Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/q1fv_4.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:06:13 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twidsq_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1fv_4 -include dft/simd/q1f.h */ | |
29 | |
30 /* | |
31 * This function contains 44 FP additions, 32 FP multiplications, | |
32 * (or, 36 additions, 24 multiplications, 8 fused multiply/add), | |
33 * 22 stack variables, 0 constants, and 32 memory accesses | |
34 */ | |
35 #include "dft/simd/q1f.h" | |
36 | |
37 static void q1fv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
38 { | |
39 { | |
40 INT m; | |
41 R *x; | |
42 x = ri; | |
43 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) { | |
44 V T3, T9, TA, TG, TD, TH, T6, Ta, Te, Tk, Tp, Tv, Ts, Tw, Th; | |
45 V Tl; | |
46 { | |
47 V T1, T2, Ty, Tz; | |
48 T1 = LD(&(x[0]), ms, &(x[0])); | |
49 T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
50 T3 = VSUB(T1, T2); | |
51 T9 = VADD(T1, T2); | |
52 Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)])); | |
53 Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)])); | |
54 TA = VSUB(Ty, Tz); | |
55 TG = VADD(Ty, Tz); | |
56 } | |
57 { | |
58 V TB, TC, T4, T5; | |
59 TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
60 TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
61 TD = VSUB(TB, TC); | |
62 TH = VADD(TB, TC); | |
63 T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
64 T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
65 T6 = VSUB(T4, T5); | |
66 Ta = VADD(T4, T5); | |
67 } | |
68 { | |
69 V Tc, Td, Tn, To; | |
70 Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)])); | |
71 Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)])); | |
72 Te = VSUB(Tc, Td); | |
73 Tk = VADD(Tc, Td); | |
74 Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)])); | |
75 To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)])); | |
76 Tp = VSUB(Tn, To); | |
77 Tv = VADD(Tn, To); | |
78 } | |
79 { | |
80 V Tq, Tr, Tf, Tg; | |
81 Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
82 Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
83 Ts = VSUB(Tq, Tr); | |
84 Tw = VADD(Tq, Tr); | |
85 Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
86 Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
87 Th = VSUB(Tf, Tg); | |
88 Tl = VADD(Tf, Tg); | |
89 } | |
90 ST(&(x[0]), VADD(T9, Ta), ms, &(x[0])); | |
91 ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)])); | |
92 ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0])); | |
93 ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)])); | |
94 { | |
95 V T7, Ti, Tt, TE; | |
96 T7 = BYTWJ(&(W[0]), VFNMSI(T6, T3)); | |
97 ST(&(x[WS(vs, 1)]), T7, ms, &(x[WS(vs, 1)])); | |
98 Ti = BYTWJ(&(W[0]), VFNMSI(Th, Te)); | |
99 ST(&(x[WS(vs, 1) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
100 Tt = BYTWJ(&(W[0]), VFNMSI(Ts, Tp)); | |
101 ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 1)])); | |
102 TE = BYTWJ(&(W[0]), VFNMSI(TD, TA)); | |
103 ST(&(x[WS(vs, 1) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
104 } | |
105 { | |
106 V T8, Tj, Tu, TF; | |
107 T8 = BYTWJ(&(W[TWVL * 4]), VFMAI(T6, T3)); | |
108 ST(&(x[WS(vs, 3)]), T8, ms, &(x[WS(vs, 3)])); | |
109 Tj = BYTWJ(&(W[TWVL * 4]), VFMAI(Th, Te)); | |
110 ST(&(x[WS(vs, 3) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
111 Tu = BYTWJ(&(W[TWVL * 4]), VFMAI(Ts, Tp)); | |
112 ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 3)])); | |
113 TF = BYTWJ(&(W[TWVL * 4]), VFMAI(TD, TA)); | |
114 ST(&(x[WS(vs, 3) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
115 } | |
116 { | |
117 V Tb, Tm, Tx, TI; | |
118 Tb = BYTWJ(&(W[TWVL * 2]), VSUB(T9, Ta)); | |
119 ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)])); | |
120 Tm = BYTWJ(&(W[TWVL * 2]), VSUB(Tk, Tl)); | |
121 ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
122 Tx = BYTWJ(&(W[TWVL * 2]), VSUB(Tv, Tw)); | |
123 ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)])); | |
124 TI = BYTWJ(&(W[TWVL * 2]), VSUB(TG, TH)); | |
125 ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
126 } | |
127 } | |
128 } | |
129 VLEAVE(); | |
130 } | |
131 | |
132 static const tw_instr twinstr[] = { | |
133 VTW(0, 1), | |
134 VTW(0, 2), | |
135 VTW(0, 3), | |
136 {TW_NEXT, VL, 0} | |
137 }; | |
138 | |
139 static const ct_desc desc = { 4, XSIMD_STRING("q1fv_4"), twinstr, &GENUS, {36, 24, 8, 0}, 0, 0, 0 }; | |
140 | |
141 void XSIMD(codelet_q1fv_4) (planner *p) { | |
142 X(kdft_difsq_register) (p, q1fv_4, &desc); | |
143 } | |
144 #else | |
145 | |
146 /* Generated by: ../../../genfft/gen_twidsq_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1fv_4 -include dft/simd/q1f.h */ | |
147 | |
148 /* | |
149 * This function contains 44 FP additions, 24 FP multiplications, | |
150 * (or, 44 additions, 24 multiplications, 0 fused multiply/add), | |
151 * 22 stack variables, 0 constants, and 32 memory accesses | |
152 */ | |
153 #include "dft/simd/q1f.h" | |
154 | |
155 static void q1fv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
156 { | |
157 { | |
158 INT m; | |
159 R *x; | |
160 x = ri; | |
161 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) { | |
162 V T3, T9, TA, TG, TD, TH, T6, Ta, Te, Tk, Tp, Tv, Ts, Tw, Th; | |
163 V Tl; | |
164 { | |
165 V T1, T2, Ty, Tz; | |
166 T1 = LD(&(x[0]), ms, &(x[0])); | |
167 T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
168 T3 = VSUB(T1, T2); | |
169 T9 = VADD(T1, T2); | |
170 Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)])); | |
171 Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)])); | |
172 TA = VSUB(Ty, Tz); | |
173 TG = VADD(Ty, Tz); | |
174 } | |
175 { | |
176 V TB, TC, T4, T5; | |
177 TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
178 TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
179 TD = VBYI(VSUB(TB, TC)); | |
180 TH = VADD(TB, TC); | |
181 T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
182 T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
183 T6 = VBYI(VSUB(T4, T5)); | |
184 Ta = VADD(T4, T5); | |
185 } | |
186 { | |
187 V Tc, Td, Tn, To; | |
188 Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)])); | |
189 Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)])); | |
190 Te = VSUB(Tc, Td); | |
191 Tk = VADD(Tc, Td); | |
192 Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)])); | |
193 To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)])); | |
194 Tp = VSUB(Tn, To); | |
195 Tv = VADD(Tn, To); | |
196 } | |
197 { | |
198 V Tq, Tr, Tf, Tg; | |
199 Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
200 Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
201 Ts = VBYI(VSUB(Tq, Tr)); | |
202 Tw = VADD(Tq, Tr); | |
203 Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
204 Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
205 Th = VBYI(VSUB(Tf, Tg)); | |
206 Tl = VADD(Tf, Tg); | |
207 } | |
208 ST(&(x[0]), VADD(T9, Ta), ms, &(x[0])); | |
209 ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)])); | |
210 ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0])); | |
211 ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)])); | |
212 { | |
213 V T7, Ti, Tt, TE; | |
214 T7 = BYTWJ(&(W[0]), VSUB(T3, T6)); | |
215 ST(&(x[WS(vs, 1)]), T7, ms, &(x[WS(vs, 1)])); | |
216 Ti = BYTWJ(&(W[0]), VSUB(Te, Th)); | |
217 ST(&(x[WS(vs, 1) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
218 Tt = BYTWJ(&(W[0]), VSUB(Tp, Ts)); | |
219 ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 1)])); | |
220 TE = BYTWJ(&(W[0]), VSUB(TA, TD)); | |
221 ST(&(x[WS(vs, 1) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
222 } | |
223 { | |
224 V T8, Tj, Tu, TF; | |
225 T8 = BYTWJ(&(W[TWVL * 4]), VADD(T3, T6)); | |
226 ST(&(x[WS(vs, 3)]), T8, ms, &(x[WS(vs, 3)])); | |
227 Tj = BYTWJ(&(W[TWVL * 4]), VADD(Te, Th)); | |
228 ST(&(x[WS(vs, 3) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
229 Tu = BYTWJ(&(W[TWVL * 4]), VADD(Tp, Ts)); | |
230 ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 3)])); | |
231 TF = BYTWJ(&(W[TWVL * 4]), VADD(TA, TD)); | |
232 ST(&(x[WS(vs, 3) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
233 } | |
234 { | |
235 V Tb, Tm, Tx, TI; | |
236 Tb = BYTWJ(&(W[TWVL * 2]), VSUB(T9, Ta)); | |
237 ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)])); | |
238 Tm = BYTWJ(&(W[TWVL * 2]), VSUB(Tk, Tl)); | |
239 ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
240 Tx = BYTWJ(&(W[TWVL * 2]), VSUB(Tv, Tw)); | |
241 ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)])); | |
242 TI = BYTWJ(&(W[TWVL * 2]), VSUB(TG, TH)); | |
243 ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
244 } | |
245 } | |
246 } | |
247 VLEAVE(); | |
248 } | |
249 | |
250 static const tw_instr twinstr[] = { | |
251 VTW(0, 1), | |
252 VTW(0, 2), | |
253 VTW(0, 3), | |
254 {TW_NEXT, VL, 0} | |
255 }; | |
256 | |
257 static const ct_desc desc = { 4, XSIMD_STRING("q1fv_4"), twinstr, &GENUS, {44, 24, 0, 0}, 0, 0, 0 }; | |
258 | |
259 void XSIMD(codelet_q1fv_4) (planner *p) { | |
260 X(kdft_difsq_register) (p, q1fv_4, &desc); | |
261 } | |
262 #endif |