Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/n1bv_11.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:56 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 11 -name n1bv_11 -include dft/simd/n1b.h */ | |
29 | |
30 /* | |
31 * This function contains 70 FP additions, 60 FP multiplications, | |
32 * (or, 15 additions, 5 multiplications, 55 fused multiply/add), | |
33 * 42 stack variables, 11 constants, and 22 memory accesses | |
34 */ | |
35 #include "dft/simd/n1b.h" | |
36 | |
37 static void n1bv_11(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DVK(KP959492973, +0.959492973614497389890368057066327699062454848); | |
40 DVK(KP918985947, +0.918985947228994779780736114132655398124909697); | |
41 DVK(KP989821441, +0.989821441880932732376092037776718787376519372); | |
42 DVK(KP830830026, +0.830830026003772851058548298459246407048009821); | |
43 DVK(KP876768831, +0.876768831002589333891339807079336796764054852); | |
44 DVK(KP778434453, +0.778434453334651800608337670740821884709317477); | |
45 DVK(KP372785597, +0.372785597771792209609773152906148328659002598); | |
46 DVK(KP715370323, +0.715370323453429719112414662767260662417897278); | |
47 DVK(KP521108558, +0.521108558113202722944698153526659300680427422); | |
48 DVK(KP634356270, +0.634356270682424498893150776899916060542806975); | |
49 DVK(KP342584725, +0.342584725681637509502641509861112333758894680); | |
50 { | |
51 INT i; | |
52 const R *xi; | |
53 R *xo; | |
54 xi = ii; | |
55 xo = io; | |
56 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(22, is), MAKE_VOLATILE_STRIDE(22, os)) { | |
57 V T1, T4, Tq, Tg, Tm, T7, Tp, Ta, To, Td, Tn, Ti, Tw, T12, Ts; | |
58 V TX, TT, TK, TB, TO, TF, T5, T6; | |
59 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
60 { | |
61 V T2, T3, Te, Tf; | |
62 T2 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
63 T3 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
64 T4 = VADD(T2, T3); | |
65 Tq = VSUB(T2, T3); | |
66 Te = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
67 Tf = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
68 Tg = VADD(Te, Tf); | |
69 Tm = VSUB(Te, Tf); | |
70 } | |
71 T5 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
72 T6 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
73 T7 = VADD(T5, T6); | |
74 Tp = VSUB(T5, T6); | |
75 { | |
76 V T8, T9, Tb, Tc; | |
77 T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
78 T9 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
79 Ta = VADD(T8, T9); | |
80 To = VSUB(T8, T9); | |
81 Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
82 Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
83 Td = VADD(Tb, Tc); | |
84 Tn = VSUB(Tb, Tc); | |
85 } | |
86 { | |
87 V Th, Tv, T11, Tr, TW; | |
88 Th = VFNMS(LDK(KP342584725), Tg, Td); | |
89 Ti = VFNMS(LDK(KP634356270), Th, Ta); | |
90 Tv = VFNMS(LDK(KP342584725), T7, Tg); | |
91 Tw = VFNMS(LDK(KP634356270), Tv, T4); | |
92 T11 = VFMA(LDK(KP521108558), Tm, Tq); | |
93 T12 = VFMA(LDK(KP715370323), T11, Tn); | |
94 Tr = VFNMS(LDK(KP521108558), Tq, Tp); | |
95 Ts = VFNMS(LDK(KP715370323), Tr, To); | |
96 TW = VFNMS(LDK(KP342584725), Ta, T7); | |
97 TX = VFNMS(LDK(KP634356270), TW, Td); | |
98 } | |
99 { | |
100 V TS, TJ, TA, TN, TE; | |
101 TS = VFMA(LDK(KP521108558), To, Tm); | |
102 TT = VFNMS(LDK(KP715370323), TS, Tp); | |
103 TJ = VFNMS(LDK(KP521108558), Tp, Tn); | |
104 TK = VFMA(LDK(KP715370323), TJ, Tm); | |
105 TA = VFMA(LDK(KP715370323), To, Tq); | |
106 TB = VFMA(LDK(KP372785597), Tn, TA); | |
107 TN = VFNMS(LDK(KP342584725), Td, T4); | |
108 TO = VFNMS(LDK(KP634356270), TN, T7); | |
109 TE = VFNMS(LDK(KP342584725), T4, Ta); | |
110 TF = VFNMS(LDK(KP634356270), TE, Tg); | |
111 } | |
112 ST(&(xo[0]), VADD(Tg, VADD(Td, VADD(Ta, VADD(T7, VADD(T4, T1))))), ovs, &(xo[0])); | |
113 { | |
114 V Tk, Tu, Tj, Tt, Tl; | |
115 Tj = VFNMS(LDK(KP778434453), Ti, T7); | |
116 Tk = VFNMS(LDK(KP876768831), Tj, T4); | |
117 Tt = VFNMS(LDK(KP830830026), Ts, Tn); | |
118 Tu = VMUL(LDK(KP989821441), VFNMS(LDK(KP918985947), Tt, Tm)); | |
119 Tl = VFNMS(LDK(KP959492973), Tk, T1); | |
120 ST(&(xo[WS(os, 5)]), VFMAI(Tu, Tl), ovs, &(xo[WS(os, 1)])); | |
121 ST(&(xo[WS(os, 6)]), VFNMSI(Tu, Tl), ovs, &(xo[0])); | |
122 } | |
123 { | |
124 V TZ, T14, TY, T13, T10; | |
125 TY = VFNMS(LDK(KP778434453), TX, T4); | |
126 TZ = VFNMS(LDK(KP876768831), TY, Tg); | |
127 T13 = VFMA(LDK(KP830830026), T12, Tp); | |
128 T14 = VMUL(LDK(KP989821441), VFMA(LDK(KP918985947), T13, To)); | |
129 T10 = VFNMS(LDK(KP959492973), TZ, T1); | |
130 ST(&(xo[WS(os, 1)]), VFMAI(T14, T10), ovs, &(xo[WS(os, 1)])); | |
131 ST(&(xo[WS(os, 10)]), VFNMSI(T14, T10), ovs, &(xo[0])); | |
132 } | |
133 { | |
134 V TQ, TV, TP, TU, TR; | |
135 TP = VFNMS(LDK(KP778434453), TO, Tg); | |
136 TQ = VFNMS(LDK(KP876768831), TP, Ta); | |
137 TU = VFMA(LDK(KP830830026), TT, Tq); | |
138 TV = VMUL(LDK(KP989821441), VFNMS(LDK(KP918985947), TU, Tn)); | |
139 TR = VFNMS(LDK(KP959492973), TQ, T1); | |
140 ST(&(xo[WS(os, 2)]), VFNMSI(TV, TR), ovs, &(xo[0])); | |
141 ST(&(xo[WS(os, 9)]), VFMAI(TV, TR), ovs, &(xo[WS(os, 1)])); | |
142 } | |
143 { | |
144 V TH, TM, TG, TL, TI; | |
145 TG = VFNMS(LDK(KP778434453), TF, Td); | |
146 TH = VFNMS(LDK(KP876768831), TG, T7); | |
147 TL = VFNMS(LDK(KP830830026), TK, To); | |
148 TM = VMUL(LDK(KP989821441), VFNMS(LDK(KP918985947), TL, Tq)); | |
149 TI = VFNMS(LDK(KP959492973), TH, T1); | |
150 ST(&(xo[WS(os, 3)]), VFMAI(TM, TI), ovs, &(xo[WS(os, 1)])); | |
151 ST(&(xo[WS(os, 8)]), VFNMSI(TM, TI), ovs, &(xo[0])); | |
152 } | |
153 { | |
154 V Ty, TD, Tx, TC, Tz; | |
155 Tx = VFNMS(LDK(KP778434453), Tw, Ta); | |
156 Ty = VFNMS(LDK(KP876768831), Tx, Td); | |
157 TC = VFNMS(LDK(KP830830026), TB, Tm); | |
158 TD = VMUL(LDK(KP989821441), VFMA(LDK(KP918985947), TC, Tp)); | |
159 Tz = VFNMS(LDK(KP959492973), Ty, T1); | |
160 ST(&(xo[WS(os, 4)]), VFNMSI(TD, Tz), ovs, &(xo[0])); | |
161 ST(&(xo[WS(os, 7)]), VFMAI(TD, Tz), ovs, &(xo[WS(os, 1)])); | |
162 } | |
163 } | |
164 } | |
165 VLEAVE(); | |
166 } | |
167 | |
168 static const kdft_desc desc = { 11, XSIMD_STRING("n1bv_11"), {15, 5, 55, 0}, &GENUS, 0, 0, 0, 0 }; | |
169 | |
170 void XSIMD(codelet_n1bv_11) (planner *p) { | |
171 X(kdft_register) (p, n1bv_11, &desc); | |
172 } | |
173 | |
174 #else | |
175 | |
176 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 11 -name n1bv_11 -include dft/simd/n1b.h */ | |
177 | |
178 /* | |
179 * This function contains 70 FP additions, 50 FP multiplications, | |
180 * (or, 30 additions, 10 multiplications, 40 fused multiply/add), | |
181 * 32 stack variables, 10 constants, and 22 memory accesses | |
182 */ | |
183 #include "dft/simd/n1b.h" | |
184 | |
185 static void n1bv_11(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
186 { | |
187 DVK(KP959492973, +0.959492973614497389890368057066327699062454848); | |
188 DVK(KP654860733, +0.654860733945285064056925072466293553183791199); | |
189 DVK(KP142314838, +0.142314838273285140443792668616369668791051361); | |
190 DVK(KP415415013, +0.415415013001886425529274149229623203524004910); | |
191 DVK(KP841253532, +0.841253532831181168861811648919367717513292498); | |
192 DVK(KP540640817, +0.540640817455597582107635954318691695431770608); | |
193 DVK(KP909631995, +0.909631995354518371411715383079028460060241051); | |
194 DVK(KP989821441, +0.989821441880932732376092037776718787376519372); | |
195 DVK(KP755749574, +0.755749574354258283774035843972344420179717445); | |
196 DVK(KP281732556, +0.281732556841429697711417915346616899035777899); | |
197 { | |
198 INT i; | |
199 const R *xi; | |
200 R *xo; | |
201 xi = ii; | |
202 xo = io; | |
203 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(22, is), MAKE_VOLATILE_STRIDE(22, os)) { | |
204 V Th, T3, Tm, Tf, Ti, Tc, Tj, T9, Tk, T6, Tl, Ta, Tb, Ts, Tt; | |
205 Th = LD(&(xi[0]), ivs, &(xi[0])); | |
206 { | |
207 V T1, T2, Td, Te; | |
208 T1 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
209 T2 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
210 T3 = VSUB(T1, T2); | |
211 Tm = VADD(T1, T2); | |
212 Td = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
213 Te = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
214 Tf = VSUB(Td, Te); | |
215 Ti = VADD(Td, Te); | |
216 } | |
217 Ta = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
218 Tb = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
219 Tc = VSUB(Ta, Tb); | |
220 Tj = VADD(Ta, Tb); | |
221 { | |
222 V T7, T8, T4, T5; | |
223 T7 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
224 T8 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
225 T9 = VSUB(T7, T8); | |
226 Tk = VADD(T7, T8); | |
227 T4 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
228 T5 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
229 T6 = VSUB(T4, T5); | |
230 Tl = VADD(T4, T5); | |
231 } | |
232 ST(&(xo[0]), VADD(Th, VADD(Tm, VADD(Ti, VADD(Tl, VADD(Tj, Tk))))), ovs, &(xo[0])); | |
233 { | |
234 V Tg, Tn, Tu, Tv; | |
235 Tg = VBYI(VFMA(LDK(KP281732556), T3, VFMA(LDK(KP755749574), T6, VFNMS(LDK(KP909631995), Tc, VFNMS(LDK(KP540640817), Tf, VMUL(LDK(KP989821441), T9)))))); | |
236 Tn = VFMA(LDK(KP841253532), Ti, VFMA(LDK(KP415415013), Tj, VFNMS(LDK(KP142314838), Tk, VFNMS(LDK(KP654860733), Tl, VFNMS(LDK(KP959492973), Tm, Th))))); | |
237 ST(&(xo[WS(os, 5)]), VADD(Tg, Tn), ovs, &(xo[WS(os, 1)])); | |
238 ST(&(xo[WS(os, 6)]), VSUB(Tn, Tg), ovs, &(xo[0])); | |
239 Tu = VBYI(VFMA(LDK(KP755749574), T3, VFMA(LDK(KP540640817), T6, VFNMS(LDK(KP909631995), T9, VFNMS(LDK(KP989821441), Tf, VMUL(LDK(KP281732556), Tc)))))); | |
240 Tv = VFMA(LDK(KP841253532), Tl, VFMA(LDK(KP415415013), Tk, VFNMS(LDK(KP959492973), Tj, VFNMS(LDK(KP142314838), Ti, VFNMS(LDK(KP654860733), Tm, Th))))); | |
241 ST(&(xo[WS(os, 4)]), VADD(Tu, Tv), ovs, &(xo[0])); | |
242 ST(&(xo[WS(os, 7)]), VSUB(Tv, Tu), ovs, &(xo[WS(os, 1)])); | |
243 } | |
244 Ts = VBYI(VFMA(LDK(KP909631995), T3, VFNMS(LDK(KP540640817), T9, VFNMS(LDK(KP989821441), Tc, VFNMS(LDK(KP281732556), T6, VMUL(LDK(KP755749574), Tf)))))); | |
245 Tt = VFMA(LDK(KP415415013), Tm, VFMA(LDK(KP841253532), Tk, VFNMS(LDK(KP142314838), Tj, VFNMS(LDK(KP959492973), Tl, VFNMS(LDK(KP654860733), Ti, Th))))); | |
246 ST(&(xo[WS(os, 2)]), VADD(Ts, Tt), ovs, &(xo[0])); | |
247 ST(&(xo[WS(os, 9)]), VSUB(Tt, Ts), ovs, &(xo[WS(os, 1)])); | |
248 { | |
249 V Tq, Tr, To, Tp; | |
250 Tq = VBYI(VFMA(LDK(KP540640817), T3, VFMA(LDK(KP909631995), Tf, VFMA(LDK(KP989821441), T6, VFMA(LDK(KP755749574), Tc, VMUL(LDK(KP281732556), T9)))))); | |
251 Tr = VFMA(LDK(KP841253532), Tm, VFMA(LDK(KP415415013), Ti, VFNMS(LDK(KP959492973), Tk, VFNMS(LDK(KP654860733), Tj, VFNMS(LDK(KP142314838), Tl, Th))))); | |
252 ST(&(xo[WS(os, 1)]), VADD(Tq, Tr), ovs, &(xo[WS(os, 1)])); | |
253 ST(&(xo[WS(os, 10)]), VSUB(Tr, Tq), ovs, &(xo[0])); | |
254 To = VBYI(VFMA(LDK(KP989821441), T3, VFMA(LDK(KP540640817), Tc, VFNMS(LDK(KP909631995), T6, VFNMS(LDK(KP281732556), Tf, VMUL(LDK(KP755749574), T9)))))); | |
255 Tp = VFMA(LDK(KP415415013), Tl, VFMA(LDK(KP841253532), Tj, VFNMS(LDK(KP654860733), Tk, VFNMS(LDK(KP959492973), Ti, VFNMS(LDK(KP142314838), Tm, Th))))); | |
256 ST(&(xo[WS(os, 3)]), VADD(To, Tp), ovs, &(xo[WS(os, 1)])); | |
257 ST(&(xo[WS(os, 8)]), VSUB(Tp, To), ovs, &(xo[0])); | |
258 } | |
259 } | |
260 } | |
261 VLEAVE(); | |
262 } | |
263 | |
264 static const kdft_desc desc = { 11, XSIMD_STRING("n1bv_11"), {30, 10, 40, 0}, &GENUS, 0, 0, 0, 0 }; | |
265 | |
266 void XSIMD(codelet_n1bv_11) (planner *p) { | |
267 X(kdft_register) (p, n1bv_11, &desc); | |
268 } | |
269 | |
270 #endif |