Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/q1fv_5.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:06:13 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twidsq_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 5 -dif -name q1fv_5 -include dft/simd/q1f.h */ | |
29 | |
30 /* | |
31 * This function contains 100 FP additions, 95 FP multiplications, | |
32 * (or, 55 additions, 50 multiplications, 45 fused multiply/add), | |
33 * 44 stack variables, 4 constants, and 50 memory accesses | |
34 */ | |
35 #include "dft/simd/q1f.h" | |
36 | |
37 static void q1fv_5(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
43 { | |
44 INT m; | |
45 R *x; | |
46 x = ri; | |
47 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(10, vs)) { | |
48 V T1, Ta, Ti, Te, T8, T9, T1j, T1s, T1A, T1w, T1q, T1r, Tl, Tu, TC; | |
49 V Ty, Ts, Tt, TF, TO, TW, TS, TM, TN, TZ, T18, T1g, T1c, T16, T17; | |
50 { | |
51 V T7, Td, T4, Tc; | |
52 T1 = LD(&(x[0]), ms, &(x[0])); | |
53 { | |
54 V T5, T6, T2, T3; | |
55 T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
56 T6 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
57 T7 = VADD(T5, T6); | |
58 Td = VSUB(T5, T6); | |
59 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
60 T3 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
61 T4 = VADD(T2, T3); | |
62 Tc = VSUB(T2, T3); | |
63 } | |
64 Ta = VSUB(T4, T7); | |
65 Ti = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tc, Td)); | |
66 Te = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Td, Tc)); | |
67 T8 = VADD(T4, T7); | |
68 T9 = VFNMS(LDK(KP250000000), T8, T1); | |
69 } | |
70 { | |
71 V T1p, T1v, T1m, T1u; | |
72 T1j = LD(&(x[WS(vs, 4)]), ms, &(x[WS(vs, 4)])); | |
73 { | |
74 V T1n, T1o, T1k, T1l; | |
75 T1n = LD(&(x[WS(vs, 4) + WS(rs, 2)]), ms, &(x[WS(vs, 4)])); | |
76 T1o = LD(&(x[WS(vs, 4) + WS(rs, 3)]), ms, &(x[WS(vs, 4) + WS(rs, 1)])); | |
77 T1p = VADD(T1n, T1o); | |
78 T1v = VSUB(T1n, T1o); | |
79 T1k = LD(&(x[WS(vs, 4) + WS(rs, 1)]), ms, &(x[WS(vs, 4) + WS(rs, 1)])); | |
80 T1l = LD(&(x[WS(vs, 4) + WS(rs, 4)]), ms, &(x[WS(vs, 4)])); | |
81 T1m = VADD(T1k, T1l); | |
82 T1u = VSUB(T1k, T1l); | |
83 } | |
84 T1s = VSUB(T1m, T1p); | |
85 T1A = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1u, T1v)); | |
86 T1w = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1v, T1u)); | |
87 T1q = VADD(T1m, T1p); | |
88 T1r = VFNMS(LDK(KP250000000), T1q, T1j); | |
89 } | |
90 { | |
91 V Tr, Tx, To, Tw; | |
92 Tl = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)])); | |
93 { | |
94 V Tp, Tq, Tm, Tn; | |
95 Tp = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)])); | |
96 Tq = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
97 Tr = VADD(Tp, Tq); | |
98 Tx = VSUB(Tp, Tq); | |
99 Tm = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
100 Tn = LD(&(x[WS(vs, 1) + WS(rs, 4)]), ms, &(x[WS(vs, 1)])); | |
101 To = VADD(Tm, Tn); | |
102 Tw = VSUB(Tm, Tn); | |
103 } | |
104 Tu = VSUB(To, Tr); | |
105 TC = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tw, Tx)); | |
106 Ty = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tx, Tw)); | |
107 Ts = VADD(To, Tr); | |
108 Tt = VFNMS(LDK(KP250000000), Ts, Tl); | |
109 } | |
110 { | |
111 V TL, TR, TI, TQ; | |
112 TF = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)])); | |
113 { | |
114 V TJ, TK, TG, TH; | |
115 TJ = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)])); | |
116 TK = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
117 TL = VADD(TJ, TK); | |
118 TR = VSUB(TJ, TK); | |
119 TG = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
120 TH = LD(&(x[WS(vs, 2) + WS(rs, 4)]), ms, &(x[WS(vs, 2)])); | |
121 TI = VADD(TG, TH); | |
122 TQ = VSUB(TG, TH); | |
123 } | |
124 TO = VSUB(TI, TL); | |
125 TW = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TQ, TR)); | |
126 TS = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TR, TQ)); | |
127 TM = VADD(TI, TL); | |
128 TN = VFNMS(LDK(KP250000000), TM, TF); | |
129 } | |
130 { | |
131 V T15, T1b, T12, T1a; | |
132 TZ = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)])); | |
133 { | |
134 V T13, T14, T10, T11; | |
135 T13 = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)])); | |
136 T14 = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
137 T15 = VADD(T13, T14); | |
138 T1b = VSUB(T13, T14); | |
139 T10 = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
140 T11 = LD(&(x[WS(vs, 3) + WS(rs, 4)]), ms, &(x[WS(vs, 3)])); | |
141 T12 = VADD(T10, T11); | |
142 T1a = VSUB(T10, T11); | |
143 } | |
144 T18 = VSUB(T12, T15); | |
145 T1g = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1a, T1b)); | |
146 T1c = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1b, T1a)); | |
147 T16 = VADD(T12, T15); | |
148 T17 = VFNMS(LDK(KP250000000), T16, TZ); | |
149 } | |
150 ST(&(x[0]), VADD(T1, T8), ms, &(x[0])); | |
151 ST(&(x[WS(rs, 4)]), VADD(T1j, T1q), ms, &(x[0])); | |
152 ST(&(x[WS(rs, 2)]), VADD(TF, TM), ms, &(x[0])); | |
153 ST(&(x[WS(rs, 3)]), VADD(TZ, T16), ms, &(x[WS(rs, 1)])); | |
154 ST(&(x[WS(rs, 1)]), VADD(Tl, Ts), ms, &(x[WS(rs, 1)])); | |
155 { | |
156 V Tj, Tk, Th, T1B, T1C, T1z; | |
157 Th = VFNMS(LDK(KP559016994), Ta, T9); | |
158 Tj = BYTWJ(&(W[TWVL * 2]), VFMAI(Ti, Th)); | |
159 Tk = BYTWJ(&(W[TWVL * 4]), VFNMSI(Ti, Th)); | |
160 ST(&(x[WS(vs, 2)]), Tj, ms, &(x[WS(vs, 2)])); | |
161 ST(&(x[WS(vs, 3)]), Tk, ms, &(x[WS(vs, 3)])); | |
162 T1z = VFNMS(LDK(KP559016994), T1s, T1r); | |
163 T1B = BYTWJ(&(W[TWVL * 2]), VFMAI(T1A, T1z)); | |
164 T1C = BYTWJ(&(W[TWVL * 4]), VFNMSI(T1A, T1z)); | |
165 ST(&(x[WS(vs, 2) + WS(rs, 4)]), T1B, ms, &(x[WS(vs, 2)])); | |
166 ST(&(x[WS(vs, 3) + WS(rs, 4)]), T1C, ms, &(x[WS(vs, 3)])); | |
167 } | |
168 { | |
169 V T1h, T1i, T1f, TD, TE, TB; | |
170 T1f = VFNMS(LDK(KP559016994), T18, T17); | |
171 T1h = BYTWJ(&(W[TWVL * 2]), VFMAI(T1g, T1f)); | |
172 T1i = BYTWJ(&(W[TWVL * 4]), VFNMSI(T1g, T1f)); | |
173 ST(&(x[WS(vs, 2) + WS(rs, 3)]), T1h, ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
174 ST(&(x[WS(vs, 3) + WS(rs, 3)]), T1i, ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
175 TB = VFNMS(LDK(KP559016994), Tu, Tt); | |
176 TD = BYTWJ(&(W[TWVL * 2]), VFMAI(TC, TB)); | |
177 TE = BYTWJ(&(W[TWVL * 4]), VFNMSI(TC, TB)); | |
178 ST(&(x[WS(vs, 2) + WS(rs, 1)]), TD, ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
179 ST(&(x[WS(vs, 3) + WS(rs, 1)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
180 } | |
181 { | |
182 V TX, TY, TV, TT, TU, TP; | |
183 TV = VFNMS(LDK(KP559016994), TO, TN); | |
184 TX = BYTWJ(&(W[TWVL * 2]), VFMAI(TW, TV)); | |
185 TY = BYTWJ(&(W[TWVL * 4]), VFNMSI(TW, TV)); | |
186 ST(&(x[WS(vs, 2) + WS(rs, 2)]), TX, ms, &(x[WS(vs, 2)])); | |
187 ST(&(x[WS(vs, 3) + WS(rs, 2)]), TY, ms, &(x[WS(vs, 3)])); | |
188 TP = VFMA(LDK(KP559016994), TO, TN); | |
189 TT = BYTWJ(&(W[0]), VFNMSI(TS, TP)); | |
190 TU = BYTWJ(&(W[TWVL * 6]), VFMAI(TS, TP)); | |
191 ST(&(x[WS(vs, 1) + WS(rs, 2)]), TT, ms, &(x[WS(vs, 1)])); | |
192 ST(&(x[WS(vs, 4) + WS(rs, 2)]), TU, ms, &(x[WS(vs, 4)])); | |
193 } | |
194 { | |
195 V Tf, Tg, Tb, Tz, TA, Tv; | |
196 Tb = VFMA(LDK(KP559016994), Ta, T9); | |
197 Tf = BYTWJ(&(W[0]), VFNMSI(Te, Tb)); | |
198 Tg = BYTWJ(&(W[TWVL * 6]), VFMAI(Te, Tb)); | |
199 ST(&(x[WS(vs, 1)]), Tf, ms, &(x[WS(vs, 1)])); | |
200 ST(&(x[WS(vs, 4)]), Tg, ms, &(x[WS(vs, 4)])); | |
201 Tv = VFMA(LDK(KP559016994), Tu, Tt); | |
202 Tz = BYTWJ(&(W[0]), VFNMSI(Ty, Tv)); | |
203 TA = BYTWJ(&(W[TWVL * 6]), VFMAI(Ty, Tv)); | |
204 ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tz, ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
205 ST(&(x[WS(vs, 4) + WS(rs, 1)]), TA, ms, &(x[WS(vs, 4) + WS(rs, 1)])); | |
206 } | |
207 { | |
208 V T1d, T1e, T19, T1x, T1y, T1t; | |
209 T19 = VFMA(LDK(KP559016994), T18, T17); | |
210 T1d = BYTWJ(&(W[0]), VFNMSI(T1c, T19)); | |
211 T1e = BYTWJ(&(W[TWVL * 6]), VFMAI(T1c, T19)); | |
212 ST(&(x[WS(vs, 1) + WS(rs, 3)]), T1d, ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
213 ST(&(x[WS(vs, 4) + WS(rs, 3)]), T1e, ms, &(x[WS(vs, 4) + WS(rs, 1)])); | |
214 T1t = VFMA(LDK(KP559016994), T1s, T1r); | |
215 T1x = BYTWJ(&(W[0]), VFNMSI(T1w, T1t)); | |
216 T1y = BYTWJ(&(W[TWVL * 6]), VFMAI(T1w, T1t)); | |
217 ST(&(x[WS(vs, 1) + WS(rs, 4)]), T1x, ms, &(x[WS(vs, 1)])); | |
218 ST(&(x[WS(vs, 4) + WS(rs, 4)]), T1y, ms, &(x[WS(vs, 4)])); | |
219 } | |
220 } | |
221 } | |
222 VLEAVE(); | |
223 } | |
224 | |
225 static const tw_instr twinstr[] = { | |
226 VTW(0, 1), | |
227 VTW(0, 2), | |
228 VTW(0, 3), | |
229 VTW(0, 4), | |
230 {TW_NEXT, VL, 0} | |
231 }; | |
232 | |
233 static const ct_desc desc = { 5, XSIMD_STRING("q1fv_5"), twinstr, &GENUS, {55, 50, 45, 0}, 0, 0, 0 }; | |
234 | |
235 void XSIMD(codelet_q1fv_5) (planner *p) { | |
236 X(kdft_difsq_register) (p, q1fv_5, &desc); | |
237 } | |
238 #else | |
239 | |
240 /* Generated by: ../../../genfft/gen_twidsq_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 5 -dif -name q1fv_5 -include dft/simd/q1f.h */ | |
241 | |
242 /* | |
243 * This function contains 100 FP additions, 70 FP multiplications, | |
244 * (or, 85 additions, 55 multiplications, 15 fused multiply/add), | |
245 * 44 stack variables, 4 constants, and 50 memory accesses | |
246 */ | |
247 #include "dft/simd/q1f.h" | |
248 | |
249 static void q1fv_5(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
250 { | |
251 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
252 DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
253 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
254 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
255 { | |
256 INT m; | |
257 R *x; | |
258 x = ri; | |
259 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(10, vs)) { | |
260 V T8, T7, Th, Te, T9, Ta, T1q, T1p, T1z, T1w, T1r, T1s, Ts, Tr, TB; | |
261 V Ty, Tt, Tu, TM, TL, TV, TS, TN, TO, T16, T15, T1f, T1c, T17, T18; | |
262 { | |
263 V T6, Td, T3, Tc; | |
264 T8 = LD(&(x[0]), ms, &(x[0])); | |
265 { | |
266 V T4, T5, T1, T2; | |
267 T4 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
268 T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
269 T6 = VADD(T4, T5); | |
270 Td = VSUB(T4, T5); | |
271 T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
272 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
273 T3 = VADD(T1, T2); | |
274 Tc = VSUB(T1, T2); | |
275 } | |
276 T7 = VMUL(LDK(KP559016994), VSUB(T3, T6)); | |
277 Th = VBYI(VFNMS(LDK(KP587785252), Tc, VMUL(LDK(KP951056516), Td))); | |
278 Te = VBYI(VFMA(LDK(KP951056516), Tc, VMUL(LDK(KP587785252), Td))); | |
279 T9 = VADD(T3, T6); | |
280 Ta = VFNMS(LDK(KP250000000), T9, T8); | |
281 } | |
282 { | |
283 V T1o, T1v, T1l, T1u; | |
284 T1q = LD(&(x[WS(vs, 4)]), ms, &(x[WS(vs, 4)])); | |
285 { | |
286 V T1m, T1n, T1j, T1k; | |
287 T1m = LD(&(x[WS(vs, 4) + WS(rs, 2)]), ms, &(x[WS(vs, 4)])); | |
288 T1n = LD(&(x[WS(vs, 4) + WS(rs, 3)]), ms, &(x[WS(vs, 4) + WS(rs, 1)])); | |
289 T1o = VADD(T1m, T1n); | |
290 T1v = VSUB(T1m, T1n); | |
291 T1j = LD(&(x[WS(vs, 4) + WS(rs, 1)]), ms, &(x[WS(vs, 4) + WS(rs, 1)])); | |
292 T1k = LD(&(x[WS(vs, 4) + WS(rs, 4)]), ms, &(x[WS(vs, 4)])); | |
293 T1l = VADD(T1j, T1k); | |
294 T1u = VSUB(T1j, T1k); | |
295 } | |
296 T1p = VMUL(LDK(KP559016994), VSUB(T1l, T1o)); | |
297 T1z = VBYI(VFNMS(LDK(KP587785252), T1u, VMUL(LDK(KP951056516), T1v))); | |
298 T1w = VBYI(VFMA(LDK(KP951056516), T1u, VMUL(LDK(KP587785252), T1v))); | |
299 T1r = VADD(T1l, T1o); | |
300 T1s = VFNMS(LDK(KP250000000), T1r, T1q); | |
301 } | |
302 { | |
303 V Tq, Tx, Tn, Tw; | |
304 Ts = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)])); | |
305 { | |
306 V To, Tp, Tl, Tm; | |
307 To = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)])); | |
308 Tp = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
309 Tq = VADD(To, Tp); | |
310 Tx = VSUB(To, Tp); | |
311 Tl = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
312 Tm = LD(&(x[WS(vs, 1) + WS(rs, 4)]), ms, &(x[WS(vs, 1)])); | |
313 Tn = VADD(Tl, Tm); | |
314 Tw = VSUB(Tl, Tm); | |
315 } | |
316 Tr = VMUL(LDK(KP559016994), VSUB(Tn, Tq)); | |
317 TB = VBYI(VFNMS(LDK(KP587785252), Tw, VMUL(LDK(KP951056516), Tx))); | |
318 Ty = VBYI(VFMA(LDK(KP951056516), Tw, VMUL(LDK(KP587785252), Tx))); | |
319 Tt = VADD(Tn, Tq); | |
320 Tu = VFNMS(LDK(KP250000000), Tt, Ts); | |
321 } | |
322 { | |
323 V TK, TR, TH, TQ; | |
324 TM = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)])); | |
325 { | |
326 V TI, TJ, TF, TG; | |
327 TI = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)])); | |
328 TJ = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
329 TK = VADD(TI, TJ); | |
330 TR = VSUB(TI, TJ); | |
331 TF = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
332 TG = LD(&(x[WS(vs, 2) + WS(rs, 4)]), ms, &(x[WS(vs, 2)])); | |
333 TH = VADD(TF, TG); | |
334 TQ = VSUB(TF, TG); | |
335 } | |
336 TL = VMUL(LDK(KP559016994), VSUB(TH, TK)); | |
337 TV = VBYI(VFNMS(LDK(KP587785252), TQ, VMUL(LDK(KP951056516), TR))); | |
338 TS = VBYI(VFMA(LDK(KP951056516), TQ, VMUL(LDK(KP587785252), TR))); | |
339 TN = VADD(TH, TK); | |
340 TO = VFNMS(LDK(KP250000000), TN, TM); | |
341 } | |
342 { | |
343 V T14, T1b, T11, T1a; | |
344 T16 = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)])); | |
345 { | |
346 V T12, T13, TZ, T10; | |
347 T12 = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)])); | |
348 T13 = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
349 T14 = VADD(T12, T13); | |
350 T1b = VSUB(T12, T13); | |
351 TZ = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
352 T10 = LD(&(x[WS(vs, 3) + WS(rs, 4)]), ms, &(x[WS(vs, 3)])); | |
353 T11 = VADD(TZ, T10); | |
354 T1a = VSUB(TZ, T10); | |
355 } | |
356 T15 = VMUL(LDK(KP559016994), VSUB(T11, T14)); | |
357 T1f = VBYI(VFNMS(LDK(KP587785252), T1a, VMUL(LDK(KP951056516), T1b))); | |
358 T1c = VBYI(VFMA(LDK(KP951056516), T1a, VMUL(LDK(KP587785252), T1b))); | |
359 T17 = VADD(T11, T14); | |
360 T18 = VFNMS(LDK(KP250000000), T17, T16); | |
361 } | |
362 ST(&(x[0]), VADD(T8, T9), ms, &(x[0])); | |
363 ST(&(x[WS(rs, 4)]), VADD(T1q, T1r), ms, &(x[0])); | |
364 ST(&(x[WS(rs, 2)]), VADD(TM, TN), ms, &(x[0])); | |
365 ST(&(x[WS(rs, 3)]), VADD(T16, T17), ms, &(x[WS(rs, 1)])); | |
366 ST(&(x[WS(rs, 1)]), VADD(Ts, Tt), ms, &(x[WS(rs, 1)])); | |
367 { | |
368 V Tj, Tk, Ti, T1B, T1C, T1A; | |
369 Ti = VSUB(Ta, T7); | |
370 Tj = BYTWJ(&(W[TWVL * 2]), VADD(Th, Ti)); | |
371 Tk = BYTWJ(&(W[TWVL * 4]), VSUB(Ti, Th)); | |
372 ST(&(x[WS(vs, 2)]), Tj, ms, &(x[WS(vs, 2)])); | |
373 ST(&(x[WS(vs, 3)]), Tk, ms, &(x[WS(vs, 3)])); | |
374 T1A = VSUB(T1s, T1p); | |
375 T1B = BYTWJ(&(W[TWVL * 2]), VADD(T1z, T1A)); | |
376 T1C = BYTWJ(&(W[TWVL * 4]), VSUB(T1A, T1z)); | |
377 ST(&(x[WS(vs, 2) + WS(rs, 4)]), T1B, ms, &(x[WS(vs, 2)])); | |
378 ST(&(x[WS(vs, 3) + WS(rs, 4)]), T1C, ms, &(x[WS(vs, 3)])); | |
379 } | |
380 { | |
381 V T1h, T1i, T1g, TD, TE, TC; | |
382 T1g = VSUB(T18, T15); | |
383 T1h = BYTWJ(&(W[TWVL * 2]), VADD(T1f, T1g)); | |
384 T1i = BYTWJ(&(W[TWVL * 4]), VSUB(T1g, T1f)); | |
385 ST(&(x[WS(vs, 2) + WS(rs, 3)]), T1h, ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
386 ST(&(x[WS(vs, 3) + WS(rs, 3)]), T1i, ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
387 TC = VSUB(Tu, Tr); | |
388 TD = BYTWJ(&(W[TWVL * 2]), VADD(TB, TC)); | |
389 TE = BYTWJ(&(W[TWVL * 4]), VSUB(TC, TB)); | |
390 ST(&(x[WS(vs, 2) + WS(rs, 1)]), TD, ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
391 ST(&(x[WS(vs, 3) + WS(rs, 1)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
392 } | |
393 { | |
394 V TX, TY, TW, TT, TU, TP; | |
395 TW = VSUB(TO, TL); | |
396 TX = BYTWJ(&(W[TWVL * 2]), VADD(TV, TW)); | |
397 TY = BYTWJ(&(W[TWVL * 4]), VSUB(TW, TV)); | |
398 ST(&(x[WS(vs, 2) + WS(rs, 2)]), TX, ms, &(x[WS(vs, 2)])); | |
399 ST(&(x[WS(vs, 3) + WS(rs, 2)]), TY, ms, &(x[WS(vs, 3)])); | |
400 TP = VADD(TL, TO); | |
401 TT = BYTWJ(&(W[0]), VSUB(TP, TS)); | |
402 TU = BYTWJ(&(W[TWVL * 6]), VADD(TS, TP)); | |
403 ST(&(x[WS(vs, 1) + WS(rs, 2)]), TT, ms, &(x[WS(vs, 1)])); | |
404 ST(&(x[WS(vs, 4) + WS(rs, 2)]), TU, ms, &(x[WS(vs, 4)])); | |
405 } | |
406 { | |
407 V Tf, Tg, Tb, Tz, TA, Tv; | |
408 Tb = VADD(T7, Ta); | |
409 Tf = BYTWJ(&(W[0]), VSUB(Tb, Te)); | |
410 Tg = BYTWJ(&(W[TWVL * 6]), VADD(Te, Tb)); | |
411 ST(&(x[WS(vs, 1)]), Tf, ms, &(x[WS(vs, 1)])); | |
412 ST(&(x[WS(vs, 4)]), Tg, ms, &(x[WS(vs, 4)])); | |
413 Tv = VADD(Tr, Tu); | |
414 Tz = BYTWJ(&(W[0]), VSUB(Tv, Ty)); | |
415 TA = BYTWJ(&(W[TWVL * 6]), VADD(Ty, Tv)); | |
416 ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tz, ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
417 ST(&(x[WS(vs, 4) + WS(rs, 1)]), TA, ms, &(x[WS(vs, 4) + WS(rs, 1)])); | |
418 } | |
419 { | |
420 V T1d, T1e, T19, T1x, T1y, T1t; | |
421 T19 = VADD(T15, T18); | |
422 T1d = BYTWJ(&(W[0]), VSUB(T19, T1c)); | |
423 T1e = BYTWJ(&(W[TWVL * 6]), VADD(T1c, T19)); | |
424 ST(&(x[WS(vs, 1) + WS(rs, 3)]), T1d, ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
425 ST(&(x[WS(vs, 4) + WS(rs, 3)]), T1e, ms, &(x[WS(vs, 4) + WS(rs, 1)])); | |
426 T1t = VADD(T1p, T1s); | |
427 T1x = BYTWJ(&(W[0]), VSUB(T1t, T1w)); | |
428 T1y = BYTWJ(&(W[TWVL * 6]), VADD(T1w, T1t)); | |
429 ST(&(x[WS(vs, 1) + WS(rs, 4)]), T1x, ms, &(x[WS(vs, 1)])); | |
430 ST(&(x[WS(vs, 4) + WS(rs, 4)]), T1y, ms, &(x[WS(vs, 4)])); | |
431 } | |
432 } | |
433 } | |
434 VLEAVE(); | |
435 } | |
436 | |
437 static const tw_instr twinstr[] = { | |
438 VTW(0, 1), | |
439 VTW(0, 2), | |
440 VTW(0, 3), | |
441 VTW(0, 4), | |
442 {TW_NEXT, VL, 0} | |
443 }; | |
444 | |
445 static const ct_desc desc = { 5, XSIMD_STRING("q1fv_5"), twinstr, &GENUS, {85, 55, 15, 0}, 0, 0, 0 }; | |
446 | |
447 void XSIMD(codelet_q1fv_5) (planner *p) { | |
448 X(kdft_difsq_register) (p, q1fv_5, &desc); | |
449 } | |
450 #endif |