Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/n1fv_10.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:51 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name n1fv_10 -include dft/simd/n1f.h */ | |
29 | |
30 /* | |
31 * This function contains 42 FP additions, 22 FP multiplications, | |
32 * (or, 24 additions, 4 multiplications, 18 fused multiply/add), | |
33 * 33 stack variables, 4 constants, and 20 memory accesses | |
34 */ | |
35 #include "dft/simd/n1f.h" | |
36 | |
37 static void n1fv_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
43 { | |
44 INT i; | |
45 const R *xi; | |
46 R *xo; | |
47 xi = ri; | |
48 xo = ro; | |
49 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) { | |
50 V T3, Tr, Tm, Tn, TD, TC, Tu, Tx, Ty, Ta, Th, Ti, T1, T2; | |
51 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
52 T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
53 T3 = VSUB(T1, T2); | |
54 Tr = VADD(T1, T2); | |
55 { | |
56 V T6, Ts, Tg, Tw, T9, Tt, Td, Tv; | |
57 { | |
58 V T4, T5, Te, Tf; | |
59 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
60 T5 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
61 T6 = VSUB(T4, T5); | |
62 Ts = VADD(T4, T5); | |
63 Te = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
64 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
65 Tg = VSUB(Te, Tf); | |
66 Tw = VADD(Te, Tf); | |
67 } | |
68 { | |
69 V T7, T8, Tb, Tc; | |
70 T7 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
71 T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
72 T9 = VSUB(T7, T8); | |
73 Tt = VADD(T7, T8); | |
74 Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
75 Tc = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
76 Td = VSUB(Tb, Tc); | |
77 Tv = VADD(Tb, Tc); | |
78 } | |
79 Tm = VSUB(T6, T9); | |
80 Tn = VSUB(Td, Tg); | |
81 TD = VSUB(Ts, Tt); | |
82 TC = VSUB(Tv, Tw); | |
83 Tu = VADD(Ts, Tt); | |
84 Tx = VADD(Tv, Tw); | |
85 Ty = VADD(Tu, Tx); | |
86 Ta = VADD(T6, T9); | |
87 Th = VADD(Td, Tg); | |
88 Ti = VADD(Ta, Th); | |
89 } | |
90 ST(&(xo[WS(os, 5)]), VADD(T3, Ti), ovs, &(xo[WS(os, 1)])); | |
91 ST(&(xo[0]), VADD(Tr, Ty), ovs, &(xo[0])); | |
92 { | |
93 V To, Tq, Tl, Tp, Tj, Tk; | |
94 To = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tn, Tm)); | |
95 Tq = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tm, Tn)); | |
96 Tj = VFNMS(LDK(KP250000000), Ti, T3); | |
97 Tk = VSUB(Ta, Th); | |
98 Tl = VFMA(LDK(KP559016994), Tk, Tj); | |
99 Tp = VFNMS(LDK(KP559016994), Tk, Tj); | |
100 ST(&(xo[WS(os, 1)]), VFNMSI(To, Tl), ovs, &(xo[WS(os, 1)])); | |
101 ST(&(xo[WS(os, 7)]), VFMAI(Tq, Tp), ovs, &(xo[WS(os, 1)])); | |
102 ST(&(xo[WS(os, 9)]), VFMAI(To, Tl), ovs, &(xo[WS(os, 1)])); | |
103 ST(&(xo[WS(os, 3)]), VFNMSI(Tq, Tp), ovs, &(xo[WS(os, 1)])); | |
104 } | |
105 { | |
106 V TE, TG, TB, TF, Tz, TA; | |
107 TE = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TD, TC)); | |
108 TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TC, TD)); | |
109 Tz = VFNMS(LDK(KP250000000), Ty, Tr); | |
110 TA = VSUB(Tu, Tx); | |
111 TB = VFNMS(LDK(KP559016994), TA, Tz); | |
112 TF = VFMA(LDK(KP559016994), TA, Tz); | |
113 ST(&(xo[WS(os, 2)]), VFMAI(TE, TB), ovs, &(xo[0])); | |
114 ST(&(xo[WS(os, 6)]), VFNMSI(TG, TF), ovs, &(xo[0])); | |
115 ST(&(xo[WS(os, 8)]), VFNMSI(TE, TB), ovs, &(xo[0])); | |
116 ST(&(xo[WS(os, 4)]), VFMAI(TG, TF), ovs, &(xo[0])); | |
117 } | |
118 } | |
119 } | |
120 VLEAVE(); | |
121 } | |
122 | |
123 static const kdft_desc desc = { 10, XSIMD_STRING("n1fv_10"), {24, 4, 18, 0}, &GENUS, 0, 0, 0, 0 }; | |
124 | |
125 void XSIMD(codelet_n1fv_10) (planner *p) { | |
126 X(kdft_register) (p, n1fv_10, &desc); | |
127 } | |
128 | |
129 #else | |
130 | |
131 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name n1fv_10 -include dft/simd/n1f.h */ | |
132 | |
133 /* | |
134 * This function contains 42 FP additions, 12 FP multiplications, | |
135 * (or, 36 additions, 6 multiplications, 6 fused multiply/add), | |
136 * 33 stack variables, 4 constants, and 20 memory accesses | |
137 */ | |
138 #include "dft/simd/n1f.h" | |
139 | |
140 static void n1fv_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
141 { | |
142 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
143 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
144 DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
145 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
146 { | |
147 INT i; | |
148 const R *xi; | |
149 R *xo; | |
150 xi = ri; | |
151 xo = ro; | |
152 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) { | |
153 V Ti, Ty, Tm, Tn, Tw, Tt, Tz, TA, TB, T7, Te, Tj, Tg, Th; | |
154 Tg = LD(&(xi[0]), ivs, &(xi[0])); | |
155 Th = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
156 Ti = VSUB(Tg, Th); | |
157 Ty = VADD(Tg, Th); | |
158 { | |
159 V T3, Tu, Td, Ts, T6, Tv, Ta, Tr; | |
160 { | |
161 V T1, T2, Tb, Tc; | |
162 T1 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
163 T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
164 T3 = VSUB(T1, T2); | |
165 Tu = VADD(T1, T2); | |
166 Tb = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
167 Tc = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
168 Td = VSUB(Tb, Tc); | |
169 Ts = VADD(Tb, Tc); | |
170 } | |
171 { | |
172 V T4, T5, T8, T9; | |
173 T4 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
174 T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
175 T6 = VSUB(T4, T5); | |
176 Tv = VADD(T4, T5); | |
177 T8 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
178 T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
179 Ta = VSUB(T8, T9); | |
180 Tr = VADD(T8, T9); | |
181 } | |
182 Tm = VSUB(T3, T6); | |
183 Tn = VSUB(Ta, Td); | |
184 Tw = VSUB(Tu, Tv); | |
185 Tt = VSUB(Tr, Ts); | |
186 Tz = VADD(Tu, Tv); | |
187 TA = VADD(Tr, Ts); | |
188 TB = VADD(Tz, TA); | |
189 T7 = VADD(T3, T6); | |
190 Te = VADD(Ta, Td); | |
191 Tj = VADD(T7, Te); | |
192 } | |
193 ST(&(xo[WS(os, 5)]), VADD(Ti, Tj), ovs, &(xo[WS(os, 1)])); | |
194 ST(&(xo[0]), VADD(Ty, TB), ovs, &(xo[0])); | |
195 { | |
196 V To, Tq, Tl, Tp, Tf, Tk; | |
197 To = VBYI(VFMA(LDK(KP951056516), Tm, VMUL(LDK(KP587785252), Tn))); | |
198 Tq = VBYI(VFNMS(LDK(KP587785252), Tm, VMUL(LDK(KP951056516), Tn))); | |
199 Tf = VMUL(LDK(KP559016994), VSUB(T7, Te)); | |
200 Tk = VFNMS(LDK(KP250000000), Tj, Ti); | |
201 Tl = VADD(Tf, Tk); | |
202 Tp = VSUB(Tk, Tf); | |
203 ST(&(xo[WS(os, 1)]), VSUB(Tl, To), ovs, &(xo[WS(os, 1)])); | |
204 ST(&(xo[WS(os, 7)]), VADD(Tq, Tp), ovs, &(xo[WS(os, 1)])); | |
205 ST(&(xo[WS(os, 9)]), VADD(To, Tl), ovs, &(xo[WS(os, 1)])); | |
206 ST(&(xo[WS(os, 3)]), VSUB(Tp, Tq), ovs, &(xo[WS(os, 1)])); | |
207 } | |
208 { | |
209 V Tx, TF, TE, TG, TC, TD; | |
210 Tx = VBYI(VFNMS(LDK(KP587785252), Tw, VMUL(LDK(KP951056516), Tt))); | |
211 TF = VBYI(VFMA(LDK(KP951056516), Tw, VMUL(LDK(KP587785252), Tt))); | |
212 TC = VFNMS(LDK(KP250000000), TB, Ty); | |
213 TD = VMUL(LDK(KP559016994), VSUB(Tz, TA)); | |
214 TE = VSUB(TC, TD); | |
215 TG = VADD(TD, TC); | |
216 ST(&(xo[WS(os, 2)]), VADD(Tx, TE), ovs, &(xo[0])); | |
217 ST(&(xo[WS(os, 6)]), VSUB(TG, TF), ovs, &(xo[0])); | |
218 ST(&(xo[WS(os, 8)]), VSUB(TE, Tx), ovs, &(xo[0])); | |
219 ST(&(xo[WS(os, 4)]), VADD(TF, TG), ovs, &(xo[0])); | |
220 } | |
221 } | |
222 } | |
223 VLEAVE(); | |
224 } | |
225 | |
226 static const kdft_desc desc = { 10, XSIMD_STRING("n1fv_10"), {36, 6, 6, 0}, &GENUS, 0, 0, 0, 0 }; | |
227 | |
228 void XSIMD(codelet_n1fv_10) (planner *p) { | |
229 X(kdft_register) (p, n1fv_10, &desc); | |
230 } | |
231 | |
232 #endif |