Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/t1buv_9.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:05:57 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1buv_9 -include dft/simd/t1bu.h -sign 1 */ | |
29 | |
30 /* | |
31 * This function contains 54 FP additions, 54 FP multiplications, | |
32 * (or, 20 additions, 20 multiplications, 34 fused multiply/add), | |
33 * 50 stack variables, 19 constants, and 18 memory accesses | |
34 */ | |
35 #include "dft/simd/t1bu.h" | |
36 | |
37 static void t1buv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP939692620, +0.939692620785908384054109277324731469936208134); | |
40 DVK(KP852868531, +0.852868531952443209628250963940074071936020296); | |
41 DVK(KP879385241, +0.879385241571816768108218554649462939872416269); | |
42 DVK(KP984807753, +0.984807753012208059366743024589523013670643252); | |
43 DVK(KP666666666, +0.666666666666666666666666666666666666666666667); | |
44 DVK(KP673648177, +0.673648177666930348851716626769314796000375677); | |
45 DVK(KP898197570, +0.898197570222573798468955502359086394667167570); | |
46 DVK(KP826351822, +0.826351822333069651148283373230685203999624323); | |
47 DVK(KP420276625, +0.420276625461206169731530603237061658838781920); | |
48 DVK(KP907603734, +0.907603734547952313649323976213898122064543220); | |
49 DVK(KP347296355, +0.347296355333860697703433253538629592000751354); | |
50 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
51 DVK(KP152703644, +0.152703644666139302296566746461370407999248646); | |
52 DVK(KP968908795, +0.968908795874236621082202410917456709164223497); | |
53 DVK(KP203604859, +0.203604859554852403062088995281827210665664861); | |
54 DVK(KP726681596, +0.726681596905677465811651808188092531873167623); | |
55 DVK(KP439692620, +0.439692620785908384054109277324731469936208134); | |
56 DVK(KP586256827, +0.586256827714544512072145703099641959914944179); | |
57 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
58 { | |
59 INT m; | |
60 R *x; | |
61 x = ii; | |
62 for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) { | |
63 V T1, T6, Tx, TO, TP, Tf, Tp, Tk, Tl, Tq, Tu, TD, TC, TA, Tz; | |
64 T1 = LD(&(x[0]), ms, &(x[0])); | |
65 { | |
66 V T3, T5, T2, T4; | |
67 T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
68 T3 = BYTW(&(W[TWVL * 4]), T2); | |
69 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
70 T5 = BYTW(&(W[TWVL * 10]), T4); | |
71 T6 = VADD(T3, T5); | |
72 Tx = VSUB(T3, T5); | |
73 } | |
74 { | |
75 V T9, Tn, Tb, Td, Te, Th, Tj, To, T8, Tm; | |
76 T8 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
77 T9 = BYTW(&(W[TWVL * 2]), T8); | |
78 Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
79 Tn = BYTW(&(W[0]), Tm); | |
80 { | |
81 V Ta, Tc, Tg, Ti; | |
82 Ta = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
83 Tb = BYTW(&(W[TWVL * 8]), Ta); | |
84 Tc = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
85 Td = BYTW(&(W[TWVL * 14]), Tc); | |
86 Te = VADD(Tb, Td); | |
87 Tg = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
88 Th = BYTW(&(W[TWVL * 6]), Tg); | |
89 Ti = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
90 Tj = BYTW(&(W[TWVL * 12]), Ti); | |
91 To = VADD(Th, Tj); | |
92 } | |
93 TO = VADD(Tn, To); | |
94 TP = VADD(T9, Te); | |
95 Tf = VFNMS(LDK(KP500000000), Te, T9); | |
96 Tp = VFNMS(LDK(KP500000000), To, Tn); | |
97 Tk = VSUB(Th, Tj); | |
98 Tl = VSUB(Td, Tb); | |
99 Tq = VFNMS(LDK(KP586256827), Tp, Tl); | |
100 Tu = VFNMS(LDK(KP439692620), Tk, Tf); | |
101 TD = VFNMS(LDK(KP726681596), Tk, Tp); | |
102 TC = VFMA(LDK(KP203604859), Tf, Tl); | |
103 TA = VFMA(LDK(KP968908795), Tp, Tk); | |
104 Tz = VFNMS(LDK(KP152703644), Tl, Tf); | |
105 } | |
106 { | |
107 V TS, TN, TQ, TR; | |
108 TS = VMUL(LDK(KP866025403), VSUB(TO, TP)); | |
109 TN = VADD(T1, T6); | |
110 TQ = VADD(TO, TP); | |
111 TR = VFNMS(LDK(KP500000000), TQ, TN); | |
112 ST(&(x[WS(rs, 3)]), VFMAI(TS, TR), ms, &(x[WS(rs, 1)])); | |
113 ST(&(x[0]), VADD(TQ, TN), ms, &(x[0])); | |
114 ST(&(x[WS(rs, 6)]), VFNMSI(TS, TR), ms, &(x[0])); | |
115 } | |
116 { | |
117 V Ts, Tw, TJ, TM, T7, TF, TL, Tr, Tv; | |
118 Tr = VFNMS(LDK(KP347296355), Tq, Tk); | |
119 Ts = VFNMS(LDK(KP907603734), Tr, Tf); | |
120 Tv = VFNMS(LDK(KP420276625), Tu, Tl); | |
121 Tw = VFNMS(LDK(KP826351822), Tv, Tp); | |
122 { | |
123 V TH, TI, TE, TB; | |
124 TH = VFNMS(LDK(KP898197570), TD, TC); | |
125 TI = VFMA(LDK(KP673648177), TA, Tz); | |
126 TJ = VFMA(LDK(KP666666666), TI, TH); | |
127 TM = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), Tx, TI)); | |
128 T7 = VFNMS(LDK(KP500000000), T6, T1); | |
129 TE = VFMA(LDK(KP898197570), TD, TC); | |
130 TB = VFNMS(LDK(KP673648177), TA, Tz); | |
131 TF = VFNMS(LDK(KP500000000), TE, TB); | |
132 TL = VFMA(LDK(KP852868531), TE, T7); | |
133 } | |
134 ST(&(x[WS(rs, 1)]), VFMAI(TM, TL), ms, &(x[WS(rs, 1)])); | |
135 ST(&(x[WS(rs, 8)]), VFNMSI(TM, TL), ms, &(x[0])); | |
136 { | |
137 V Tt, Ty, TG, TK; | |
138 Tt = VFNMS(LDK(KP939692620), Ts, T7); | |
139 Ty = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), Tx, Tw)); | |
140 ST(&(x[WS(rs, 7)]), VFNMSI(Ty, Tt), ms, &(x[WS(rs, 1)])); | |
141 ST(&(x[WS(rs, 2)]), VFMAI(Ty, Tt), ms, &(x[0])); | |
142 TG = VFMA(LDK(KP852868531), TF, T7); | |
143 TK = VMUL(LDK(KP866025403), VFNMS(LDK(KP852868531), TJ, Tx)); | |
144 ST(&(x[WS(rs, 4)]), VFMAI(TK, TG), ms, &(x[0])); | |
145 ST(&(x[WS(rs, 5)]), VFNMSI(TK, TG), ms, &(x[WS(rs, 1)])); | |
146 } | |
147 } | |
148 } | |
149 } | |
150 VLEAVE(); | |
151 } | |
152 | |
153 static const tw_instr twinstr[] = { | |
154 VTW(0, 1), | |
155 VTW(0, 2), | |
156 VTW(0, 3), | |
157 VTW(0, 4), | |
158 VTW(0, 5), | |
159 VTW(0, 6), | |
160 VTW(0, 7), | |
161 VTW(0, 8), | |
162 {TW_NEXT, VL, 0} | |
163 }; | |
164 | |
165 static const ct_desc desc = { 9, XSIMD_STRING("t1buv_9"), twinstr, &GENUS, {20, 20, 34, 0}, 0, 0, 0 }; | |
166 | |
167 void XSIMD(codelet_t1buv_9) (planner *p) { | |
168 X(kdft_dit_register) (p, t1buv_9, &desc); | |
169 } | |
170 #else | |
171 | |
172 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1buv_9 -include dft/simd/t1bu.h -sign 1 */ | |
173 | |
174 /* | |
175 * This function contains 54 FP additions, 42 FP multiplications, | |
176 * (or, 38 additions, 26 multiplications, 16 fused multiply/add), | |
177 * 38 stack variables, 14 constants, and 18 memory accesses | |
178 */ | |
179 #include "dft/simd/t1bu.h" | |
180 | |
181 static void t1buv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
182 { | |
183 DVK(KP939692620, +0.939692620785908384054109277324731469936208134); | |
184 DVK(KP296198132, +0.296198132726023843175338011893050938967728390); | |
185 DVK(KP852868531, +0.852868531952443209628250963940074071936020296); | |
186 DVK(KP173648177, +0.173648177666930348851716626769314796000375677); | |
187 DVK(KP556670399, +0.556670399226419366452912952047023132968291906); | |
188 DVK(KP766044443, +0.766044443118978035202392650555416673935832457); | |
189 DVK(KP642787609, +0.642787609686539326322643409907263432907559884); | |
190 DVK(KP663413948, +0.663413948168938396205421319635891297216863310); | |
191 DVK(KP150383733, +0.150383733180435296639271897612501926072238258); | |
192 DVK(KP342020143, +0.342020143325668733044099614682259580763083368); | |
193 DVK(KP813797681, +0.813797681349373692844693217248393223289101568); | |
194 DVK(KP984807753, +0.984807753012208059366743024589523013670643252); | |
195 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
196 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
197 { | |
198 INT m; | |
199 R *x; | |
200 x = ii; | |
201 for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) { | |
202 V T1, T6, Tu, Tg, Tf, TD, Tq, Tp, TE; | |
203 T1 = LD(&(x[0]), ms, &(x[0])); | |
204 { | |
205 V T3, T5, T2, T4; | |
206 T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
207 T3 = BYTW(&(W[TWVL * 4]), T2); | |
208 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
209 T5 = BYTW(&(W[TWVL * 10]), T4); | |
210 T6 = VADD(T3, T5); | |
211 Tu = VMUL(LDK(KP866025403), VSUB(T3, T5)); | |
212 } | |
213 { | |
214 V T9, Td, Tb, T8, Tc, Ta, Te; | |
215 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
216 T9 = BYTW(&(W[0]), T8); | |
217 Tc = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
218 Td = BYTW(&(W[TWVL * 12]), Tc); | |
219 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
220 Tb = BYTW(&(W[TWVL * 6]), Ta); | |
221 Tg = VSUB(Tb, Td); | |
222 Te = VADD(Tb, Td); | |
223 Tf = VFNMS(LDK(KP500000000), Te, T9); | |
224 TD = VADD(T9, Te); | |
225 } | |
226 { | |
227 V Tj, Tn, Tl, Ti, Tm, Tk, To; | |
228 Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
229 Tj = BYTW(&(W[TWVL * 2]), Ti); | |
230 Tm = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
231 Tn = BYTW(&(W[TWVL * 14]), Tm); | |
232 Tk = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
233 Tl = BYTW(&(W[TWVL * 8]), Tk); | |
234 Tq = VSUB(Tl, Tn); | |
235 To = VADD(Tl, Tn); | |
236 Tp = VFNMS(LDK(KP500000000), To, Tj); | |
237 TE = VADD(Tj, To); | |
238 } | |
239 { | |
240 V TF, TG, TH, TI; | |
241 TF = VBYI(VMUL(LDK(KP866025403), VSUB(TD, TE))); | |
242 TG = VADD(T1, T6); | |
243 TH = VADD(TD, TE); | |
244 TI = VFNMS(LDK(KP500000000), TH, TG); | |
245 ST(&(x[WS(rs, 3)]), VADD(TF, TI), ms, &(x[WS(rs, 1)])); | |
246 ST(&(x[0]), VADD(TG, TH), ms, &(x[0])); | |
247 ST(&(x[WS(rs, 6)]), VSUB(TI, TF), ms, &(x[0])); | |
248 } | |
249 { | |
250 V TC, Tv, Tw, Tx, Th, Tr, Ts, T7, TB; | |
251 TC = VBYI(VSUB(VFMA(LDK(KP984807753), Tf, VFMA(LDK(KP813797681), Tq, VFNMS(LDK(KP150383733), Tg, VMUL(LDK(KP342020143), Tp)))), Tu)); | |
252 Tv = VFMA(LDK(KP663413948), Tg, VMUL(LDK(KP642787609), Tf)); | |
253 Tw = VFMA(LDK(KP150383733), Tq, VMUL(LDK(KP984807753), Tp)); | |
254 Tx = VADD(Tv, Tw); | |
255 Th = VFNMS(LDK(KP556670399), Tg, VMUL(LDK(KP766044443), Tf)); | |
256 Tr = VFNMS(LDK(KP852868531), Tq, VMUL(LDK(KP173648177), Tp)); | |
257 Ts = VADD(Th, Tr); | |
258 T7 = VFNMS(LDK(KP500000000), T6, T1); | |
259 TB = VFMA(LDK(KP852868531), Tg, VFMA(LDK(KP173648177), Tf, VFMA(LDK(KP296198132), Tq, VFNMS(LDK(KP939692620), Tp, T7)))); | |
260 ST(&(x[WS(rs, 7)]), VSUB(TB, TC), ms, &(x[WS(rs, 1)])); | |
261 ST(&(x[WS(rs, 2)]), VADD(TB, TC), ms, &(x[0])); | |
262 { | |
263 V Tt, Ty, Tz, TA; | |
264 Tt = VADD(T7, Ts); | |
265 Ty = VBYI(VADD(Tu, Tx)); | |
266 ST(&(x[WS(rs, 8)]), VSUB(Tt, Ty), ms, &(x[0])); | |
267 ST(&(x[WS(rs, 1)]), VADD(Tt, Ty), ms, &(x[WS(rs, 1)])); | |
268 Tz = VBYI(VADD(Tu, VFNMS(LDK(KP500000000), Tx, VMUL(LDK(KP866025403), VSUB(Th, Tr))))); | |
269 TA = VFMA(LDK(KP866025403), VSUB(Tw, Tv), VFNMS(LDK(KP500000000), Ts, T7)); | |
270 ST(&(x[WS(rs, 4)]), VADD(Tz, TA), ms, &(x[0])); | |
271 ST(&(x[WS(rs, 5)]), VSUB(TA, Tz), ms, &(x[WS(rs, 1)])); | |
272 } | |
273 } | |
274 } | |
275 } | |
276 VLEAVE(); | |
277 } | |
278 | |
279 static const tw_instr twinstr[] = { | |
280 VTW(0, 1), | |
281 VTW(0, 2), | |
282 VTW(0, 3), | |
283 VTW(0, 4), | |
284 VTW(0, 5), | |
285 VTW(0, 6), | |
286 VTW(0, 7), | |
287 VTW(0, 8), | |
288 {TW_NEXT, VL, 0} | |
289 }; | |
290 | |
291 static const ct_desc desc = { 9, XSIMD_STRING("t1buv_9"), twinstr, &GENUS, {38, 26, 16, 0}, 0, 0, 0 }; | |
292 | |
293 void XSIMD(codelet_t1buv_9) (planner *p) { | |
294 X(kdft_dit_register) (p, t1buv_9, &desc); | |
295 } | |
296 #endif |