Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/n1fv_15.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:52 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name n1fv_15 -include dft/simd/n1f.h */ | |
29 | |
30 /* | |
31 * This function contains 78 FP additions, 49 FP multiplications, | |
32 * (or, 36 additions, 7 multiplications, 42 fused multiply/add), | |
33 * 53 stack variables, 8 constants, and 30 memory accesses | |
34 */ | |
35 #include "dft/simd/n1f.h" | |
36 | |
37 static void n1fv_15(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DVK(KP910592997, +0.910592997310029334643087372129977886038870291); | |
40 DVK(KP823639103, +0.823639103546331925877420039278190003029660514); | |
41 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
42 DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
43 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
44 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
45 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
46 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
47 { | |
48 INT i; | |
49 const R *xi; | |
50 R *xo; | |
51 xi = ri; | |
52 xo = ro; | |
53 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(30, is), MAKE_VOLATILE_STRIDE(30, os)) { | |
54 V T5, TX, TB, TO, TU, TV, TR, Ta, Tf, Tg, Tl, Tq, Tr, TE, TH; | |
55 V TI, T10, T12, T1f, T1g; | |
56 { | |
57 V T1, T2, T3, T4; | |
58 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
59 T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
60 T3 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
61 T4 = VADD(T2, T3); | |
62 T5 = VADD(T1, T4); | |
63 TX = VSUB(T3, T2); | |
64 TB = VFNMS(LDK(KP500000000), T4, T1); | |
65 } | |
66 { | |
67 V T6, T9, TC, TM, Tm, Tp, TG, TQ, Tb, Te, TD, TN, Th, Tk, TF; | |
68 V TP, TY, TZ; | |
69 { | |
70 V T7, T8, Tn, To; | |
71 T6 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
72 T7 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
73 T8 = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); | |
74 T9 = VADD(T7, T8); | |
75 TC = VFNMS(LDK(KP500000000), T9, T6); | |
76 TM = VSUB(T8, T7); | |
77 Tm = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
78 Tn = LD(&(xi[WS(is, 14)]), ivs, &(xi[0])); | |
79 To = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
80 Tp = VADD(Tn, To); | |
81 TG = VFNMS(LDK(KP500000000), Tp, Tm); | |
82 TQ = VSUB(To, Tn); | |
83 } | |
84 { | |
85 V Tc, Td, Ti, Tj; | |
86 Tb = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); | |
87 Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
88 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
89 Te = VADD(Tc, Td); | |
90 TD = VFNMS(LDK(KP500000000), Te, Tb); | |
91 TN = VSUB(Td, Tc); | |
92 Th = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
93 Ti = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | |
94 Tj = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
95 Tk = VADD(Ti, Tj); | |
96 TF = VFNMS(LDK(KP500000000), Tk, Th); | |
97 TP = VSUB(Tj, Ti); | |
98 } | |
99 TO = VSUB(TM, TN); | |
100 TU = VSUB(TC, TD); | |
101 TV = VSUB(TF, TG); | |
102 TR = VSUB(TP, TQ); | |
103 Ta = VADD(T6, T9); | |
104 Tf = VADD(Tb, Te); | |
105 Tg = VADD(Ta, Tf); | |
106 Tl = VADD(Th, Tk); | |
107 Tq = VADD(Tm, Tp); | |
108 Tr = VADD(Tl, Tq); | |
109 TE = VADD(TC, TD); | |
110 TH = VADD(TF, TG); | |
111 TI = VADD(TE, TH); | |
112 TY = VADD(TM, TN); | |
113 TZ = VADD(TP, TQ); | |
114 T10 = VADD(TY, TZ); | |
115 T12 = VSUB(TY, TZ); | |
116 } | |
117 T1f = VADD(TB, TI); | |
118 T1g = VMUL(LDK(KP866025403), VADD(TX, T10)); | |
119 ST(&(xo[WS(os, 5)]), VFNMSI(T1g, T1f), ovs, &(xo[WS(os, 1)])); | |
120 ST(&(xo[WS(os, 10)]), VFMAI(T1g, T1f), ovs, &(xo[0])); | |
121 { | |
122 V Tu, Ts, Tt, Ty, TA, Tw, Tx, Tz, Tv; | |
123 Tu = VSUB(Tg, Tr); | |
124 Ts = VADD(Tg, Tr); | |
125 Tt = VFNMS(LDK(KP250000000), Ts, T5); | |
126 Tw = VSUB(Tl, Tq); | |
127 Tx = VSUB(Ta, Tf); | |
128 Ty = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tx, Tw)); | |
129 TA = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tw, Tx)); | |
130 ST(&(xo[0]), VADD(T5, Ts), ovs, &(xo[0])); | |
131 Tz = VFMA(LDK(KP559016994), Tu, Tt); | |
132 ST(&(xo[WS(os, 6)]), VFNMSI(TA, Tz), ovs, &(xo[0])); | |
133 ST(&(xo[WS(os, 9)]), VFMAI(TA, Tz), ovs, &(xo[WS(os, 1)])); | |
134 Tv = VFNMS(LDK(KP559016994), Tu, Tt); | |
135 ST(&(xo[WS(os, 3)]), VFNMSI(Ty, Tv), ovs, &(xo[WS(os, 1)])); | |
136 ST(&(xo[WS(os, 12)]), VFMAI(Ty, Tv), ovs, &(xo[0])); | |
137 } | |
138 { | |
139 V TS, TW, T1a, T18, T13, T1b, TL, T17, T11, TJ, TK; | |
140 TS = VFMA(LDK(KP618033988), TR, TO); | |
141 TW = VFMA(LDK(KP618033988), TV, TU); | |
142 T1a = VFNMS(LDK(KP618033988), TU, TV); | |
143 T18 = VFNMS(LDK(KP618033988), TO, TR); | |
144 T11 = VFNMS(LDK(KP250000000), T10, TX); | |
145 T13 = VFMA(LDK(KP559016994), T12, T11); | |
146 T1b = VFNMS(LDK(KP559016994), T12, T11); | |
147 TJ = VFNMS(LDK(KP250000000), TI, TB); | |
148 TK = VSUB(TE, TH); | |
149 TL = VFMA(LDK(KP559016994), TK, TJ); | |
150 T17 = VFNMS(LDK(KP559016994), TK, TJ); | |
151 { | |
152 V TT, T14, T1d, T1e; | |
153 TT = VFMA(LDK(KP823639103), TS, TL); | |
154 T14 = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T13, TW)); | |
155 ST(&(xo[WS(os, 1)]), VFNMSI(T14, TT), ovs, &(xo[WS(os, 1)])); | |
156 ST(&(xo[WS(os, 14)]), VFMAI(T14, TT), ovs, &(xo[0])); | |
157 T1d = VFNMS(LDK(KP823639103), T18, T17); | |
158 T1e = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T1b, T1a)); | |
159 ST(&(xo[WS(os, 8)]), VFNMSI(T1e, T1d), ovs, &(xo[0])); | |
160 ST(&(xo[WS(os, 7)]), VFMAI(T1e, T1d), ovs, &(xo[WS(os, 1)])); | |
161 } | |
162 { | |
163 V T15, T16, T19, T1c; | |
164 T15 = VFNMS(LDK(KP823639103), TS, TL); | |
165 T16 = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T13, TW)); | |
166 ST(&(xo[WS(os, 11)]), VFNMSI(T16, T15), ovs, &(xo[WS(os, 1)])); | |
167 ST(&(xo[WS(os, 4)]), VFMAI(T16, T15), ovs, &(xo[0])); | |
168 T19 = VFMA(LDK(KP823639103), T18, T17); | |
169 T1c = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T1b, T1a)); | |
170 ST(&(xo[WS(os, 13)]), VFNMSI(T1c, T19), ovs, &(xo[WS(os, 1)])); | |
171 ST(&(xo[WS(os, 2)]), VFMAI(T1c, T19), ovs, &(xo[0])); | |
172 } | |
173 } | |
174 } | |
175 } | |
176 VLEAVE(); | |
177 } | |
178 | |
179 static const kdft_desc desc = { 15, XSIMD_STRING("n1fv_15"), {36, 7, 42, 0}, &GENUS, 0, 0, 0, 0 }; | |
180 | |
181 void XSIMD(codelet_n1fv_15) (planner *p) { | |
182 X(kdft_register) (p, n1fv_15, &desc); | |
183 } | |
184 | |
185 #else | |
186 | |
187 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name n1fv_15 -include dft/simd/n1f.h */ | |
188 | |
189 /* | |
190 * This function contains 78 FP additions, 25 FP multiplications, | |
191 * (or, 64 additions, 11 multiplications, 14 fused multiply/add), | |
192 * 55 stack variables, 10 constants, and 30 memory accesses | |
193 */ | |
194 #include "dft/simd/n1f.h" | |
195 | |
196 static void n1fv_15(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
197 { | |
198 DVK(KP216506350, +0.216506350946109661690930792688234045867850657); | |
199 DVK(KP509036960, +0.509036960455127183450980863393907648510733164); | |
200 DVK(KP823639103, +0.823639103546331925877420039278190003029660514); | |
201 DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
202 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
203 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
204 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
205 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
206 DVK(KP484122918, +0.484122918275927110647408174972799951354115213); | |
207 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
208 { | |
209 INT i; | |
210 const R *xi; | |
211 R *xo; | |
212 xi = ri; | |
213 xo = ro; | |
214 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(30, is), MAKE_VOLATILE_STRIDE(30, os)) { | |
215 V T5, T10, TB, TO, TU, TV, TR, Ta, Tf, Tg, Tl, Tq, Tr, TE, TH; | |
216 V TI, TZ, T11, T1f, T1g; | |
217 { | |
218 V T1, T2, T3, T4; | |
219 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
220 T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
221 T3 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
222 T4 = VADD(T2, T3); | |
223 T5 = VADD(T1, T4); | |
224 T10 = VSUB(T3, T2); | |
225 TB = VFNMS(LDK(KP500000000), T4, T1); | |
226 } | |
227 { | |
228 V T6, T9, TC, TP, Tm, Tp, TG, TN, Tb, Te, TD, TQ, Th, Tk, TF; | |
229 V TM, TX, TY; | |
230 { | |
231 V T7, T8, Tn, To; | |
232 T6 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
233 T7 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
234 T8 = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); | |
235 T9 = VADD(T7, T8); | |
236 TC = VFNMS(LDK(KP500000000), T9, T6); | |
237 TP = VSUB(T8, T7); | |
238 Tm = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
239 Tn = LD(&(xi[WS(is, 14)]), ivs, &(xi[0])); | |
240 To = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
241 Tp = VADD(Tn, To); | |
242 TG = VFNMS(LDK(KP500000000), Tp, Tm); | |
243 TN = VSUB(To, Tn); | |
244 } | |
245 { | |
246 V Tc, Td, Ti, Tj; | |
247 Tb = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); | |
248 Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
249 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
250 Te = VADD(Tc, Td); | |
251 TD = VFNMS(LDK(KP500000000), Te, Tb); | |
252 TQ = VSUB(Td, Tc); | |
253 Th = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
254 Ti = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | |
255 Tj = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
256 Tk = VADD(Ti, Tj); | |
257 TF = VFNMS(LDK(KP500000000), Tk, Th); | |
258 TM = VSUB(Tj, Ti); | |
259 } | |
260 TO = VSUB(TM, TN); | |
261 TU = VSUB(TF, TG); | |
262 TV = VSUB(TC, TD); | |
263 TR = VSUB(TP, TQ); | |
264 Ta = VADD(T6, T9); | |
265 Tf = VADD(Tb, Te); | |
266 Tg = VADD(Ta, Tf); | |
267 Tl = VADD(Th, Tk); | |
268 Tq = VADD(Tm, Tp); | |
269 Tr = VADD(Tl, Tq); | |
270 TE = VADD(TC, TD); | |
271 TH = VADD(TF, TG); | |
272 TI = VADD(TE, TH); | |
273 TX = VADD(TP, TQ); | |
274 TY = VADD(TM, TN); | |
275 TZ = VMUL(LDK(KP484122918), VSUB(TX, TY)); | |
276 T11 = VADD(TX, TY); | |
277 } | |
278 T1f = VADD(TB, TI); | |
279 T1g = VBYI(VMUL(LDK(KP866025403), VADD(T10, T11))); | |
280 ST(&(xo[WS(os, 5)]), VSUB(T1f, T1g), ovs, &(xo[WS(os, 1)])); | |
281 ST(&(xo[WS(os, 10)]), VADD(T1f, T1g), ovs, &(xo[0])); | |
282 { | |
283 V Tu, Ts, Tt, Ty, TA, Tw, Tx, Tz, Tv; | |
284 Tu = VMUL(LDK(KP559016994), VSUB(Tg, Tr)); | |
285 Ts = VADD(Tg, Tr); | |
286 Tt = VFNMS(LDK(KP250000000), Ts, T5); | |
287 Tw = VSUB(Tl, Tq); | |
288 Tx = VSUB(Ta, Tf); | |
289 Ty = VBYI(VFNMS(LDK(KP587785252), Tx, VMUL(LDK(KP951056516), Tw))); | |
290 TA = VBYI(VFMA(LDK(KP951056516), Tx, VMUL(LDK(KP587785252), Tw))); | |
291 ST(&(xo[0]), VADD(T5, Ts), ovs, &(xo[0])); | |
292 Tz = VADD(Tu, Tt); | |
293 ST(&(xo[WS(os, 6)]), VSUB(Tz, TA), ovs, &(xo[0])); | |
294 ST(&(xo[WS(os, 9)]), VADD(TA, Tz), ovs, &(xo[WS(os, 1)])); | |
295 Tv = VSUB(Tt, Tu); | |
296 ST(&(xo[WS(os, 3)]), VSUB(Tv, Ty), ovs, &(xo[WS(os, 1)])); | |
297 ST(&(xo[WS(os, 12)]), VADD(Ty, Tv), ovs, &(xo[0])); | |
298 } | |
299 { | |
300 V TS, TW, T1b, T18, T13, T1a, TL, T17, T12, TJ, TK; | |
301 TS = VFNMS(LDK(KP509036960), TR, VMUL(LDK(KP823639103), TO)); | |
302 TW = VFNMS(LDK(KP587785252), TV, VMUL(LDK(KP951056516), TU)); | |
303 T1b = VFMA(LDK(KP951056516), TV, VMUL(LDK(KP587785252), TU)); | |
304 T18 = VFMA(LDK(KP823639103), TR, VMUL(LDK(KP509036960), TO)); | |
305 T12 = VFNMS(LDK(KP216506350), T11, VMUL(LDK(KP866025403), T10)); | |
306 T13 = VSUB(TZ, T12); | |
307 T1a = VADD(TZ, T12); | |
308 TJ = VFNMS(LDK(KP250000000), TI, TB); | |
309 TK = VMUL(LDK(KP559016994), VSUB(TE, TH)); | |
310 TL = VSUB(TJ, TK); | |
311 T17 = VADD(TK, TJ); | |
312 { | |
313 V TT, T14, T1d, T1e; | |
314 TT = VSUB(TL, TS); | |
315 T14 = VBYI(VSUB(TW, T13)); | |
316 ST(&(xo[WS(os, 8)]), VSUB(TT, T14), ovs, &(xo[0])); | |
317 ST(&(xo[WS(os, 7)]), VADD(TT, T14), ovs, &(xo[WS(os, 1)])); | |
318 T1d = VSUB(T17, T18); | |
319 T1e = VBYI(VADD(T1b, T1a)); | |
320 ST(&(xo[WS(os, 11)]), VSUB(T1d, T1e), ovs, &(xo[WS(os, 1)])); | |
321 ST(&(xo[WS(os, 4)]), VADD(T1d, T1e), ovs, &(xo[0])); | |
322 } | |
323 { | |
324 V T15, T16, T19, T1c; | |
325 T15 = VADD(TL, TS); | |
326 T16 = VBYI(VADD(TW, T13)); | |
327 ST(&(xo[WS(os, 13)]), VSUB(T15, T16), ovs, &(xo[WS(os, 1)])); | |
328 ST(&(xo[WS(os, 2)]), VADD(T15, T16), ovs, &(xo[0])); | |
329 T19 = VADD(T17, T18); | |
330 T1c = VBYI(VSUB(T1a, T1b)); | |
331 ST(&(xo[WS(os, 14)]), VSUB(T19, T1c), ovs, &(xo[0])); | |
332 ST(&(xo[WS(os, 1)]), VADD(T19, T1c), ovs, &(xo[WS(os, 1)])); | |
333 } | |
334 } | |
335 } | |
336 } | |
337 VLEAVE(); | |
338 } | |
339 | |
340 static const kdft_desc desc = { 15, XSIMD_STRING("n1fv_15"), {64, 11, 14, 0}, &GENUS, 0, 0, 0, 0 }; | |
341 | |
342 void XSIMD(codelet_n1fv_15) (planner *p) { | |
343 X(kdft_register) (p, n1fv_15, &desc); | |
344 } | |
345 | |
346 #endif |