Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/t1fv_12.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:05:28 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1fv_12 -include dft/simd/t1f.h */ | |
29 | |
30 /* | |
31 * This function contains 59 FP additions, 42 FP multiplications, | |
32 * (or, 41 additions, 24 multiplications, 18 fused multiply/add), | |
33 * 28 stack variables, 2 constants, and 24 memory accesses | |
34 */ | |
35 #include "dft/simd/t1f.h" | |
36 | |
37 static void t1fv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
41 { | |
42 INT m; | |
43 R *x; | |
44 x = ri; | |
45 for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) { | |
46 V T1, TC, T6, T7, Ty, Tq, Tz, TA, T9, TD, Te, Tf, Tu, Tl, Tv; | |
47 V Tw; | |
48 { | |
49 V T5, T3, T4, T2; | |
50 T1 = LD(&(x[0]), ms, &(x[0])); | |
51 T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
52 T5 = BYTWJ(&(W[TWVL * 14]), T4); | |
53 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
54 T3 = BYTWJ(&(W[TWVL * 6]), T2); | |
55 TC = VSUB(T5, T3); | |
56 T6 = VADD(T3, T5); | |
57 T7 = VFNMS(LDK(KP500000000), T6, T1); | |
58 } | |
59 { | |
60 V Tn, Tp, Tm, Tx, To; | |
61 Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
62 Tn = BYTWJ(&(W[0]), Tm); | |
63 Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
64 Ty = BYTWJ(&(W[TWVL * 16]), Tx); | |
65 To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
66 Tp = BYTWJ(&(W[TWVL * 8]), To); | |
67 Tq = VSUB(Tn, Tp); | |
68 Tz = VADD(Tn, Tp); | |
69 TA = VFNMS(LDK(KP500000000), Tz, Ty); | |
70 } | |
71 { | |
72 V Td, Tb, T8, Tc, Ta; | |
73 T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
74 T9 = BYTWJ(&(W[TWVL * 10]), T8); | |
75 Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
76 Td = BYTWJ(&(W[TWVL * 2]), Tc); | |
77 Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
78 Tb = BYTWJ(&(W[TWVL * 18]), Ta); | |
79 TD = VSUB(Td, Tb); | |
80 Te = VADD(Tb, Td); | |
81 Tf = VFNMS(LDK(KP500000000), Te, T9); | |
82 } | |
83 { | |
84 V Ti, Tk, Th, Tt, Tj; | |
85 Th = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
86 Ti = BYTWJ(&(W[TWVL * 20]), Th); | |
87 Tt = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
88 Tu = BYTWJ(&(W[TWVL * 4]), Tt); | |
89 Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
90 Tk = BYTWJ(&(W[TWVL * 12]), Tj); | |
91 Tl = VSUB(Ti, Tk); | |
92 Tv = VADD(Tk, Ti); | |
93 Tw = VFNMS(LDK(KP500000000), Tv, Tu); | |
94 } | |
95 { | |
96 V Ts, TG, TF, TH; | |
97 { | |
98 V Tg, Tr, TB, TE; | |
99 Tg = VSUB(T7, Tf); | |
100 Tr = VADD(Tl, Tq); | |
101 Ts = VFMA(LDK(KP866025403), Tr, Tg); | |
102 TG = VFNMS(LDK(KP866025403), Tr, Tg); | |
103 TB = VSUB(Tw, TA); | |
104 TE = VSUB(TC, TD); | |
105 TF = VFNMS(LDK(KP866025403), TE, TB); | |
106 TH = VFMA(LDK(KP866025403), TE, TB); | |
107 } | |
108 ST(&(x[WS(rs, 1)]), VFNMSI(TF, Ts), ms, &(x[WS(rs, 1)])); | |
109 ST(&(x[WS(rs, 7)]), VFMAI(TH, TG), ms, &(x[WS(rs, 1)])); | |
110 ST(&(x[WS(rs, 11)]), VFMAI(TF, Ts), ms, &(x[WS(rs, 1)])); | |
111 ST(&(x[WS(rs, 5)]), VFNMSI(TH, TG), ms, &(x[WS(rs, 1)])); | |
112 } | |
113 { | |
114 V TS, TW, TV, TX; | |
115 { | |
116 V TQ, TR, TT, TU; | |
117 TQ = VADD(T1, T6); | |
118 TR = VADD(T9, Te); | |
119 TS = VSUB(TQ, TR); | |
120 TW = VADD(TQ, TR); | |
121 TT = VADD(Tu, Tv); | |
122 TU = VADD(Ty, Tz); | |
123 TV = VSUB(TT, TU); | |
124 TX = VADD(TT, TU); | |
125 } | |
126 ST(&(x[WS(rs, 9)]), VFNMSI(TV, TS), ms, &(x[WS(rs, 1)])); | |
127 ST(&(x[0]), VADD(TW, TX), ms, &(x[0])); | |
128 ST(&(x[WS(rs, 3)]), VFMAI(TV, TS), ms, &(x[WS(rs, 1)])); | |
129 ST(&(x[WS(rs, 6)]), VSUB(TW, TX), ms, &(x[0])); | |
130 } | |
131 { | |
132 V TK, TO, TN, TP; | |
133 { | |
134 V TI, TJ, TL, TM; | |
135 TI = VADD(T7, Tf); | |
136 TJ = VADD(Tw, TA); | |
137 TK = VSUB(TI, TJ); | |
138 TO = VADD(TI, TJ); | |
139 TL = VSUB(Tl, Tq); | |
140 TM = VADD(TC, TD); | |
141 TN = VMUL(LDK(KP866025403), VSUB(TL, TM)); | |
142 TP = VMUL(LDK(KP866025403), VADD(TM, TL)); | |
143 } | |
144 ST(&(x[WS(rs, 2)]), VFMAI(TN, TK), ms, &(x[0])); | |
145 ST(&(x[WS(rs, 8)]), VFNMSI(TP, TO), ms, &(x[0])); | |
146 ST(&(x[WS(rs, 10)]), VFNMSI(TN, TK), ms, &(x[0])); | |
147 ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0])); | |
148 } | |
149 } | |
150 } | |
151 VLEAVE(); | |
152 } | |
153 | |
154 static const tw_instr twinstr[] = { | |
155 VTW(0, 1), | |
156 VTW(0, 2), | |
157 VTW(0, 3), | |
158 VTW(0, 4), | |
159 VTW(0, 5), | |
160 VTW(0, 6), | |
161 VTW(0, 7), | |
162 VTW(0, 8), | |
163 VTW(0, 9), | |
164 VTW(0, 10), | |
165 VTW(0, 11), | |
166 {TW_NEXT, VL, 0} | |
167 }; | |
168 | |
169 static const ct_desc desc = { 12, XSIMD_STRING("t1fv_12"), twinstr, &GENUS, {41, 24, 18, 0}, 0, 0, 0 }; | |
170 | |
171 void XSIMD(codelet_t1fv_12) (planner *p) { | |
172 X(kdft_dit_register) (p, t1fv_12, &desc); | |
173 } | |
174 #else | |
175 | |
176 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1fv_12 -include dft/simd/t1f.h */ | |
177 | |
178 /* | |
179 * This function contains 59 FP additions, 30 FP multiplications, | |
180 * (or, 55 additions, 26 multiplications, 4 fused multiply/add), | |
181 * 28 stack variables, 2 constants, and 24 memory accesses | |
182 */ | |
183 #include "dft/simd/t1f.h" | |
184 | |
185 static void t1fv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
186 { | |
187 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
188 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
189 { | |
190 INT m; | |
191 R *x; | |
192 x = ri; | |
193 for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) { | |
194 V T1, TH, T6, TA, Tq, TE, Tv, TL, T9, TI, Te, TB, Ti, TD, Tn; | |
195 V TK; | |
196 { | |
197 V T5, T3, T4, T2; | |
198 T1 = LD(&(x[0]), ms, &(x[0])); | |
199 T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
200 T5 = BYTWJ(&(W[TWVL * 14]), T4); | |
201 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
202 T3 = BYTWJ(&(W[TWVL * 6]), T2); | |
203 TH = VSUB(T5, T3); | |
204 T6 = VADD(T3, T5); | |
205 TA = VFNMS(LDK(KP500000000), T6, T1); | |
206 } | |
207 { | |
208 V Tu, Ts, Tp, Tt, Tr; | |
209 Tp = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
210 Tq = BYTWJ(&(W[TWVL * 16]), Tp); | |
211 Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
212 Tu = BYTWJ(&(W[TWVL * 8]), Tt); | |
213 Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
214 Ts = BYTWJ(&(W[0]), Tr); | |
215 TE = VSUB(Tu, Ts); | |
216 Tv = VADD(Ts, Tu); | |
217 TL = VFNMS(LDK(KP500000000), Tv, Tq); | |
218 } | |
219 { | |
220 V Td, Tb, T8, Tc, Ta; | |
221 T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
222 T9 = BYTWJ(&(W[TWVL * 10]), T8); | |
223 Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
224 Td = BYTWJ(&(W[TWVL * 2]), Tc); | |
225 Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
226 Tb = BYTWJ(&(W[TWVL * 18]), Ta); | |
227 TI = VSUB(Td, Tb); | |
228 Te = VADD(Tb, Td); | |
229 TB = VFNMS(LDK(KP500000000), Te, T9); | |
230 } | |
231 { | |
232 V Tm, Tk, Th, Tl, Tj; | |
233 Th = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
234 Ti = BYTWJ(&(W[TWVL * 4]), Th); | |
235 Tl = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
236 Tm = BYTWJ(&(W[TWVL * 20]), Tl); | |
237 Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
238 Tk = BYTWJ(&(W[TWVL * 12]), Tj); | |
239 TD = VSUB(Tm, Tk); | |
240 Tn = VADD(Tk, Tm); | |
241 TK = VFNMS(LDK(KP500000000), Tn, Ti); | |
242 } | |
243 { | |
244 V Tg, Ty, Tx, Tz; | |
245 { | |
246 V T7, Tf, To, Tw; | |
247 T7 = VADD(T1, T6); | |
248 Tf = VADD(T9, Te); | |
249 Tg = VSUB(T7, Tf); | |
250 Ty = VADD(T7, Tf); | |
251 To = VADD(Ti, Tn); | |
252 Tw = VADD(Tq, Tv); | |
253 Tx = VBYI(VSUB(To, Tw)); | |
254 Tz = VADD(To, Tw); | |
255 } | |
256 ST(&(x[WS(rs, 9)]), VSUB(Tg, Tx), ms, &(x[WS(rs, 1)])); | |
257 ST(&(x[0]), VADD(Ty, Tz), ms, &(x[0])); | |
258 ST(&(x[WS(rs, 3)]), VADD(Tg, Tx), ms, &(x[WS(rs, 1)])); | |
259 ST(&(x[WS(rs, 6)]), VSUB(Ty, Tz), ms, &(x[0])); | |
260 } | |
261 { | |
262 V TS, TW, TV, TX; | |
263 { | |
264 V TQ, TR, TT, TU; | |
265 TQ = VADD(TA, TB); | |
266 TR = VADD(TK, TL); | |
267 TS = VSUB(TQ, TR); | |
268 TW = VADD(TQ, TR); | |
269 TT = VADD(TD, TE); | |
270 TU = VADD(TH, TI); | |
271 TV = VBYI(VMUL(LDK(KP866025403), VSUB(TT, TU))); | |
272 TX = VBYI(VMUL(LDK(KP866025403), VADD(TU, TT))); | |
273 } | |
274 ST(&(x[WS(rs, 10)]), VSUB(TS, TV), ms, &(x[0])); | |
275 ST(&(x[WS(rs, 4)]), VADD(TW, TX), ms, &(x[0])); | |
276 ST(&(x[WS(rs, 2)]), VADD(TS, TV), ms, &(x[0])); | |
277 ST(&(x[WS(rs, 8)]), VSUB(TW, TX), ms, &(x[0])); | |
278 } | |
279 { | |
280 V TG, TP, TN, TO; | |
281 { | |
282 V TC, TF, TJ, TM; | |
283 TC = VSUB(TA, TB); | |
284 TF = VMUL(LDK(KP866025403), VSUB(TD, TE)); | |
285 TG = VSUB(TC, TF); | |
286 TP = VADD(TC, TF); | |
287 TJ = VMUL(LDK(KP866025403), VSUB(TH, TI)); | |
288 TM = VSUB(TK, TL); | |
289 TN = VBYI(VADD(TJ, TM)); | |
290 TO = VBYI(VSUB(TJ, TM)); | |
291 } | |
292 ST(&(x[WS(rs, 5)]), VSUB(TG, TN), ms, &(x[WS(rs, 1)])); | |
293 ST(&(x[WS(rs, 11)]), VSUB(TP, TO), ms, &(x[WS(rs, 1)])); | |
294 ST(&(x[WS(rs, 7)]), VADD(TN, TG), ms, &(x[WS(rs, 1)])); | |
295 ST(&(x[WS(rs, 1)]), VADD(TO, TP), ms, &(x[WS(rs, 1)])); | |
296 } | |
297 } | |
298 } | |
299 VLEAVE(); | |
300 } | |
301 | |
302 static const tw_instr twinstr[] = { | |
303 VTW(0, 1), | |
304 VTW(0, 2), | |
305 VTW(0, 3), | |
306 VTW(0, 4), | |
307 VTW(0, 5), | |
308 VTW(0, 6), | |
309 VTW(0, 7), | |
310 VTW(0, 8), | |
311 VTW(0, 9), | |
312 VTW(0, 10), | |
313 VTW(0, 11), | |
314 {TW_NEXT, VL, 0} | |
315 }; | |
316 | |
317 static const ct_desc desc = { 12, XSIMD_STRING("t1fv_12"), twinstr, &GENUS, {55, 26, 4, 0}, 0, 0, 0 }; | |
318 | |
319 void XSIMD(codelet_t1fv_12) (planner *p) { | |
320 X(kdft_dit_register) (p, t1fv_12, &desc); | |
321 } | |
322 #endif |