Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/n1bv_13.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:57 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 13 -name n1bv_13 -include dft/simd/n1b.h */ | |
29 | |
30 /* | |
31 * This function contains 88 FP additions, 63 FP multiplications, | |
32 * (or, 31 additions, 6 multiplications, 57 fused multiply/add), | |
33 * 63 stack variables, 23 constants, and 26 memory accesses | |
34 */ | |
35 #include "dft/simd/n1b.h" | |
36 | |
37 static void n1bv_13(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DVK(KP904176221, +0.904176221990848204433795481776887926501523162); | |
40 DVK(KP575140729, +0.575140729474003121368385547455453388461001608); | |
41 DVK(KP957805992, +0.957805992594665126462521754605754580515587217); | |
42 DVK(KP600477271, +0.600477271932665282925769253334763009352012849); | |
43 DVK(KP516520780, +0.516520780623489722840901288569017135705033622); | |
44 DVK(KP581704778, +0.581704778510515730456870384989698884939833902); | |
45 DVK(KP300462606, +0.300462606288665774426601772289207995520941381); | |
46 DVK(KP503537032, +0.503537032863766627246873853868466977093348562); | |
47 DVK(KP251768516, +0.251768516431883313623436926934233488546674281); | |
48 DVK(KP301479260, +0.301479260047709873958013540496673347309208464); | |
49 DVK(KP083333333, +0.083333333333333333333333333333333333333333333); | |
50 DVK(KP859542535, +0.859542535098774820163672132761689612766401925); | |
51 DVK(KP514918778, +0.514918778086315755491789696138117261566051239); | |
52 DVK(KP522026385, +0.522026385161275033714027226654165028300441940); | |
53 DVK(KP853480001, +0.853480001859823990758994934970528322872359049); | |
54 DVK(KP612264650, +0.612264650376756543746494474777125408779395514); | |
55 DVK(KP038632954, +0.038632954644348171955506895830342264440241080); | |
56 DVK(KP302775637, +0.302775637731994646559610633735247973125648287); | |
57 DVK(KP769338817, +0.769338817572980603471413688209101117038278899); | |
58 DVK(KP686558370, +0.686558370781754340655719594850823015421401653); | |
59 DVK(KP226109445, +0.226109445035782405468510155372505010481906348); | |
60 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
61 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
62 { | |
63 INT i; | |
64 const R *xi; | |
65 R *xo; | |
66 xi = ii; | |
67 xo = io; | |
68 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(26, is), MAKE_VOLATILE_STRIDE(26, os)) { | |
69 V T1, TX, TY, To, TH, TR, TU, TB, TE, Tw, TF, TM, TT; | |
70 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
71 { | |
72 V Tf, TN, Tb, Ty, Tq, T6, Tx, Tr, Ti, Tt, Tl, Tu, Tm, TO, Td; | |
73 V Te, Tc, Tn; | |
74 Td = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
75 Te = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
76 Tf = VADD(Td, Te); | |
77 TN = VSUB(Td, Te); | |
78 { | |
79 V T7, T8, T9, Ta; | |
80 T7 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); | |
81 T8 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
82 T9 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
83 Ta = VADD(T8, T9); | |
84 Tb = VADD(T7, Ta); | |
85 Ty = VFMS(LDK(KP500000000), Ta, T7); | |
86 Tq = VSUB(T8, T9); | |
87 } | |
88 { | |
89 V T2, T3, T4, T5; | |
90 T2 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
91 T3 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
92 T4 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
93 T5 = VADD(T3, T4); | |
94 T6 = VADD(T2, T5); | |
95 Tx = VFNMS(LDK(KP500000000), T5, T2); | |
96 Tr = VSUB(T4, T3); | |
97 } | |
98 { | |
99 V Tg, Th, Tj, Tk; | |
100 Tg = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | |
101 Th = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
102 Ti = VADD(Tg, Th); | |
103 Tt = VSUB(Tg, Th); | |
104 Tj = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
105 Tk = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
106 Tl = VADD(Tj, Tk); | |
107 Tu = VSUB(Tj, Tk); | |
108 } | |
109 Tm = VADD(Ti, Tl); | |
110 TO = VADD(Tt, Tu); | |
111 TX = VSUB(T6, Tb); | |
112 TY = VADD(TN, TO); | |
113 Tc = VADD(T6, Tb); | |
114 Tn = VADD(Tf, Tm); | |
115 To = VADD(Tc, Tn); | |
116 TH = VSUB(Tc, Tn); | |
117 { | |
118 V TP, TQ, Tz, TA; | |
119 TP = VFNMS(LDK(KP500000000), TO, TN); | |
120 TQ = VADD(Tr, Tq); | |
121 TR = VFMA(LDK(KP866025403), TQ, TP); | |
122 TU = VFNMS(LDK(KP866025403), TQ, TP); | |
123 Tz = VSUB(Tx, Ty); | |
124 TA = VFNMS(LDK(KP500000000), Tm, Tf); | |
125 TB = VADD(Tz, TA); | |
126 TE = VSUB(Tz, TA); | |
127 } | |
128 { | |
129 V Ts, Tv, TK, TL; | |
130 Ts = VSUB(Tq, Tr); | |
131 Tv = VSUB(Tt, Tu); | |
132 Tw = VADD(Ts, Tv); | |
133 TF = VSUB(Ts, Tv); | |
134 TK = VADD(Tx, Ty); | |
135 TL = VSUB(Ti, Tl); | |
136 TM = VFMA(LDK(KP866025403), TL, TK); | |
137 TT = VFNMS(LDK(KP866025403), TL, TK); | |
138 } | |
139 } | |
140 ST(&(xo[0]), VADD(T1, To), ovs, &(xo[0])); | |
141 { | |
142 V T1c, T1k, T15, T14, T1e, T1n, TZ, TW, T1f, T1m, TD, T1j, TI, T19, TS; | |
143 V TV; | |
144 { | |
145 V T1a, T1b, T12, T13; | |
146 T1a = VFNMS(LDK(KP226109445), Tw, TB); | |
147 T1b = VFMA(LDK(KP686558370), TE, TF); | |
148 T1c = VFNMS(LDK(KP769338817), T1b, T1a); | |
149 T1k = VFMA(LDK(KP769338817), T1b, T1a); | |
150 T15 = VFNMS(LDK(KP302775637), TX, TY); | |
151 T12 = VFMA(LDK(KP038632954), TM, TR); | |
152 T13 = VFMA(LDK(KP612264650), TT, TU); | |
153 T14 = VFNMS(LDK(KP853480001), T13, T12); | |
154 T1e = VFNMS(LDK(KP522026385), T14, T15); | |
155 T1n = VFMA(LDK(KP853480001), T13, T12); | |
156 } | |
157 TZ = VFMA(LDK(KP302775637), TY, TX); | |
158 TS = VFNMS(LDK(KP038632954), TR, TM); | |
159 TV = VFNMS(LDK(KP612264650), TU, TT); | |
160 TW = VFNMS(LDK(KP853480001), TV, TS); | |
161 T1f = VFMA(LDK(KP853480001), TV, TS); | |
162 T1m = VFNMS(LDK(KP522026385), TW, TZ); | |
163 { | |
164 V TG, T18, Tp, TC, T17; | |
165 TG = VFNMS(LDK(KP514918778), TF, TE); | |
166 T18 = VFNMS(LDK(KP859542535), TG, TH); | |
167 Tp = VFNMS(LDK(KP083333333), To, T1); | |
168 TC = VFMA(LDK(KP301479260), TB, Tw); | |
169 T17 = VFNMS(LDK(KP251768516), TC, Tp); | |
170 TD = VFMA(LDK(KP503537032), TC, Tp); | |
171 T1j = VFNMS(LDK(KP300462606), T18, T17); | |
172 TI = VFMA(LDK(KP581704778), TH, TG); | |
173 T19 = VFMA(LDK(KP300462606), T18, T17); | |
174 } | |
175 { | |
176 V TJ, T10, T1l, T1o; | |
177 TJ = VFNMS(LDK(KP516520780), TI, TD); | |
178 T10 = VMUL(LDK(KP600477271), VFMA(LDK(KP957805992), TZ, TW)); | |
179 ST(&(xo[WS(os, 5)]), VFMAI(T10, TJ), ovs, &(xo[WS(os, 1)])); | |
180 ST(&(xo[WS(os, 8)]), VFNMSI(T10, TJ), ovs, &(xo[0])); | |
181 { | |
182 V T11, T16, T1p, T1q; | |
183 T11 = VFMA(LDK(KP516520780), TI, TD); | |
184 T16 = VMUL(LDK(KP600477271), VFMA(LDK(KP957805992), T15, T14)); | |
185 ST(&(xo[WS(os, 1)]), VFNMSI(T16, T11), ovs, &(xo[WS(os, 1)])); | |
186 ST(&(xo[WS(os, 12)]), VFMAI(T16, T11), ovs, &(xo[0])); | |
187 T1p = VFMA(LDK(KP503537032), T1k, T1j); | |
188 T1q = VMUL(LDK(KP575140729), VFMA(LDK(KP904176221), T1n, T1m)); | |
189 ST(&(xo[WS(os, 2)]), VFMAI(T1q, T1p), ovs, &(xo[0])); | |
190 ST(&(xo[WS(os, 11)]), VFNMSI(T1q, T1p), ovs, &(xo[WS(os, 1)])); | |
191 } | |
192 T1l = VFNMS(LDK(KP503537032), T1k, T1j); | |
193 T1o = VMUL(LDK(KP575140729), VFNMS(LDK(KP904176221), T1n, T1m)); | |
194 ST(&(xo[WS(os, 6)]), VFMAI(T1o, T1l), ovs, &(xo[0])); | |
195 ST(&(xo[WS(os, 7)]), VFNMSI(T1o, T1l), ovs, &(xo[WS(os, 1)])); | |
196 { | |
197 V T1h, T1i, T1d, T1g; | |
198 T1h = VFMA(LDK(KP503537032), T1c, T19); | |
199 T1i = VMUL(LDK(KP575140729), VFNMS(LDK(KP904176221), T1f, T1e)); | |
200 ST(&(xo[WS(os, 3)]), VFNMSI(T1i, T1h), ovs, &(xo[WS(os, 1)])); | |
201 ST(&(xo[WS(os, 10)]), VFMAI(T1i, T1h), ovs, &(xo[0])); | |
202 T1d = VFNMS(LDK(KP503537032), T1c, T19); | |
203 T1g = VMUL(LDK(KP575140729), VFMA(LDK(KP904176221), T1f, T1e)); | |
204 ST(&(xo[WS(os, 4)]), VFMAI(T1g, T1d), ovs, &(xo[0])); | |
205 ST(&(xo[WS(os, 9)]), VFNMSI(T1g, T1d), ovs, &(xo[WS(os, 1)])); | |
206 } | |
207 } | |
208 } | |
209 } | |
210 } | |
211 VLEAVE(); | |
212 } | |
213 | |
214 static const kdft_desc desc = { 13, XSIMD_STRING("n1bv_13"), {31, 6, 57, 0}, &GENUS, 0, 0, 0, 0 }; | |
215 | |
216 void XSIMD(codelet_n1bv_13) (planner *p) { | |
217 X(kdft_register) (p, n1bv_13, &desc); | |
218 } | |
219 | |
220 #else | |
221 | |
222 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 13 -name n1bv_13 -include dft/simd/n1b.h */ | |
223 | |
224 /* | |
225 * This function contains 88 FP additions, 34 FP multiplications, | |
226 * (or, 69 additions, 15 multiplications, 19 fused multiply/add), | |
227 * 60 stack variables, 20 constants, and 26 memory accesses | |
228 */ | |
229 #include "dft/simd/n1b.h" | |
230 | |
231 static void n1bv_13(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
232 { | |
233 DVK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | |
234 DVK(KP083333333, +0.083333333333333333333333333333333333333333333); | |
235 DVK(KP075902986, +0.075902986037193865983102897245103540356428373); | |
236 DVK(KP251768516, +0.251768516431883313623436926934233488546674281); | |
237 DVK(KP132983124, +0.132983124607418643793760531921092974399165133); | |
238 DVK(KP258260390, +0.258260390311744861420450644284508567852516811); | |
239 DVK(KP1_732050807, +1.732050807568877293527446341505872366942805254); | |
240 DVK(KP300238635, +0.300238635966332641462884626667381504676006424); | |
241 DVK(KP011599105, +0.011599105605768290721655456654083252189827041); | |
242 DVK(KP256247671, +0.256247671582936600958684654061725059144125175); | |
243 DVK(KP156891391, +0.156891391051584611046832726756003269660212636); | |
244 DVK(KP174138601, +0.174138601152135905005660794929264742616964676); | |
245 DVK(KP575140729, +0.575140729474003121368385547455453388461001608); | |
246 DVK(KP503537032, +0.503537032863766627246873853868466977093348562); | |
247 DVK(KP113854479, +0.113854479055790798974654345867655310534642560); | |
248 DVK(KP265966249, +0.265966249214837287587521063842185948798330267); | |
249 DVK(KP387390585, +0.387390585467617292130675966426762851778775217); | |
250 DVK(KP300462606, +0.300462606288665774426601772289207995520941381); | |
251 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
252 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
253 { | |
254 INT i; | |
255 const R *xi; | |
256 R *xo; | |
257 xi = ii; | |
258 xo = io; | |
259 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(26, is), MAKE_VOLATILE_STRIDE(26, os)) { | |
260 V TW, Tb, Tm, Ts, TB, TR, TX, TK, TU, Tz, TC, TN, TT; | |
261 TW = LD(&(xi[0]), ivs, &(xi[0])); | |
262 { | |
263 V Te, TH, Ta, Tu, Tp, T5, Tt, To, Th, Tw, Tk, Tx, Tl, TI, Tc; | |
264 V Td, Tq, Tr; | |
265 Tc = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
266 Td = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
267 Te = VSUB(Tc, Td); | |
268 TH = VADD(Tc, Td); | |
269 { | |
270 V T6, T7, T8, T9; | |
271 T6 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); | |
272 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
273 T8 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
274 T9 = VADD(T7, T8); | |
275 Ta = VADD(T6, T9); | |
276 Tu = VFNMS(LDK(KP500000000), T9, T6); | |
277 Tp = VSUB(T7, T8); | |
278 } | |
279 { | |
280 V T1, T2, T3, T4; | |
281 T1 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
282 T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
283 T3 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
284 T4 = VADD(T2, T3); | |
285 T5 = VADD(T1, T4); | |
286 Tt = VFNMS(LDK(KP500000000), T4, T1); | |
287 To = VSUB(T2, T3); | |
288 } | |
289 { | |
290 V Tf, Tg, Ti, Tj; | |
291 Tf = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | |
292 Tg = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
293 Th = VSUB(Tf, Tg); | |
294 Tw = VADD(Tf, Tg); | |
295 Ti = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
296 Tj = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
297 Tk = VSUB(Ti, Tj); | |
298 Tx = VADD(Ti, Tj); | |
299 } | |
300 Tl = VADD(Th, Tk); | |
301 TI = VADD(Tw, Tx); | |
302 Tb = VSUB(T5, Ta); | |
303 Tm = VADD(Te, Tl); | |
304 Tq = VMUL(LDK(KP866025403), VSUB(To, Tp)); | |
305 Tr = VFNMS(LDK(KP500000000), Tl, Te); | |
306 Ts = VADD(Tq, Tr); | |
307 TB = VSUB(Tq, Tr); | |
308 { | |
309 V TP, TQ, TG, TJ; | |
310 TP = VADD(T5, Ta); | |
311 TQ = VADD(TH, TI); | |
312 TR = VMUL(LDK(KP300462606), VSUB(TP, TQ)); | |
313 TX = VADD(TP, TQ); | |
314 TG = VADD(Tt, Tu); | |
315 TJ = VFNMS(LDK(KP500000000), TI, TH); | |
316 TK = VSUB(TG, TJ); | |
317 TU = VADD(TG, TJ); | |
318 } | |
319 { | |
320 V Tv, Ty, TL, TM; | |
321 Tv = VSUB(Tt, Tu); | |
322 Ty = VMUL(LDK(KP866025403), VSUB(Tw, Tx)); | |
323 Tz = VSUB(Tv, Ty); | |
324 TC = VADD(Tv, Ty); | |
325 TL = VADD(To, Tp); | |
326 TM = VSUB(Th, Tk); | |
327 TN = VSUB(TL, TM); | |
328 TT = VADD(TL, TM); | |
329 } | |
330 } | |
331 ST(&(xo[0]), VADD(TW, TX), ovs, &(xo[0])); | |
332 { | |
333 V T1c, T1n, T11, T14, T17, T1k, Tn, TE, T18, T1j, TS, T1m, TZ, T1f, TA; | |
334 V TD; | |
335 { | |
336 V T1a, T1b, T12, T13; | |
337 T1a = VFMA(LDK(KP387390585), TN, VMUL(LDK(KP265966249), TK)); | |
338 T1b = VFNMS(LDK(KP503537032), TU, VMUL(LDK(KP113854479), TT)); | |
339 T1c = VSUB(T1a, T1b); | |
340 T1n = VADD(T1a, T1b); | |
341 T11 = VFMA(LDK(KP575140729), Tb, VMUL(LDK(KP174138601), Tm)); | |
342 T12 = VFNMS(LDK(KP256247671), Tz, VMUL(LDK(KP156891391), Ts)); | |
343 T13 = VFMA(LDK(KP011599105), TB, VMUL(LDK(KP300238635), TC)); | |
344 T14 = VADD(T12, T13); | |
345 T17 = VSUB(T11, T14); | |
346 T1k = VMUL(LDK(KP1_732050807), VSUB(T12, T13)); | |
347 } | |
348 Tn = VFNMS(LDK(KP575140729), Tm, VMUL(LDK(KP174138601), Tb)); | |
349 TA = VFMA(LDK(KP256247671), Ts, VMUL(LDK(KP156891391), Tz)); | |
350 TD = VFNMS(LDK(KP011599105), TC, VMUL(LDK(KP300238635), TB)); | |
351 TE = VADD(TA, TD); | |
352 T18 = VMUL(LDK(KP1_732050807), VSUB(TD, TA)); | |
353 T1j = VSUB(Tn, TE); | |
354 { | |
355 V TO, T1e, TV, TY, T1d; | |
356 TO = VFNMS(LDK(KP132983124), TN, VMUL(LDK(KP258260390), TK)); | |
357 T1e = VSUB(TR, TO); | |
358 TV = VFMA(LDK(KP251768516), TT, VMUL(LDK(KP075902986), TU)); | |
359 TY = VFNMS(LDK(KP083333333), TX, TW); | |
360 T1d = VSUB(TY, TV); | |
361 TS = VFMA(LDK(KP2_000000000), TO, TR); | |
362 T1m = VADD(T1e, T1d); | |
363 TZ = VFMA(LDK(KP2_000000000), TV, TY); | |
364 T1f = VSUB(T1d, T1e); | |
365 } | |
366 { | |
367 V TF, T10, T1l, T1o; | |
368 TF = VBYI(VFMA(LDK(KP2_000000000), TE, Tn)); | |
369 T10 = VADD(TS, TZ); | |
370 ST(&(xo[WS(os, 1)]), VADD(TF, T10), ovs, &(xo[WS(os, 1)])); | |
371 ST(&(xo[WS(os, 12)]), VSUB(T10, TF), ovs, &(xo[0])); | |
372 { | |
373 V T15, T16, T1p, T1q; | |
374 T15 = VBYI(VFMA(LDK(KP2_000000000), T14, T11)); | |
375 T16 = VSUB(TZ, TS); | |
376 ST(&(xo[WS(os, 5)]), VADD(T15, T16), ovs, &(xo[WS(os, 1)])); | |
377 ST(&(xo[WS(os, 8)]), VSUB(T16, T15), ovs, &(xo[0])); | |
378 T1p = VADD(T1n, T1m); | |
379 T1q = VBYI(VADD(T1j, T1k)); | |
380 ST(&(xo[WS(os, 4)]), VSUB(T1p, T1q), ovs, &(xo[0])); | |
381 ST(&(xo[WS(os, 9)]), VADD(T1q, T1p), ovs, &(xo[WS(os, 1)])); | |
382 } | |
383 T1l = VBYI(VSUB(T1j, T1k)); | |
384 T1o = VSUB(T1m, T1n); | |
385 ST(&(xo[WS(os, 3)]), VADD(T1l, T1o), ovs, &(xo[WS(os, 1)])); | |
386 ST(&(xo[WS(os, 10)]), VSUB(T1o, T1l), ovs, &(xo[0])); | |
387 { | |
388 V T1h, T1i, T19, T1g; | |
389 T1h = VBYI(VADD(T18, T17)); | |
390 T1i = VSUB(T1f, T1c); | |
391 ST(&(xo[WS(os, 6)]), VADD(T1h, T1i), ovs, &(xo[0])); | |
392 ST(&(xo[WS(os, 7)]), VSUB(T1i, T1h), ovs, &(xo[WS(os, 1)])); | |
393 T19 = VBYI(VSUB(T17, T18)); | |
394 T1g = VADD(T1c, T1f); | |
395 ST(&(xo[WS(os, 2)]), VADD(T19, T1g), ovs, &(xo[0])); | |
396 ST(&(xo[WS(os, 11)]), VSUB(T1g, T19), ovs, &(xo[WS(os, 1)])); | |
397 } | |
398 } | |
399 } | |
400 } | |
401 } | |
402 VLEAVE(); | |
403 } | |
404 | |
405 static const kdft_desc desc = { 13, XSIMD_STRING("n1bv_13"), {69, 15, 19, 0}, &GENUS, 0, 0, 0, 0 }; | |
406 | |
407 void XSIMD(codelet_n1bv_13) (planner *p) { | |
408 X(kdft_register) (p, n1bv_13, &desc); | |
409 } | |
410 | |
411 #endif |