Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/n1bv_12.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:57 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n1bv_12 -include dft/simd/n1b.h */ | |
29 | |
30 /* | |
31 * This function contains 48 FP additions, 20 FP multiplications, | |
32 * (or, 30 additions, 2 multiplications, 18 fused multiply/add), | |
33 * 27 stack variables, 2 constants, and 24 memory accesses | |
34 */ | |
35 #include "dft/simd/n1b.h" | |
36 | |
37 static void n1bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
41 { | |
42 INT i; | |
43 const R *xi; | |
44 R *xo; | |
45 xi = ii; | |
46 xo = io; | |
47 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) { | |
48 V T5, Ta, TJ, TB, Tq, Tp, Tg, Tl, TG, Ty, Tt, Ts; | |
49 { | |
50 V T1, T6, T4, Tz, T9, TA; | |
51 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
52 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
53 { | |
54 V T2, T3, T7, T8; | |
55 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
56 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
57 T4 = VADD(T2, T3); | |
58 Tz = VSUB(T2, T3); | |
59 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
60 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
61 T9 = VADD(T7, T8); | |
62 TA = VSUB(T7, T8); | |
63 } | |
64 T5 = VADD(T1, T4); | |
65 Ta = VADD(T6, T9); | |
66 TJ = VSUB(Tz, TA); | |
67 TB = VADD(Tz, TA); | |
68 Tq = VFNMS(LDK(KP500000000), T9, T6); | |
69 Tp = VFNMS(LDK(KP500000000), T4, T1); | |
70 } | |
71 { | |
72 V Tc, Th, Tf, Tw, Tk, Tx; | |
73 Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
74 Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
75 { | |
76 V Td, Te, Ti, Tj; | |
77 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
78 Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | |
79 Tf = VADD(Td, Te); | |
80 Tw = VSUB(Td, Te); | |
81 Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
82 Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
83 Tk = VADD(Ti, Tj); | |
84 Tx = VSUB(Tj, Ti); | |
85 } | |
86 Tg = VADD(Tc, Tf); | |
87 Tl = VADD(Th, Tk); | |
88 TG = VADD(Tw, Tx); | |
89 Ty = VSUB(Tw, Tx); | |
90 Tt = VFNMS(LDK(KP500000000), Tk, Th); | |
91 Ts = VFNMS(LDK(KP500000000), Tf, Tc); | |
92 } | |
93 { | |
94 V Tb, Tm, Tn, To; | |
95 Tb = VSUB(T5, Ta); | |
96 Tm = VSUB(Tg, Tl); | |
97 ST(&(xo[WS(os, 3)]), VFNMSI(Tm, Tb), ovs, &(xo[WS(os, 1)])); | |
98 ST(&(xo[WS(os, 9)]), VFMAI(Tm, Tb), ovs, &(xo[WS(os, 1)])); | |
99 Tn = VADD(T5, Ta); | |
100 To = VADD(Tg, Tl); | |
101 ST(&(xo[WS(os, 6)]), VSUB(Tn, To), ovs, &(xo[0])); | |
102 ST(&(xo[0]), VADD(Tn, To), ovs, &(xo[0])); | |
103 } | |
104 { | |
105 V TC, TE, Tv, TD, Tr, Tu; | |
106 TC = VMUL(LDK(KP866025403), VSUB(Ty, TB)); | |
107 TE = VMUL(LDK(KP866025403), VADD(TB, Ty)); | |
108 Tr = VADD(Tp, Tq); | |
109 Tu = VADD(Ts, Tt); | |
110 Tv = VSUB(Tr, Tu); | |
111 TD = VADD(Tr, Tu); | |
112 ST(&(xo[WS(os, 10)]), VFNMSI(TC, Tv), ovs, &(xo[0])); | |
113 ST(&(xo[WS(os, 4)]), VFMAI(TE, TD), ovs, &(xo[0])); | |
114 ST(&(xo[WS(os, 2)]), VFMAI(TC, Tv), ovs, &(xo[0])); | |
115 ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0])); | |
116 } | |
117 { | |
118 V TH, TL, TK, TM, TF, TI; | |
119 TF = VSUB(Tp, Tq); | |
120 TH = VFNMS(LDK(KP866025403), TG, TF); | |
121 TL = VFMA(LDK(KP866025403), TG, TF); | |
122 TI = VSUB(Ts, Tt); | |
123 TK = VFMA(LDK(KP866025403), TJ, TI); | |
124 TM = VFNMS(LDK(KP866025403), TJ, TI); | |
125 ST(&(xo[WS(os, 1)]), VFMAI(TK, TH), ovs, &(xo[WS(os, 1)])); | |
126 ST(&(xo[WS(os, 7)]), VFNMSI(TM, TL), ovs, &(xo[WS(os, 1)])); | |
127 ST(&(xo[WS(os, 11)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)])); | |
128 ST(&(xo[WS(os, 5)]), VFMAI(TM, TL), ovs, &(xo[WS(os, 1)])); | |
129 } | |
130 } | |
131 } | |
132 VLEAVE(); | |
133 } | |
134 | |
135 static const kdft_desc desc = { 12, XSIMD_STRING("n1bv_12"), {30, 2, 18, 0}, &GENUS, 0, 0, 0, 0 }; | |
136 | |
137 void XSIMD(codelet_n1bv_12) (planner *p) { | |
138 X(kdft_register) (p, n1bv_12, &desc); | |
139 } | |
140 | |
141 #else | |
142 | |
143 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n1bv_12 -include dft/simd/n1b.h */ | |
144 | |
145 /* | |
146 * This function contains 48 FP additions, 8 FP multiplications, | |
147 * (or, 44 additions, 4 multiplications, 4 fused multiply/add), | |
148 * 27 stack variables, 2 constants, and 24 memory accesses | |
149 */ | |
150 #include "dft/simd/n1b.h" | |
151 | |
152 static void n1bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
153 { | |
154 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
155 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
156 { | |
157 INT i; | |
158 const R *xi; | |
159 R *xo; | |
160 xi = ii; | |
161 xo = io; | |
162 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) { | |
163 V T5, Ta, TG, TF, Ty, Tm, Ti, Tp, TJ, TI, Tx, Ts; | |
164 { | |
165 V T1, T6, T4, Tk, T9, Tl; | |
166 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
167 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
168 { | |
169 V T2, T3, T7, T8; | |
170 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
171 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
172 T4 = VADD(T2, T3); | |
173 Tk = VSUB(T2, T3); | |
174 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
175 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
176 T9 = VADD(T7, T8); | |
177 Tl = VSUB(T7, T8); | |
178 } | |
179 T5 = VFNMS(LDK(KP500000000), T4, T1); | |
180 Ta = VFNMS(LDK(KP500000000), T9, T6); | |
181 TG = VADD(T6, T9); | |
182 TF = VADD(T1, T4); | |
183 Ty = VADD(Tk, Tl); | |
184 Tm = VMUL(LDK(KP866025403), VSUB(Tk, Tl)); | |
185 } | |
186 { | |
187 V Tn, Tq, Te, To, Th, Tr; | |
188 Tn = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
189 Tq = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
190 { | |
191 V Tc, Td, Tf, Tg; | |
192 Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
193 Td = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | |
194 Te = VSUB(Tc, Td); | |
195 To = VADD(Tc, Td); | |
196 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
197 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
198 Th = VSUB(Tf, Tg); | |
199 Tr = VADD(Tf, Tg); | |
200 } | |
201 Ti = VMUL(LDK(KP866025403), VSUB(Te, Th)); | |
202 Tp = VFNMS(LDK(KP500000000), To, Tn); | |
203 TJ = VADD(Tq, Tr); | |
204 TI = VADD(Tn, To); | |
205 Tx = VADD(Te, Th); | |
206 Ts = VFNMS(LDK(KP500000000), Tr, Tq); | |
207 } | |
208 { | |
209 V TH, TK, TL, TM; | |
210 TH = VSUB(TF, TG); | |
211 TK = VBYI(VSUB(TI, TJ)); | |
212 ST(&(xo[WS(os, 3)]), VSUB(TH, TK), ovs, &(xo[WS(os, 1)])); | |
213 ST(&(xo[WS(os, 9)]), VADD(TH, TK), ovs, &(xo[WS(os, 1)])); | |
214 TL = VADD(TF, TG); | |
215 TM = VADD(TI, TJ); | |
216 ST(&(xo[WS(os, 6)]), VSUB(TL, TM), ovs, &(xo[0])); | |
217 ST(&(xo[0]), VADD(TL, TM), ovs, &(xo[0])); | |
218 } | |
219 { | |
220 V Tj, Tv, Tu, Tw, Tb, Tt; | |
221 Tb = VSUB(T5, Ta); | |
222 Tj = VSUB(Tb, Ti); | |
223 Tv = VADD(Tb, Ti); | |
224 Tt = VSUB(Tp, Ts); | |
225 Tu = VBYI(VADD(Tm, Tt)); | |
226 Tw = VBYI(VSUB(Tt, Tm)); | |
227 ST(&(xo[WS(os, 11)]), VSUB(Tj, Tu), ovs, &(xo[WS(os, 1)])); | |
228 ST(&(xo[WS(os, 5)]), VADD(Tv, Tw), ovs, &(xo[WS(os, 1)])); | |
229 ST(&(xo[WS(os, 1)]), VADD(Tj, Tu), ovs, &(xo[WS(os, 1)])); | |
230 ST(&(xo[WS(os, 7)]), VSUB(Tv, Tw), ovs, &(xo[WS(os, 1)])); | |
231 } | |
232 { | |
233 V Tz, TD, TC, TE, TA, TB; | |
234 Tz = VBYI(VMUL(LDK(KP866025403), VSUB(Tx, Ty))); | |
235 TD = VBYI(VMUL(LDK(KP866025403), VADD(Ty, Tx))); | |
236 TA = VADD(T5, Ta); | |
237 TB = VADD(Tp, Ts); | |
238 TC = VSUB(TA, TB); | |
239 TE = VADD(TA, TB); | |
240 ST(&(xo[WS(os, 2)]), VADD(Tz, TC), ovs, &(xo[0])); | |
241 ST(&(xo[WS(os, 8)]), VSUB(TE, TD), ovs, &(xo[0])); | |
242 ST(&(xo[WS(os, 10)]), VSUB(TC, Tz), ovs, &(xo[0])); | |
243 ST(&(xo[WS(os, 4)]), VADD(TD, TE), ovs, &(xo[0])); | |
244 } | |
245 } | |
246 } | |
247 VLEAVE(); | |
248 } | |
249 | |
250 static const kdft_desc desc = { 12, XSIMD_STRING("n1bv_12"), {44, 4, 4, 0}, &GENUS, 0, 0, 0, 0 }; | |
251 | |
252 void XSIMD(codelet_n1bv_12) (planner *p) { | |
253 X(kdft_register) (p, n1bv_12, &desc); | |
254 } | |
255 | |
256 #endif |