Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/t1fuv_9.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:05:26 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1fuv_9 -include dft/simd/t1fu.h */ | |
29 | |
30 /* | |
31 * This function contains 54 FP additions, 54 FP multiplications, | |
32 * (or, 20 additions, 20 multiplications, 34 fused multiply/add), | |
33 * 50 stack variables, 19 constants, and 18 memory accesses | |
34 */ | |
35 #include "dft/simd/t1fu.h" | |
36 | |
37 static void t1fuv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP939692620, +0.939692620785908384054109277324731469936208134); | |
40 DVK(KP852868531, +0.852868531952443209628250963940074071936020296); | |
41 DVK(KP666666666, +0.666666666666666666666666666666666666666666667); | |
42 DVK(KP879385241, +0.879385241571816768108218554649462939872416269); | |
43 DVK(KP984807753, +0.984807753012208059366743024589523013670643252); | |
44 DVK(KP898197570, +0.898197570222573798468955502359086394667167570); | |
45 DVK(KP673648177, +0.673648177666930348851716626769314796000375677); | |
46 DVK(KP826351822, +0.826351822333069651148283373230685203999624323); | |
47 DVK(KP420276625, +0.420276625461206169731530603237061658838781920); | |
48 DVK(KP907603734, +0.907603734547952313649323976213898122064543220); | |
49 DVK(KP347296355, +0.347296355333860697703433253538629592000751354); | |
50 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
51 DVK(KP203604859, +0.203604859554852403062088995281827210665664861); | |
52 DVK(KP726681596, +0.726681596905677465811651808188092531873167623); | |
53 DVK(KP152703644, +0.152703644666139302296566746461370407999248646); | |
54 DVK(KP968908795, +0.968908795874236621082202410917456709164223497); | |
55 DVK(KP439692620, +0.439692620785908384054109277324731469936208134); | |
56 DVK(KP586256827, +0.586256827714544512072145703099641959914944179); | |
57 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
58 { | |
59 INT m; | |
60 R *x; | |
61 x = ri; | |
62 for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) { | |
63 V T1, T6, TD, Tf, Tn, Ts, Tv, Tt, Tu, Tw, TA, TK, TJ, TG, TF; | |
64 T1 = LD(&(x[0]), ms, &(x[0])); | |
65 { | |
66 V T3, T5, T2, T4; | |
67 T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
68 T3 = BYTWJ(&(W[TWVL * 4]), T2); | |
69 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
70 T5 = BYTWJ(&(W[TWVL * 10]), T4); | |
71 T6 = VADD(T3, T5); | |
72 TD = VSUB(T5, T3); | |
73 } | |
74 { | |
75 V T9, Th, Tb, Td, Te, Tj, Tl, Tm, T8, Tg; | |
76 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
77 T9 = BYTWJ(&(W[0]), T8); | |
78 Tg = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
79 Th = BYTWJ(&(W[TWVL * 2]), Tg); | |
80 { | |
81 V Ta, Tc, Ti, Tk; | |
82 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
83 Tb = BYTWJ(&(W[TWVL * 6]), Ta); | |
84 Tc = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
85 Td = BYTWJ(&(W[TWVL * 12]), Tc); | |
86 Te = VADD(Tb, Td); | |
87 Ti = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
88 Tj = BYTWJ(&(W[TWVL * 8]), Ti); | |
89 Tk = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
90 Tl = BYTWJ(&(W[TWVL * 14]), Tk); | |
91 Tm = VADD(Tj, Tl); | |
92 } | |
93 Tf = VADD(T9, Te); | |
94 Tn = VADD(Th, Tm); | |
95 Ts = VFNMS(LDK(KP500000000), Tm, Th); | |
96 Tv = VFNMS(LDK(KP500000000), Te, T9); | |
97 Tt = VSUB(Tb, Td); | |
98 Tu = VSUB(Tl, Tj); | |
99 Tw = VFNMS(LDK(KP586256827), Tv, Tu); | |
100 TA = VFNMS(LDK(KP439692620), Tt, Ts); | |
101 TK = VFMA(LDK(KP968908795), Tv, Tt); | |
102 TJ = VFNMS(LDK(KP152703644), Tu, Ts); | |
103 TG = VFNMS(LDK(KP726681596), Tt, Tv); | |
104 TF = VFMA(LDK(KP203604859), Ts, Tu); | |
105 } | |
106 { | |
107 V Tq, T7, To, Tp; | |
108 Tq = VMUL(LDK(KP866025403), VSUB(Tn, Tf)); | |
109 T7 = VADD(T1, T6); | |
110 To = VADD(Tf, Tn); | |
111 Tp = VFNMS(LDK(KP500000000), To, T7); | |
112 ST(&(x[0]), VADD(T7, To), ms, &(x[0])); | |
113 ST(&(x[WS(rs, 3)]), VFMAI(Tq, Tp), ms, &(x[WS(rs, 1)])); | |
114 ST(&(x[WS(rs, 6)]), VFNMSI(Tq, Tp), ms, &(x[0])); | |
115 } | |
116 { | |
117 V Ty, TC, TM, TR, Tr, TI, TO, Tx, TB; | |
118 Tx = VFNMS(LDK(KP347296355), Tw, Tt); | |
119 Ty = VFNMS(LDK(KP907603734), Tx, Ts); | |
120 TB = VFNMS(LDK(KP420276625), TA, Tu); | |
121 TC = VFNMS(LDK(KP826351822), TB, Tv); | |
122 { | |
123 V TL, TQ, TN, TH; | |
124 TL = VFMA(LDK(KP673648177), TK, TJ); | |
125 TQ = VFNMS(LDK(KP898197570), TG, TF); | |
126 TM = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), TD, TL)); | |
127 TR = VFMA(LDK(KP666666666), TL, TQ); | |
128 Tr = VFNMS(LDK(KP500000000), T6, T1); | |
129 TN = VFNMS(LDK(KP673648177), TK, TJ); | |
130 TH = VFMA(LDK(KP898197570), TG, TF); | |
131 TI = VFMA(LDK(KP852868531), TH, Tr); | |
132 TO = VFNMS(LDK(KP500000000), TH, TN); | |
133 } | |
134 ST(&(x[WS(rs, 1)]), VFNMSI(TM, TI), ms, &(x[WS(rs, 1)])); | |
135 ST(&(x[WS(rs, 8)]), VFMAI(TM, TI), ms, &(x[0])); | |
136 { | |
137 V Tz, TE, TP, TS; | |
138 Tz = VFNMS(LDK(KP939692620), Ty, Tr); | |
139 TE = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), TD, TC)); | |
140 ST(&(x[WS(rs, 2)]), VFNMSI(TE, Tz), ms, &(x[0])); | |
141 ST(&(x[WS(rs, 7)]), VFMAI(TE, Tz), ms, &(x[WS(rs, 1)])); | |
142 TP = VFMA(LDK(KP852868531), TO, Tr); | |
143 TS = VMUL(LDK(KP866025403), VFMA(LDK(KP852868531), TR, TD)); | |
144 ST(&(x[WS(rs, 5)]), VFNMSI(TS, TP), ms, &(x[WS(rs, 1)])); | |
145 ST(&(x[WS(rs, 4)]), VFMAI(TS, TP), ms, &(x[0])); | |
146 } | |
147 } | |
148 } | |
149 } | |
150 VLEAVE(); | |
151 } | |
152 | |
153 static const tw_instr twinstr[] = { | |
154 VTW(0, 1), | |
155 VTW(0, 2), | |
156 VTW(0, 3), | |
157 VTW(0, 4), | |
158 VTW(0, 5), | |
159 VTW(0, 6), | |
160 VTW(0, 7), | |
161 VTW(0, 8), | |
162 {TW_NEXT, VL, 0} | |
163 }; | |
164 | |
165 static const ct_desc desc = { 9, XSIMD_STRING("t1fuv_9"), twinstr, &GENUS, {20, 20, 34, 0}, 0, 0, 0 }; | |
166 | |
167 void XSIMD(codelet_t1fuv_9) (planner *p) { | |
168 X(kdft_dit_register) (p, t1fuv_9, &desc); | |
169 } | |
170 #else | |
171 | |
172 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1fuv_9 -include dft/simd/t1fu.h */ | |
173 | |
174 /* | |
175 * This function contains 54 FP additions, 42 FP multiplications, | |
176 * (or, 38 additions, 26 multiplications, 16 fused multiply/add), | |
177 * 38 stack variables, 14 constants, and 18 memory accesses | |
178 */ | |
179 #include "dft/simd/t1fu.h" | |
180 | |
181 static void t1fuv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
182 { | |
183 DVK(KP939692620, +0.939692620785908384054109277324731469936208134); | |
184 DVK(KP296198132, +0.296198132726023843175338011893050938967728390); | |
185 DVK(KP852868531, +0.852868531952443209628250963940074071936020296); | |
186 DVK(KP173648177, +0.173648177666930348851716626769314796000375677); | |
187 DVK(KP556670399, +0.556670399226419366452912952047023132968291906); | |
188 DVK(KP766044443, +0.766044443118978035202392650555416673935832457); | |
189 DVK(KP642787609, +0.642787609686539326322643409907263432907559884); | |
190 DVK(KP663413948, +0.663413948168938396205421319635891297216863310); | |
191 DVK(KP984807753, +0.984807753012208059366743024589523013670643252); | |
192 DVK(KP150383733, +0.150383733180435296639271897612501926072238258); | |
193 DVK(KP342020143, +0.342020143325668733044099614682259580763083368); | |
194 DVK(KP813797681, +0.813797681349373692844693217248393223289101568); | |
195 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
196 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
197 { | |
198 INT m; | |
199 R *x; | |
200 x = ri; | |
201 for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) { | |
202 V T1, T6, TA, Tt, Tf, Ts, Tw, Tn, Tv; | |
203 T1 = LD(&(x[0]), ms, &(x[0])); | |
204 { | |
205 V T3, T5, T2, T4; | |
206 T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
207 T3 = BYTWJ(&(W[TWVL * 4]), T2); | |
208 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
209 T5 = BYTWJ(&(W[TWVL * 10]), T4); | |
210 T6 = VADD(T3, T5); | |
211 TA = VMUL(LDK(KP866025403), VSUB(T5, T3)); | |
212 } | |
213 { | |
214 V T9, Td, Tb, T8, Tc, Ta, Te; | |
215 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
216 T9 = BYTWJ(&(W[0]), T8); | |
217 Tc = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
218 Td = BYTWJ(&(W[TWVL * 12]), Tc); | |
219 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
220 Tb = BYTWJ(&(W[TWVL * 6]), Ta); | |
221 Tt = VSUB(Td, Tb); | |
222 Te = VADD(Tb, Td); | |
223 Tf = VADD(T9, Te); | |
224 Ts = VFNMS(LDK(KP500000000), Te, T9); | |
225 } | |
226 { | |
227 V Th, Tl, Tj, Tg, Tk, Ti, Tm; | |
228 Tg = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
229 Th = BYTWJ(&(W[TWVL * 2]), Tg); | |
230 Tk = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
231 Tl = BYTWJ(&(W[TWVL * 14]), Tk); | |
232 Ti = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
233 Tj = BYTWJ(&(W[TWVL * 8]), Ti); | |
234 Tw = VSUB(Tl, Tj); | |
235 Tm = VADD(Tj, Tl); | |
236 Tn = VADD(Th, Tm); | |
237 Tv = VFNMS(LDK(KP500000000), Tm, Th); | |
238 } | |
239 { | |
240 V Tq, T7, To, Tp; | |
241 Tq = VBYI(VMUL(LDK(KP866025403), VSUB(Tn, Tf))); | |
242 T7 = VADD(T1, T6); | |
243 To = VADD(Tf, Tn); | |
244 Tp = VFNMS(LDK(KP500000000), To, T7); | |
245 ST(&(x[0]), VADD(T7, To), ms, &(x[0])); | |
246 ST(&(x[WS(rs, 3)]), VADD(Tp, Tq), ms, &(x[WS(rs, 1)])); | |
247 ST(&(x[WS(rs, 6)]), VSUB(Tp, Tq), ms, &(x[0])); | |
248 } | |
249 { | |
250 V TI, TB, TC, TD, Tu, Tx, Ty, Tr, TH; | |
251 TI = VBYI(VSUB(VFNMS(LDK(KP342020143), Tv, VFNMS(LDK(KP150383733), Tt, VFNMS(LDK(KP984807753), Ts, VMUL(LDK(KP813797681), Tw)))), TA)); | |
252 TB = VFNMS(LDK(KP642787609), Ts, VMUL(LDK(KP663413948), Tt)); | |
253 TC = VFNMS(LDK(KP984807753), Tv, VMUL(LDK(KP150383733), Tw)); | |
254 TD = VADD(TB, TC); | |
255 Tu = VFMA(LDK(KP766044443), Ts, VMUL(LDK(KP556670399), Tt)); | |
256 Tx = VFMA(LDK(KP173648177), Tv, VMUL(LDK(KP852868531), Tw)); | |
257 Ty = VADD(Tu, Tx); | |
258 Tr = VFNMS(LDK(KP500000000), T6, T1); | |
259 TH = VFMA(LDK(KP173648177), Ts, VFNMS(LDK(KP296198132), Tw, VFNMS(LDK(KP939692620), Tv, VFNMS(LDK(KP852868531), Tt, Tr)))); | |
260 ST(&(x[WS(rs, 7)]), VSUB(TH, TI), ms, &(x[WS(rs, 1)])); | |
261 ST(&(x[WS(rs, 2)]), VADD(TH, TI), ms, &(x[0])); | |
262 { | |
263 V Tz, TE, TF, TG; | |
264 Tz = VADD(Tr, Ty); | |
265 TE = VBYI(VADD(TA, TD)); | |
266 ST(&(x[WS(rs, 8)]), VSUB(Tz, TE), ms, &(x[0])); | |
267 ST(&(x[WS(rs, 1)]), VADD(TE, Tz), ms, &(x[WS(rs, 1)])); | |
268 TF = VFMA(LDK(KP866025403), VSUB(TB, TC), VFNMS(LDK(KP500000000), Ty, Tr)); | |
269 TG = VBYI(VADD(TA, VFNMS(LDK(KP500000000), TD, VMUL(LDK(KP866025403), VSUB(Tx, Tu))))); | |
270 ST(&(x[WS(rs, 5)]), VSUB(TF, TG), ms, &(x[WS(rs, 1)])); | |
271 ST(&(x[WS(rs, 4)]), VADD(TF, TG), ms, &(x[0])); | |
272 } | |
273 } | |
274 } | |
275 } | |
276 VLEAVE(); | |
277 } | |
278 | |
279 static const tw_instr twinstr[] = { | |
280 VTW(0, 1), | |
281 VTW(0, 2), | |
282 VTW(0, 3), | |
283 VTW(0, 4), | |
284 VTW(0, 5), | |
285 VTW(0, 6), | |
286 VTW(0, 7), | |
287 VTW(0, 8), | |
288 {TW_NEXT, VL, 0} | |
289 }; | |
290 | |
291 static const ct_desc desc = { 9, XSIMD_STRING("t1fuv_9"), twinstr, &GENUS, {38, 26, 16, 0}, 0, 0, 0 }; | |
292 | |
293 void XSIMD(codelet_t1fuv_9) (planner *p) { | |
294 X(kdft_dit_register) (p, t1fuv_9, &desc); | |
295 } | |
296 #endif |