]), Tl); | |
136 Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
137 To = BYTWJ(&(W[TWVL * 2]), Tn); | |
138 Tp = VSUB(Tm, To); | |
139 T1x = VADD(Tm, To); | |
140 } | |
141 TZ = VSUB(TH, TC); | |
142 T16 = VSUB(T9, Te); | |
143 T17 = VSUB(Tk, Tp); | |
144 T10 = VSUB(TS, TN); | |
145 Tf = VADD(T9, Te); | |
146 Tq = VADD(Tk, Tp); | |
147 Tr = VADD(Tf, Tq); | |
148 T1O = VADD(T1u, T1v); | |
149 T1P = VADD(T1x, T1y); | |
150 T1Q = VADD(T1O, T1P); | |
151 T1w = VSUB(T1u, T1v); | |
152 T1z = VSUB(T1x, T1y); | |
153 T1A = VADD(T1w, T1z); | |
154 TI = VADD(TC, TH); | |
155 TT = VADD(TN, TS); | |
156 TU = VADD(TI, TT); | |
157 T1L = VADD(T1n, T1o); | |
158 T1M = VADD(T1q, T1r); | |
159 T1N = VADD(T1L, T1M); | |
160 T1p = VSUB(T1n, T1o); | |
161 T1s = VSUB(T1q, T1r); | |
162 T1t = VADD(T1p, T1s); | |
163 } | |
164 Ts = VADD(T4, Tr); | |
165 TV = VADD(Tx, TU); | |
166 ST(&(x[WS(rs, 5)]), VFNMSI(TV, Ts), ms, &(x[WS(rs, 1)])); | |
167 ST(&(x[WS(rs, 15)]), VFMAI(TV, Ts), ms, &(x[WS(rs, 1)])); | |
168 { | |
169 V T1T, T1R, T1S, T1X, T1Z, T1V, T1W, T1Y, T1U; | |
170 T1T = VSUB(T1N, T1Q); | |
171 T1R = VADD(T1N, T1Q); | |
172 T1S = VFNMS(LDK(KP250000000), T1R, T1K); | |
173 T1V = VSUB(T1L, T1M); | |
174 T1W = VSUB(T1O, T1P); | |
175 T1X = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1W, T1V)); | |
176 T1Z = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1V, T1W)); | |
177 ST(&(x[0]), VADD(T1K, T1R), ms, &(x[0])); | |
178 T1Y = VFNMS(LDK(KP559016994), T1T, T1S); | |
179 ST(&(x[WS(rs, 8)]), VFNMSI(T1Z, T1Y), ms, &(x[0])); | |
180 ST(&(x[WS(rs, 12)]), VFMAI(T1Z, T1Y), ms, &(x[0])); | |
181 T1U = VFMA(LDK(KP559016994), T1T, T1S); | |
182 ST(&(x[WS(rs, 4)]), VFMAI(T1X, T1U), ms, &(x[0])); | |
183 ST(&(x[WS(rs, 16)]), VFNMSI(T1X, T1U), ms, &(x[0])); | |
184 } | |
185 { | |
186 V T1D, T1B, T1C, T1H, T1J, T1F, T1G, T1I, T1E; | |
187 T1D = VSUB(T1t, T1A); | |
188 T1B = VADD(T1t, T1A); | |
189 T1C = VFNMS(LDK(KP250000000), T1B, T1m); | |
190 T1F = VSUB(T1w, T1z); | |
191 T1G = VSUB(T1p, T1s); | |
192 T1H = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1G, T1F)); | |
193 T1J = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1F, T1G)); | |
194 ST(&(x[WS(rs, 10)]), VADD(T1m, T1B), ms, &(x[0])); | |
195 T1I = VFMA(LDK(KP559016994), T1D, T1C); | |
196 ST(&(x[WS(rs, 6)]), VFNMSI(T1J, T1I), ms, &(x[0])); | |
197 ST(&(x[WS(rs, 14)]), VFMAI(T1J, T1I), ms, &(x[0])); | |
198 T1E = VFNMS(LDK(KP559016994), T1D, T1C); | |
199 ST(&(x[WS(rs, 2)]), VFMAI(T1H, T1E), ms, &(x[0])); | |
200 ST(&(x[WS(rs, 18)]), VFNMSI(T1H, T1E), ms, &(x[0])); | |
201 } | |
202 { | |
203 V T11, T18, T1g, T1d, T15, T1f, TY, T1c; | |
204 T11 = VFMA(LDK(KP618033988), T10, TZ); | |
205 T18 = VFMA(LDK(KP618033988), T17, T16); | |
206 T1g = VFNMS(LDK(KP618033988), T16, T17); | |
207 T1d = VFNMS(LDK(KP618033988), TZ, T10); | |
208 { | |
209 V T13, T14, TW, TX; | |
210 T13 = VFNMS(LDK(KP250000000), TU, Tx); | |
211 T14 = VSUB(TT, TI); | |
212 T15 = VFNMS(LDK(KP559016994), T14, T13); | |
213 T1f = VFMA(LDK(KP559016994), T14, T13); | |
214 TW = VFNMS(LDK(KP250000000), Tr, T4); | |
215 TX = VSUB(Tf, Tq); | |
216 TY = VFMA(LDK(KP559016994), TX, TW); | |
217 T1c = VFNMS(LDK(KP559016994), TX, TW); | |
218 } | |
219 { | |
220 V T12, T19, T1i, T1j; | |
221 T12 = VFMA(LDK(KP951056516), T11, TY); | |
222 T19 = VFMA(LDK(KP951056516), T18, T15); | |
223 ST(&(x[WS(rs, 1)]), VFNMSI(T19, T12), ms, &(x[WS(rs, 1)])); | |
224 ST(&(x[WS(rs, 19)]), VFMAI(T19, T12), ms, &(x[WS(rs, 1)])); | |
225 T1i = VFMA(LDK(KP951056516), T1d, T1c); | |
226 T1j = VFMA(LDK(KP951056516), T1g, T1f); | |
227 ST(&(x[WS(rs, 13)]), VFNMSI(T1j, T1i), ms, &(x[WS(rs, 1)])); | |
228 ST(&(x[WS(rs, 7)]), VFMAI(T1j, T1i), ms, &(x[WS(rs, 1)])); | |
229 } | |
230 { | |
231 V T1a, T1b, T1e, T1h; | |
232 T1a = VFNMS(LDK(KP951056516), T11, TY); | |
233 T1b = VFNMS(LDK(KP951056516), T18, T15); | |
234 ST(&(x[WS(rs, 9)]), VFNMSI(T1b, T1a), ms, &(x[WS(rs, 1)])); | |
235 ST(&(x[WS(rs, 11)]), VFMAI(T1b, T1a), ms, &(x[WS(rs, 1)])); | |
236 T1e = VFNMS(LDK(KP951056516), T1d, T1c); | |
237 T1h = VFNMS(LDK(KP951056516), T1g, T1f); | |
238 ST(&(x[WS(rs, 17)]), VFNMSI(T1h, T1e), ms, &(x[WS(rs, 1)])); | |
239 ST(&(x[WS(rs, 3)]), VFMAI(T1h, T1e), ms, &(x[WS(rs, 1)])); | |
240 } | |
241 } | |
242 } | |
243 } | |
244 VLEAVE(); | |
245 } | |
246 | |
247 static const tw_instr twinstr[] = { | |
248 VTW(0, 1), | |
249 VTW(0, 2), | |
250 VTW(0, 3), | |
251 VTW(0, 4), | |
252 VTW(0, 5), | |
253 VTW(0, 6), | |
254 VTW(0, 7), | |
255 VTW(0, 8), | |
256 VTW(0, 9), | |
257 VTW(0, 10), | |
258 VTW(0, 11), | |
259 VTW(0, 12), | |
260 VTW(0, 13), | |
261 VTW(0, 14), | |
262 VTW(0, 15), | |
263 VTW(0, 16), | |
264 VTW(0, 17), | |
265 VTW(0, 18), | |
266 VTW(0, 19), | |
267 {TW_NEXT, VL, 0} | |
268 }; | |
269 | |
270 static const ct_desc desc = { 20, XSIMD_STRING("t1fv_20"), twinstr, &GENUS, {77, 42, 46, 0}, 0, 0, 0 }; | |
271 | |
272 void XSIMD(codelet_t1fv_20) (planner *p) { | |
273 X(kdft_dit_register) (p, t1fv_20, &desc); | |
274 } | |
275 #else | |
276 | |
277 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 20 -name t1fv_20 -include dft/simd/t1f.h */ | |
278 | |
279 /* | |
280 * This function contains 123 FP additions, 62 FP multiplications, | |
281 * (or, 111 additions, 50 multiplications, 12 fused multiply/add), | |
282 * 54 stack variables, 4 constants, and 40 memory accesses | |
283 */ | |
284 #include "dft/simd/t1f.h" | |
285 | |
286 static void t1fv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
287 { | |
288 DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
289 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
290 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
291 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
292 { | |
293 INT m; | |
294 R *x; | |
295 x = ri; | |
296 for (m = mb, W = W + (mb * ((TWVL / VL) * 38)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 38), MAKE_VOLATILE_STRIDE(20, rs)) { | |
297 V T4, Tx, T1B, T1U, TZ, T16, T17, T10, Tf, Tq, Tr, T1N, T1O, T1S, T1t; | |
298 V T1w, T1C, TI, TT, TU, T1K, T1L, T1R, T1m, T1p, T1D, Ts, TV; | |
299 { | |
300 V T1, Tw, T3, Tu, Tv, T2, Tt, T1z, T1A; | |
301 T1 = LD(&(x[0]), ms, &(x[0])); | |
302 Tv = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); | |
303 Tw = BYTWJ(&(W[TWVL * 28]), Tv); | |
304 T2 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
305 T3 = BYTWJ(&(W[TWVL * 18]), T2); | |
306 Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
307 Tu = BYTWJ(&(W[TWVL * 8]), Tt); | |
308 T4 = VSUB(T1, T3); | |
309 Tx = VSUB(Tu, Tw); | |
310 T1z = VADD(T1, T3); | |
311 T1A = VADD(Tu, Tw); | |
312 T1B = VSUB(T1z, T1A); | |
313 T1U = VADD(T1z, T1A); | |
314 } | |
315 { | |
316 V T9, T1r, TN, T1l, TS, T1o, Te, T1u, Tk, T1k, TC, T1s, TH, T1v, Tp; | |
317 V T1n; | |
318 { | |
319 V T6, T8, T5, T7; | |
320 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
321 T6 = BYTWJ(&(W[TWVL * 6]), T5); | |
322 T7 = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | |
323 T8 = BYTWJ(&(W[TWVL * 26]), T7); | |
324 T9 = VSUB(T6, T8); | |
325 T1r = VADD(T6, T8); | |
326 } | |
327 { | |
328 V TK, TM, TJ, TL; | |
329 TJ = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | |
330 TK = BYTWJ(&(W[TWVL * 24]), TJ); | |
331 TL = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
332 TM = BYTWJ(&(W[TWVL * 4]), TL); | |
333 TN = VSUB(TK, TM); | |
334 T1l = VADD(TK, TM); | |
335 } | |
336 { | |
337 V TP, TR, TO, TQ; | |
338 TO = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)])); | |
339 TP = BYTWJ(&(W[TWVL * 32]), TO); | |
340 TQ = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
341 TR = BYTWJ(&(W[TWVL * 12]), TQ); | |
342 TS = VSUB(TP, TR); | |
343 T1o = VADD(TP, TR); | |
344 } | |
345 { | |
346 V Tb, Td, Ta, Tc; | |
347 Ta = LD(&(x[WS(rs, 16)]), ms, &(x[0])); | |
348 Tb = BYTWJ(&(W[TWVL * 30]), Ta); | |
349 Tc = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
350 Td = BYTWJ(&(W[TWVL * 10]), Tc); | |
351 Te = VSUB(Tb, Td); | |
352 T1u = VADD(Tb, Td); | |
353 } | |
354 { | |
355 V Th, Tj, Tg, Ti; | |
356 Tg = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
357 Th = BYTWJ(&(W[TWVL * 14]), Tg); | |
358 Ti = LD(&(x[WS(rs, 18)]), ms, &(x[0])); | |
359 Tj = BYTWJ(&(W[TWVL * 34]), Ti); | |
360 Tk = VSUB(Th, Tj); | |
361 T1k = VADD(Th, Tj); | |
362 } | |
363 { | |
364 V Tz, TB, Ty, TA; | |
365 Ty = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
366 Tz = BYTWJ(&(W[TWVL * 16]), Ty); | |
367 TA = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)])); | |
368 TB = BYTWJ(&(W[TWVL * 36]), TA); | |
369 TC = VSUB(Tz, TB); | |
370 T1s = VADD(Tz, TB); | |
371 } | |
372 { | |
373 V TE, TG, TD, TF; | |
374 TD = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
375 TE = BYTWJ(&(W[0]), TD); | |
376 TF = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
377 TG = BYTWJ(&(W[TWVL * 20]), TF); | |
378 TH = VSUB(TE, TG); | |
379 T1v = VADD(TE, TG); | |
380 } | |
381 { | |
382 V Tm, To, Tl, Tn; | |
383 Tl = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | |
384 Tm = BYTWJ(&(W[TWVL * 22]), Tl); | |
385 Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
386 To = BYTWJ(&(W[TWVL * 2]), Tn); | |
387 Tp = VSUB(Tm, To); | |
388 T1n = VADD(Tm, To); | |
389 } | |
390 TZ = VSUB(TH, TC); | |
391 T16 = VSUB(T9, Te); | |
392 T17 = VSUB(Tk, Tp); | |
393 T10 = VSUB(TS, TN); | |
394 Tf = VADD(T9, Te); | |
395 Tq = VADD(Tk, Tp); | |
396 Tr = VADD(Tf, Tq); | |
397 T1N = VADD(T1k, T1l); | |
398 T1O = VADD(T1n, T1o); | |
399 T1S = VADD(T1N, T1O); | |
400 T1t = VSUB(T1r, T1s); | |
401 T1w = VSUB(T1u, T1v); | |
402 T1C = VADD(T1t, T1w); | |
403 TI = VADD(TC, TH); | |
404 TT = VADD(TN, TS); | |
405 TU = VADD(TI, TT); | |
406 T1K = VADD(T1r, T1s); | |
407 T1L = VADD(T1u, T1v); | |
408 T1R = VADD(T1K, T1L); | |
409 T1m = VSUB(T1k, T1l); | |
410 T1p = VSUB(T1n, T1o); | |
411 T1D = VADD(T1m, T1p); | |
412 } | |
413 Ts = VADD(T4, Tr); | |
414 TV = VBYI(VADD(Tx, TU)); | |
415 ST(&(x[WS(rs, 5)]), VSUB(Ts, TV), ms, &(x[WS(rs, 1)])); | |
416 ST(&(x[WS(rs, 15)]), VADD(Ts, TV), ms, &(x[WS(rs, 1)])); | |
417 { | |
418 V T1T, T1V, T1W, T1Q, T1Z, T1M, T1P, T1Y, T1X; | |
419 T1T = VMUL(LDK(KP559016994), VSUB(T1R, T1S)); | |
420 T1V = VADD(T1R, T1S); | |
421 T1W = VFNMS(LDK(KP250000000), T1V, T1U); | |
422 T1M = VSUB(T1K, T1L); | |
423 T1P = VSUB(T1N, T1O); | |
424 T1Q = VBYI(VFMA(LDK(KP951056516), T1M, VMUL(LDK(KP587785252), T1P))); | |
425 T1Z = VBYI(VFNMS(LDK(KP587785252), T1M, VMUL(LDK(KP951056516), T1P))); | |
426 ST(&(x[0]), VADD(T1U, T1V), ms, &(x[0])); | |
427 T1Y = VSUB(T1W, T1T); | |
428 ST(&(x[WS(rs, 8)]), VSUB(T1Y, T1Z), ms, &(x[0])); | |
429 ST(&(x[WS(rs, 12)]), VADD(T1Z, T1Y), ms, &(x[0])); | |
430 T1X = VADD(T1T, T1W); | |
431 ST(&(x[WS(rs, 4)]), VADD(T1Q, T1X), ms, &(x[0])); | |
432 ST(&(x[WS(rs, 16)]), VSUB(T1X, T1Q), ms, &(x[0])); | |
433 } | |
434 { | |
435 V T1G, T1E, T1F, T1y, T1J, T1q, T1x, T1I, T1H; | |
436 T1G = VMUL(LDK(KP559016994), VSUB(T1C, T1D)); | |
437 T1E = VADD(T1C, T1D); | |
438 T1F = VFNMS(LDK(KP250000000), T1E, T1B); | |
439 T1q = VSUB(T1m, T1p); | |
440 T1x = VSUB(T1t, T1w); | |
441 T1y = VBYI(VFNMS(LDK(KP587785252), T1x, VMUL(LDK(KP951056516), T1q))); | |
442 T1J = VBYI(VFMA(LDK(KP951056516), T1x, VMUL(LDK(KP587785252), T1q))); | |
443 ST(&(x[WS(rs, 10)]), VADD(T1B, T1E), ms, &(x[0])); | |
444 T1I = VADD(T1G, T1F); | |
445 ST(&(x[WS(rs, 6)]), VSUB(T1I, T1J), ms, &(x[0])); | |
446 ST(&(x[WS(rs, 14)]), VADD(T1J, T1I), ms, &(x[0])); | |
447 T1H = VSUB(T1F, T1G); | |
448 ST(&(x[WS(rs, 2)]), VADD(T1y, T1H), ms, &(x[0])); | |
449 ST(&(x[WS(rs, 18)]), VSUB(T1H, T1y), ms, &(x[0])); | |
450 } | |
451 { | |
452 V T11, T18, T1g, T1d, T15, T1f, TY, T1c; | |
453 T11 = VFMA(LDK(KP951056516), TZ, VMUL(LDK(KP587785252), T10)); | |
454 T18 = VFMA(LDK(KP951056516), T16, VMUL(LDK(KP587785252), T17)); | |
455 T1g = VFNMS(LDK(KP587785252), T16, VMUL(LDK(KP951056516), T17)); | |
456 T1d = VFNMS(LDK(KP587785252), TZ, VMUL(LDK(KP951056516), T10)); | |
457 { | |
458 V T13, T14, TW, TX; | |
459 T13 = VFMS(LDK(KP250000000), TU, Tx); | |
460 T14 = VMUL(LDK(KP559016994), VSUB(TT, TI)); | |
461 T15 = VADD(T13, T14); | |
462 T1f = VSUB(T14, T13); | |
463 TW = VMUL(LDK(KP559016994), VSUB(Tf, Tq)); | |
464 TX = VFNMS(LDK(KP250000000), Tr, T4); | |
465 TY = VADD(TW, TX); | |
466 T1c = VSUB(TX, TW); | |
467 } | |
468 { | |
469 V T12, T19, T1i, T1j; | |
470 T12 = VADD(TY, T11); | |
471 T19 = VBYI(VSUB(T15, T18)); | |
472 ST(&(x[WS(rs, 19)]), VSUB(T12, T19), ms, &(x[WS(rs, 1)])); | |
473 ST(&(x[WS(rs, 1)]), VADD(T12, T19), ms, &(x[WS(rs, 1)])); | |
474 T1i = VADD(T1c, T1d); | |
475 T1j = VBYI(VADD(T1g, T1f)); | |
476 ST(&(x[WS(rs, 13)]), VSUB(T1i, T1j), ms, &(x[WS(rs, 1)])); | |
477 ST(&(x[WS(rs, 7)]), VADD(T1i, T1j), ms, &(x[WS(rs, 1)])); | |
478 } | |
479 { | |
480 V T1a, T1b, T1e, T1h; | |
481 T1a = VSUB(TY, T11); | |
482 T1b = VBYI(VADD(T18, T15)); | |
483 ST(&(x[WS(rs, 11)]), VSUB(T1a, T1b), ms, &(x[WS(rs, 1)])); | |
484 ST(&(x[WS(rs, 9)]), VADD(T1a, T1b), ms, &(x[WS(rs, 1)])); | |
485 T1e = VSUB(T1c, T1d); | |
486 T1h = VBYI(VSUB(T1f, T1g)); | |
487 ST(&(x[WS(rs, 17)]), VSUB(T1e, T1h), ms, &(x[WS(rs, 1)])); | |
488 ST(&(x[WS(rs, 3)]), VADD(T1e, T1h), ms, &(x[WS(rs, 1)])); | |
489 } | |
490 } | |
491 } | |
492 } | |
493 VLEAVE(); | |
494 } | |
495 | |
496 static const tw_instr twinstr[] = { | |
497 VTW(0, 1), | |
498 VTW(0, 2), | |
499 VTW(0, 3), | |
500 VTW(0, 4), | |
501 VTW(0, 5), | |
502 VTW(0, 6), | |
503 VTW(0, 7), | |
504 VTW(0, 8), | |
505 VTW(0, 9), | |
506 VTW(0, 10), | |
507 VTW(0, 11), | |
508 VTW(0, 12), | |
509 VTW(0, 13), | |
510 VTW(0, 14), | |
511 VTW(0, 15), | |
512 VTW(0, 16), | |
513 VTW(0, 17), | |
514 VTW(0, 18), | |
515 VTW(0, 19), | |
516 {TW_NEXT, VL, 0} | |
517 }; | |
518 | |
519 static const ct_desc desc = { 20, XSIMD_STRING("t1fv_20"), twinstr, &GENUS, {111, 50, 12, 0}, 0, 0, 0 }; | |
520 | |
521 void XSIMD(codelet_t1fv_20) (planner *p) { | |
522 X(kdft_dit_register) (p, t1fv_20, &desc); | |
523 } | |
524 #endif |