Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/n1fv_16.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:52 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name n1fv_16 -include dft/simd/n1f.h */ | |
29 | |
30 /* | |
31 * This function contains 72 FP additions, 34 FP multiplications, | |
32 * (or, 38 additions, 0 multiplications, 34 fused multiply/add), | |
33 * 30 stack variables, 3 constants, and 32 memory accesses | |
34 */ | |
35 #include "dft/simd/n1f.h" | |
36 | |
37 static void n1fv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
40 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
41 DVK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
42 { | |
43 INT i; | |
44 const R *xi; | |
45 R *xo; | |
46 xi = ri; | |
47 xo = ro; | |
48 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(32, is), MAKE_VOLATILE_STRIDE(32, os)) { | |
49 V T7, TU, Tz, TH, Tu, TV, TA, TK, Te, TX, TC, TO, Tl, TY, TD; | |
50 V TR; | |
51 { | |
52 V T1, T2, T3, T4, T5, T6; | |
53 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
54 T2 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
55 T3 = VADD(T1, T2); | |
56 T4 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
57 T5 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); | |
58 T6 = VADD(T4, T5); | |
59 T7 = VSUB(T3, T6); | |
60 TU = VSUB(T4, T5); | |
61 Tz = VADD(T3, T6); | |
62 TH = VSUB(T1, T2); | |
63 } | |
64 { | |
65 V Tq, TJ, Tt, TI; | |
66 { | |
67 V To, Tp, Tr, Ts; | |
68 To = LD(&(xi[WS(is, 14)]), ivs, &(xi[0])); | |
69 Tp = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
70 Tq = VADD(To, Tp); | |
71 TJ = VSUB(To, Tp); | |
72 Tr = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
73 Ts = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
74 Tt = VADD(Tr, Ts); | |
75 TI = VSUB(Tr, Ts); | |
76 } | |
77 Tu = VSUB(Tq, Tt); | |
78 TV = VSUB(TJ, TI); | |
79 TA = VADD(Tt, Tq); | |
80 TK = VADD(TI, TJ); | |
81 } | |
82 { | |
83 V Ta, TM, Td, TN; | |
84 { | |
85 V T8, T9, Tb, Tc; | |
86 T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
87 T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
88 Ta = VADD(T8, T9); | |
89 TM = VSUB(T8, T9); | |
90 Tb = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
91 Tc = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); | |
92 Td = VADD(Tb, Tc); | |
93 TN = VSUB(Tb, Tc); | |
94 } | |
95 Te = VSUB(Ta, Td); | |
96 TX = VFMA(LDK(KP414213562), TM, TN); | |
97 TC = VADD(Ta, Td); | |
98 TO = VFNMS(LDK(KP414213562), TN, TM); | |
99 } | |
100 { | |
101 V Th, TP, Tk, TQ; | |
102 { | |
103 V Tf, Tg, Ti, Tj; | |
104 Tf = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)])); | |
105 Tg = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
106 Th = VADD(Tf, Tg); | |
107 TP = VSUB(Tf, Tg); | |
108 Ti = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
109 Tj = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | |
110 Tk = VADD(Ti, Tj); | |
111 TQ = VSUB(Tj, Ti); | |
112 } | |
113 Tl = VSUB(Th, Tk); | |
114 TY = VFMA(LDK(KP414213562), TP, TQ); | |
115 TD = VADD(Th, Tk); | |
116 TR = VFNMS(LDK(KP414213562), TQ, TP); | |
117 } | |
118 { | |
119 V TB, TE, TF, TG; | |
120 TB = VADD(Tz, TA); | |
121 TE = VADD(TC, TD); | |
122 ST(&(xo[WS(os, 8)]), VSUB(TB, TE), ovs, &(xo[0])); | |
123 ST(&(xo[0]), VADD(TB, TE), ovs, &(xo[0])); | |
124 TF = VSUB(Tz, TA); | |
125 TG = VSUB(TD, TC); | |
126 ST(&(xo[WS(os, 12)]), VFNMSI(TG, TF), ovs, &(xo[0])); | |
127 ST(&(xo[WS(os, 4)]), VFMAI(TG, TF), ovs, &(xo[0])); | |
128 } | |
129 { | |
130 V Tn, Tx, Tw, Ty, Tm, Tv; | |
131 Tm = VADD(Te, Tl); | |
132 Tn = VFNMS(LDK(KP707106781), Tm, T7); | |
133 Tx = VFMA(LDK(KP707106781), Tm, T7); | |
134 Tv = VSUB(Tl, Te); | |
135 Tw = VFNMS(LDK(KP707106781), Tv, Tu); | |
136 Ty = VFMA(LDK(KP707106781), Tv, Tu); | |
137 ST(&(xo[WS(os, 6)]), VFNMSI(Tw, Tn), ovs, &(xo[0])); | |
138 ST(&(xo[WS(os, 2)]), VFMAI(Ty, Tx), ovs, &(xo[0])); | |
139 ST(&(xo[WS(os, 10)]), VFMAI(Tw, Tn), ovs, &(xo[0])); | |
140 ST(&(xo[WS(os, 14)]), VFNMSI(Ty, Tx), ovs, &(xo[0])); | |
141 } | |
142 { | |
143 V TT, T11, T10, T12; | |
144 { | |
145 V TL, TS, TW, TZ; | |
146 TL = VFMA(LDK(KP707106781), TK, TH); | |
147 TS = VADD(TO, TR); | |
148 TT = VFNMS(LDK(KP923879532), TS, TL); | |
149 T11 = VFMA(LDK(KP923879532), TS, TL); | |
150 TW = VFNMS(LDK(KP707106781), TV, TU); | |
151 TZ = VSUB(TX, TY); | |
152 T10 = VFNMS(LDK(KP923879532), TZ, TW); | |
153 T12 = VFMA(LDK(KP923879532), TZ, TW); | |
154 } | |
155 ST(&(xo[WS(os, 9)]), VFNMSI(T10, TT), ovs, &(xo[WS(os, 1)])); | |
156 ST(&(xo[WS(os, 15)]), VFMAI(T12, T11), ovs, &(xo[WS(os, 1)])); | |
157 ST(&(xo[WS(os, 7)]), VFMAI(T10, TT), ovs, &(xo[WS(os, 1)])); | |
158 ST(&(xo[WS(os, 1)]), VFNMSI(T12, T11), ovs, &(xo[WS(os, 1)])); | |
159 } | |
160 { | |
161 V T15, T19, T18, T1a; | |
162 { | |
163 V T13, T14, T16, T17; | |
164 T13 = VFNMS(LDK(KP707106781), TK, TH); | |
165 T14 = VADD(TX, TY); | |
166 T15 = VFNMS(LDK(KP923879532), T14, T13); | |
167 T19 = VFMA(LDK(KP923879532), T14, T13); | |
168 T16 = VFMA(LDK(KP707106781), TV, TU); | |
169 T17 = VSUB(TR, TO); | |
170 T18 = VFNMS(LDK(KP923879532), T17, T16); | |
171 T1a = VFMA(LDK(KP923879532), T17, T16); | |
172 } | |
173 ST(&(xo[WS(os, 5)]), VFNMSI(T18, T15), ovs, &(xo[WS(os, 1)])); | |
174 ST(&(xo[WS(os, 13)]), VFNMSI(T1a, T19), ovs, &(xo[WS(os, 1)])); | |
175 ST(&(xo[WS(os, 11)]), VFMAI(T18, T15), ovs, &(xo[WS(os, 1)])); | |
176 ST(&(xo[WS(os, 3)]), VFMAI(T1a, T19), ovs, &(xo[WS(os, 1)])); | |
177 } | |
178 } | |
179 } | |
180 VLEAVE(); | |
181 } | |
182 | |
183 static const kdft_desc desc = { 16, XSIMD_STRING("n1fv_16"), {38, 0, 34, 0}, &GENUS, 0, 0, 0, 0 }; | |
184 | |
185 void XSIMD(codelet_n1fv_16) (planner *p) { | |
186 X(kdft_register) (p, n1fv_16, &desc); | |
187 } | |
188 | |
189 #else | |
190 | |
191 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name n1fv_16 -include dft/simd/n1f.h */ | |
192 | |
193 /* | |
194 * This function contains 72 FP additions, 12 FP multiplications, | |
195 * (or, 68 additions, 8 multiplications, 4 fused multiply/add), | |
196 * 30 stack variables, 3 constants, and 32 memory accesses | |
197 */ | |
198 #include "dft/simd/n1f.h" | |
199 | |
200 static void n1fv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
201 { | |
202 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
203 DVK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
204 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
205 { | |
206 INT i; | |
207 const R *xi; | |
208 R *xo; | |
209 xi = ri; | |
210 xo = ro; | |
211 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(32, is), MAKE_VOLATILE_STRIDE(32, os)) { | |
212 V Tp, T13, Tu, TN, Tm, T14, Tv, TY, T7, T17, Ty, TT, Te, T16, Tx; | |
213 V TQ; | |
214 { | |
215 V Tn, To, TM, Ts, Tt, TL; | |
216 Tn = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
217 To = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); | |
218 TM = VADD(Tn, To); | |
219 Ts = LD(&(xi[0]), ivs, &(xi[0])); | |
220 Tt = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
221 TL = VADD(Ts, Tt); | |
222 Tp = VSUB(Tn, To); | |
223 T13 = VADD(TL, TM); | |
224 Tu = VSUB(Ts, Tt); | |
225 TN = VSUB(TL, TM); | |
226 } | |
227 { | |
228 V Ti, TW, Tl, TX; | |
229 { | |
230 V Tg, Th, Tj, Tk; | |
231 Tg = LD(&(xi[WS(is, 14)]), ivs, &(xi[0])); | |
232 Th = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
233 Ti = VSUB(Tg, Th); | |
234 TW = VADD(Tg, Th); | |
235 Tj = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
236 Tk = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
237 Tl = VSUB(Tj, Tk); | |
238 TX = VADD(Tj, Tk); | |
239 } | |
240 Tm = VMUL(LDK(KP707106781), VSUB(Ti, Tl)); | |
241 T14 = VADD(TX, TW); | |
242 Tv = VMUL(LDK(KP707106781), VADD(Tl, Ti)); | |
243 TY = VSUB(TW, TX); | |
244 } | |
245 { | |
246 V T3, TR, T6, TS; | |
247 { | |
248 V T1, T2, T4, T5; | |
249 T1 = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)])); | |
250 T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
251 T3 = VSUB(T1, T2); | |
252 TR = VADD(T1, T2); | |
253 T4 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
254 T5 = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | |
255 T6 = VSUB(T4, T5); | |
256 TS = VADD(T4, T5); | |
257 } | |
258 T7 = VFNMS(LDK(KP923879532), T6, VMUL(LDK(KP382683432), T3)); | |
259 T17 = VADD(TR, TS); | |
260 Ty = VFMA(LDK(KP923879532), T3, VMUL(LDK(KP382683432), T6)); | |
261 TT = VSUB(TR, TS); | |
262 } | |
263 { | |
264 V Ta, TO, Td, TP; | |
265 { | |
266 V T8, T9, Tb, Tc; | |
267 T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
268 T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
269 Ta = VSUB(T8, T9); | |
270 TO = VADD(T8, T9); | |
271 Tb = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
272 Tc = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); | |
273 Td = VSUB(Tb, Tc); | |
274 TP = VADD(Tb, Tc); | |
275 } | |
276 Te = VFMA(LDK(KP382683432), Ta, VMUL(LDK(KP923879532), Td)); | |
277 T16 = VADD(TO, TP); | |
278 Tx = VFNMS(LDK(KP382683432), Td, VMUL(LDK(KP923879532), Ta)); | |
279 TQ = VSUB(TO, TP); | |
280 } | |
281 { | |
282 V T15, T18, T19, T1a; | |
283 T15 = VADD(T13, T14); | |
284 T18 = VADD(T16, T17); | |
285 ST(&(xo[WS(os, 8)]), VSUB(T15, T18), ovs, &(xo[0])); | |
286 ST(&(xo[0]), VADD(T15, T18), ovs, &(xo[0])); | |
287 T19 = VSUB(T13, T14); | |
288 T1a = VBYI(VSUB(T17, T16)); | |
289 ST(&(xo[WS(os, 12)]), VSUB(T19, T1a), ovs, &(xo[0])); | |
290 ST(&(xo[WS(os, 4)]), VADD(T19, T1a), ovs, &(xo[0])); | |
291 } | |
292 { | |
293 V TV, T11, T10, T12, TU, TZ; | |
294 TU = VMUL(LDK(KP707106781), VADD(TQ, TT)); | |
295 TV = VADD(TN, TU); | |
296 T11 = VSUB(TN, TU); | |
297 TZ = VMUL(LDK(KP707106781), VSUB(TT, TQ)); | |
298 T10 = VBYI(VADD(TY, TZ)); | |
299 T12 = VBYI(VSUB(TZ, TY)); | |
300 ST(&(xo[WS(os, 14)]), VSUB(TV, T10), ovs, &(xo[0])); | |
301 ST(&(xo[WS(os, 6)]), VADD(T11, T12), ovs, &(xo[0])); | |
302 ST(&(xo[WS(os, 2)]), VADD(TV, T10), ovs, &(xo[0])); | |
303 ST(&(xo[WS(os, 10)]), VSUB(T11, T12), ovs, &(xo[0])); | |
304 } | |
305 { | |
306 V Tr, TB, TA, TC; | |
307 { | |
308 V Tf, Tq, Tw, Tz; | |
309 Tf = VSUB(T7, Te); | |
310 Tq = VSUB(Tm, Tp); | |
311 Tr = VBYI(VSUB(Tf, Tq)); | |
312 TB = VBYI(VADD(Tq, Tf)); | |
313 Tw = VADD(Tu, Tv); | |
314 Tz = VADD(Tx, Ty); | |
315 TA = VSUB(Tw, Tz); | |
316 TC = VADD(Tw, Tz); | |
317 } | |
318 ST(&(xo[WS(os, 7)]), VADD(Tr, TA), ovs, &(xo[WS(os, 1)])); | |
319 ST(&(xo[WS(os, 15)]), VSUB(TC, TB), ovs, &(xo[WS(os, 1)])); | |
320 ST(&(xo[WS(os, 9)]), VSUB(TA, Tr), ovs, &(xo[WS(os, 1)])); | |
321 ST(&(xo[WS(os, 1)]), VADD(TB, TC), ovs, &(xo[WS(os, 1)])); | |
322 } | |
323 { | |
324 V TF, TJ, TI, TK; | |
325 { | |
326 V TD, TE, TG, TH; | |
327 TD = VSUB(Tu, Tv); | |
328 TE = VADD(Te, T7); | |
329 TF = VADD(TD, TE); | |
330 TJ = VSUB(TD, TE); | |
331 TG = VADD(Tp, Tm); | |
332 TH = VSUB(Ty, Tx); | |
333 TI = VBYI(VADD(TG, TH)); | |
334 TK = VBYI(VSUB(TH, TG)); | |
335 } | |
336 ST(&(xo[WS(os, 13)]), VSUB(TF, TI), ovs, &(xo[WS(os, 1)])); | |
337 ST(&(xo[WS(os, 5)]), VADD(TJ, TK), ovs, &(xo[WS(os, 1)])); | |
338 ST(&(xo[WS(os, 3)]), VADD(TF, TI), ovs, &(xo[WS(os, 1)])); | |
339 ST(&(xo[WS(os, 11)]), VSUB(TJ, TK), ovs, &(xo[WS(os, 1)])); | |
340 } | |
341 } | |
342 } | |
343 VLEAVE(); | |
344 } | |
345 | |
346 static const kdft_desc desc = { 16, XSIMD_STRING("n1fv_16"), {68, 8, 4, 0}, &GENUS, 0, 0, 0, 0 }; | |
347 | |
348 void XSIMD(codelet_n1fv_16) (planner *p) { | |
349 X(kdft_register) (p, n1fv_16, &desc); | |
350 } | |
351 | |
352 #endif |