Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/n1bv_9.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:55 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 9 -name n1bv_9 -include dft/simd/n1b.h */ | |
29 | |
30 /* | |
31 * This function contains 46 FP additions, 38 FP multiplications, | |
32 * (or, 12 additions, 4 multiplications, 34 fused multiply/add), | |
33 * 50 stack variables, 19 constants, and 18 memory accesses | |
34 */ | |
35 #include "dft/simd/n1b.h" | |
36 | |
37 static void n1bv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DVK(KP666666666, +0.666666666666666666666666666666666666666666667); | |
40 DVK(KP852868531, +0.852868531952443209628250963940074071936020296); | |
41 DVK(KP898197570, +0.898197570222573798468955502359086394667167570); | |
42 DVK(KP673648177, +0.673648177666930348851716626769314796000375677); | |
43 DVK(KP879385241, +0.879385241571816768108218554649462939872416269); | |
44 DVK(KP984807753, +0.984807753012208059366743024589523013670643252); | |
45 DVK(KP939692620, +0.939692620785908384054109277324731469936208134); | |
46 DVK(KP826351822, +0.826351822333069651148283373230685203999624323); | |
47 DVK(KP420276625, +0.420276625461206169731530603237061658838781920); | |
48 DVK(KP907603734, +0.907603734547952313649323976213898122064543220); | |
49 DVK(KP347296355, +0.347296355333860697703433253538629592000751354); | |
50 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
51 DVK(KP968908795, +0.968908795874236621082202410917456709164223497); | |
52 DVK(KP726681596, +0.726681596905677465811651808188092531873167623); | |
53 DVK(KP586256827, +0.586256827714544512072145703099641959914944179); | |
54 DVK(KP152703644, +0.152703644666139302296566746461370407999248646); | |
55 DVK(KP203604859, +0.203604859554852403062088995281827210665664861); | |
56 DVK(KP439692620, +0.439692620785908384054109277324731469936208134); | |
57 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
58 { | |
59 INT i; | |
60 const R *xi; | |
61 R *xo; | |
62 xi = ii; | |
63 xo = io; | |
64 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) { | |
65 V T5, TF, Tp, Te, Td, TG, TH, Ta, Tm, Tu, Tr, Th, Ti, Tv, Ts; | |
66 V TK, TI, TJ; | |
67 { | |
68 V T1, T2, T3, T4; | |
69 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
70 T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
71 T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
72 T4 = VADD(T2, T3); | |
73 T5 = VFNMS(LDK(KP500000000), T4, T1); | |
74 TF = VADD(T1, T4); | |
75 Tp = VSUB(T2, T3); | |
76 } | |
77 { | |
78 V T6, Tf, T9, Tg; | |
79 T6 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
80 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
81 { | |
82 V T7, T8, Tb, Tc; | |
83 T7 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
84 T8 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
85 T9 = VADD(T7, T8); | |
86 Te = VSUB(T8, T7); | |
87 Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
88 Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
89 Td = VSUB(Tb, Tc); | |
90 Tg = VADD(Tb, Tc); | |
91 } | |
92 TG = VADD(Tf, Tg); | |
93 TH = VADD(T6, T9); | |
94 Ta = VFNMS(LDK(KP500000000), T9, T6); | |
95 Tm = VFNMS(LDK(KP439692620), Td, Ta); | |
96 Tu = VFMA(LDK(KP203604859), Ta, Te); | |
97 Tr = VFNMS(LDK(KP152703644), Te, Ta); | |
98 Th = VFNMS(LDK(KP500000000), Tg, Tf); | |
99 Ti = VFNMS(LDK(KP586256827), Th, Te); | |
100 Tv = VFNMS(LDK(KP726681596), Td, Th); | |
101 Ts = VFMA(LDK(KP968908795), Th, Td); | |
102 } | |
103 TK = VMUL(LDK(KP866025403), VSUB(TG, TH)); | |
104 TI = VADD(TG, TH); | |
105 TJ = VFNMS(LDK(KP500000000), TI, TF); | |
106 ST(&(xo[WS(os, 3)]), VFMAI(TK, TJ), ovs, &(xo[WS(os, 1)])); | |
107 ST(&(xo[0]), VADD(TI, TF), ovs, &(xo[0])); | |
108 ST(&(xo[WS(os, 6)]), VFNMSI(TK, TJ), ovs, &(xo[0])); | |
109 { | |
110 V Tk, To, Tj, Tn, Tl, Tq; | |
111 Tj = VFNMS(LDK(KP347296355), Ti, Td); | |
112 Tk = VFNMS(LDK(KP907603734), Tj, Ta); | |
113 Tn = VFNMS(LDK(KP420276625), Tm, Te); | |
114 To = VFNMS(LDK(KP826351822), Tn, Th); | |
115 Tl = VFNMS(LDK(KP939692620), Tk, T5); | |
116 Tq = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), Tp, To)); | |
117 ST(&(xo[WS(os, 7)]), VFNMSI(Tq, Tl), ovs, &(xo[WS(os, 1)])); | |
118 ST(&(xo[WS(os, 2)]), VFMAI(Tq, Tl), ovs, &(xo[0])); | |
119 } | |
120 { | |
121 V Tx, TD, TB, TE, Ty, TC; | |
122 { | |
123 V Tt, Tw, Tz, TA; | |
124 Tt = VFNMS(LDK(KP673648177), Ts, Tr); | |
125 Tw = VFMA(LDK(KP898197570), Tv, Tu); | |
126 Tx = VFNMS(LDK(KP500000000), Tw, Tt); | |
127 TD = VFMA(LDK(KP852868531), Tw, T5); | |
128 Tz = VFNMS(LDK(KP898197570), Tv, Tu); | |
129 TA = VFMA(LDK(KP673648177), Ts, Tr); | |
130 TB = VFMA(LDK(KP666666666), TA, Tz); | |
131 TE = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), Tp, TA)); | |
132 } | |
133 ST(&(xo[WS(os, 1)]), VFMAI(TE, TD), ovs, &(xo[WS(os, 1)])); | |
134 ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0])); | |
135 Ty = VFMA(LDK(KP852868531), Tx, T5); | |
136 TC = VMUL(LDK(KP866025403), VFNMS(LDK(KP852868531), TB, Tp)); | |
137 ST(&(xo[WS(os, 4)]), VFMAI(TC, Ty), ovs, &(xo[0])); | |
138 ST(&(xo[WS(os, 5)]), VFNMSI(TC, Ty), ovs, &(xo[WS(os, 1)])); | |
139 } | |
140 } | |
141 } | |
142 VLEAVE(); | |
143 } | |
144 | |
145 static const kdft_desc desc = { 9, XSIMD_STRING("n1bv_9"), {12, 4, 34, 0}, &GENUS, 0, 0, 0, 0 }; | |
146 | |
147 void XSIMD(codelet_n1bv_9) (planner *p) { | |
148 X(kdft_register) (p, n1bv_9, &desc); | |
149 } | |
150 | |
151 #else | |
152 | |
153 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 9 -name n1bv_9 -include dft/simd/n1b.h */ | |
154 | |
155 /* | |
156 * This function contains 46 FP additions, 26 FP multiplications, | |
157 * (or, 30 additions, 10 multiplications, 16 fused multiply/add), | |
158 * 41 stack variables, 14 constants, and 18 memory accesses | |
159 */ | |
160 #include "dft/simd/n1b.h" | |
161 | |
162 static void n1bv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
163 { | |
164 DVK(KP342020143, +0.342020143325668733044099614682259580763083368); | |
165 DVK(KP813797681, +0.813797681349373692844693217248393223289101568); | |
166 DVK(KP939692620, +0.939692620785908384054109277324731469936208134); | |
167 DVK(KP296198132, +0.296198132726023843175338011893050938967728390); | |
168 DVK(KP642787609, +0.642787609686539326322643409907263432907559884); | |
169 DVK(KP663413948, +0.663413948168938396205421319635891297216863310); | |
170 DVK(KP556670399, +0.556670399226419366452912952047023132968291906); | |
171 DVK(KP766044443, +0.766044443118978035202392650555416673935832457); | |
172 DVK(KP984807753, +0.984807753012208059366743024589523013670643252); | |
173 DVK(KP150383733, +0.150383733180435296639271897612501926072238258); | |
174 DVK(KP852868531, +0.852868531952443209628250963940074071936020296); | |
175 DVK(KP173648177, +0.173648177666930348851716626769314796000375677); | |
176 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
177 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
178 { | |
179 INT i; | |
180 const R *xi; | |
181 R *xo; | |
182 xi = ii; | |
183 xo = io; | |
184 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) { | |
185 V T5, Ty, Tm, Ti, Tw, Th, Tj, To, Tb, Tv, Ta, Tc, Tn; | |
186 { | |
187 V T1, T2, T3, T4; | |
188 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
189 T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
190 T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
191 T4 = VADD(T2, T3); | |
192 T5 = VFNMS(LDK(KP500000000), T4, T1); | |
193 Ty = VADD(T1, T4); | |
194 Tm = VMUL(LDK(KP866025403), VSUB(T2, T3)); | |
195 } | |
196 { | |
197 V Td, Tg, Te, Tf; | |
198 Td = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
199 Te = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
200 Tf = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
201 Tg = VADD(Te, Tf); | |
202 Ti = VSUB(Te, Tf); | |
203 Tw = VADD(Td, Tg); | |
204 Th = VFNMS(LDK(KP500000000), Tg, Td); | |
205 Tj = VFNMS(LDK(KP852868531), Ti, VMUL(LDK(KP173648177), Th)); | |
206 To = VFMA(LDK(KP150383733), Ti, VMUL(LDK(KP984807753), Th)); | |
207 } | |
208 { | |
209 V T6, T9, T7, T8; | |
210 T6 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
211 T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
212 T8 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
213 T9 = VADD(T7, T8); | |
214 Tb = VSUB(T7, T8); | |
215 Tv = VADD(T6, T9); | |
216 Ta = VFNMS(LDK(KP500000000), T9, T6); | |
217 Tc = VFNMS(LDK(KP556670399), Tb, VMUL(LDK(KP766044443), Ta)); | |
218 Tn = VFMA(LDK(KP663413948), Tb, VMUL(LDK(KP642787609), Ta)); | |
219 } | |
220 { | |
221 V Tx, Tz, TA, Tt, Tu; | |
222 Tx = VBYI(VMUL(LDK(KP866025403), VSUB(Tv, Tw))); | |
223 Tz = VADD(Tv, Tw); | |
224 TA = VFNMS(LDK(KP500000000), Tz, Ty); | |
225 ST(&(xo[WS(os, 3)]), VADD(Tx, TA), ovs, &(xo[WS(os, 1)])); | |
226 ST(&(xo[0]), VADD(Ty, Tz), ovs, &(xo[0])); | |
227 ST(&(xo[WS(os, 6)]), VSUB(TA, Tx), ovs, &(xo[0])); | |
228 Tt = VFMA(LDK(KP852868531), Tb, VFMA(LDK(KP173648177), Ta, VFMA(LDK(KP296198132), Ti, VFNMS(LDK(KP939692620), Th, T5)))); | |
229 Tu = VBYI(VSUB(VFMA(LDK(KP984807753), Ta, VFMA(LDK(KP813797681), Ti, VFNMS(LDK(KP150383733), Tb, VMUL(LDK(KP342020143), Th)))), Tm)); | |
230 ST(&(xo[WS(os, 7)]), VSUB(Tt, Tu), ovs, &(xo[WS(os, 1)])); | |
231 ST(&(xo[WS(os, 2)]), VADD(Tt, Tu), ovs, &(xo[0])); | |
232 { | |
233 V Tl, Ts, Tq, Tr, Tk, Tp; | |
234 Tk = VADD(Tc, Tj); | |
235 Tl = VADD(T5, Tk); | |
236 Ts = VFMA(LDK(KP866025403), VSUB(To, Tn), VFNMS(LDK(KP500000000), Tk, T5)); | |
237 Tp = VADD(Tn, To); | |
238 Tq = VBYI(VADD(Tm, Tp)); | |
239 Tr = VBYI(VADD(Tm, VFNMS(LDK(KP500000000), Tp, VMUL(LDK(KP866025403), VSUB(Tc, Tj))))); | |
240 ST(&(xo[WS(os, 8)]), VSUB(Tl, Tq), ovs, &(xo[0])); | |
241 ST(&(xo[WS(os, 5)]), VSUB(Ts, Tr), ovs, &(xo[WS(os, 1)])); | |
242 ST(&(xo[WS(os, 1)]), VADD(Tl, Tq), ovs, &(xo[WS(os, 1)])); | |
243 ST(&(xo[WS(os, 4)]), VADD(Tr, Ts), ovs, &(xo[0])); | |
244 } | |
245 } | |
246 } | |
247 } | |
248 VLEAVE(); | |
249 } | |
250 | |
251 static const kdft_desc desc = { 9, XSIMD_STRING("n1bv_9"), {30, 10, 16, 0}, &GENUS, 0, 0, 0, 0 }; | |
252 | |
253 void XSIMD(codelet_n1bv_9) (planner *p) { | |
254 X(kdft_register) (p, n1bv_9, &desc); | |
255 } | |
256 | |
257 #endif |