Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/scalar/codelets/t2_5.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:25 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 5 -name t2_5 -include dft/scalar/t.h */ | |
29 | |
30 /* | |
31 * This function contains 44 FP additions, 40 FP multiplications, | |
32 * (or, 14 additions, 10 multiplications, 30 fused multiply/add), | |
33 * 38 stack variables, 4 constants, and 20 memory accesses | |
34 */ | |
35 #include "dft/scalar/t.h" | |
36 | |
37 static void t2_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
42 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
43 { | |
44 INT m; | |
45 for (m = mb, W = W + (mb * 4); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) { | |
46 E T2, Ta, T8, T5, Tb, Tm, Tf, Tj, T9, Te; | |
47 T2 = W[0]; | |
48 Ta = W[3]; | |
49 T8 = W[2]; | |
50 T9 = T2 * T8; | |
51 Te = T2 * Ta; | |
52 T5 = W[1]; | |
53 Tb = FNMS(T5, Ta, T9); | |
54 Tm = FNMS(T5, T8, Te); | |
55 Tf = FMA(T5, T8, Te); | |
56 Tj = FMA(T5, Ta, T9); | |
57 { | |
58 E T1, TO, T7, Th, Ti, Tz, TB, TL, To, Ts, Tt, TE, TG, TM; | |
59 T1 = ri[0]; | |
60 TO = ii[0]; | |
61 { | |
62 E T3, T4, T6, Ty, Tc, Td, Tg, TA; | |
63 T3 = ri[WS(rs, 1)]; | |
64 T4 = T2 * T3; | |
65 T6 = ii[WS(rs, 1)]; | |
66 Ty = T2 * T6; | |
67 Tc = ri[WS(rs, 4)]; | |
68 Td = Tb * Tc; | |
69 Tg = ii[WS(rs, 4)]; | |
70 TA = Tb * Tg; | |
71 T7 = FMA(T5, T6, T4); | |
72 Th = FMA(Tf, Tg, Td); | |
73 Ti = T7 + Th; | |
74 Tz = FNMS(T5, T3, Ty); | |
75 TB = FNMS(Tf, Tc, TA); | |
76 TL = Tz + TB; | |
77 } | |
78 { | |
79 E Tk, Tl, Tn, TD, Tp, Tq, Tr, TF; | |
80 Tk = ri[WS(rs, 2)]; | |
81 Tl = Tj * Tk; | |
82 Tn = ii[WS(rs, 2)]; | |
83 TD = Tj * Tn; | |
84 Tp = ri[WS(rs, 3)]; | |
85 Tq = T8 * Tp; | |
86 Tr = ii[WS(rs, 3)]; | |
87 TF = T8 * Tr; | |
88 To = FMA(Tm, Tn, Tl); | |
89 Ts = FMA(Ta, Tr, Tq); | |
90 Tt = To + Ts; | |
91 TE = FNMS(Tm, Tk, TD); | |
92 TG = FNMS(Ta, Tp, TF); | |
93 TM = TE + TG; | |
94 } | |
95 { | |
96 E Tw, Tu, Tv, TI, TK, TC, TH, TJ, Tx; | |
97 Tw = Ti - Tt; | |
98 Tu = Ti + Tt; | |
99 Tv = FNMS(KP250000000, Tu, T1); | |
100 TC = Tz - TB; | |
101 TH = TE - TG; | |
102 TI = FMA(KP618033988, TH, TC); | |
103 TK = FNMS(KP618033988, TC, TH); | |
104 ri[0] = T1 + Tu; | |
105 TJ = FNMS(KP559016994, Tw, Tv); | |
106 ri[WS(rs, 2)] = FNMS(KP951056516, TK, TJ); | |
107 ri[WS(rs, 3)] = FMA(KP951056516, TK, TJ); | |
108 Tx = FMA(KP559016994, Tw, Tv); | |
109 ri[WS(rs, 4)] = FNMS(KP951056516, TI, Tx); | |
110 ri[WS(rs, 1)] = FMA(KP951056516, TI, Tx); | |
111 } | |
112 { | |
113 E TQ, TN, TP, TU, TW, TS, TT, TV, TR; | |
114 TQ = TL - TM; | |
115 TN = TL + TM; | |
116 TP = FNMS(KP250000000, TN, TO); | |
117 TS = T7 - Th; | |
118 TT = To - Ts; | |
119 TU = FMA(KP618033988, TT, TS); | |
120 TW = FNMS(KP618033988, TS, TT); | |
121 ii[0] = TN + TO; | |
122 TV = FNMS(KP559016994, TQ, TP); | |
123 ii[WS(rs, 2)] = FMA(KP951056516, TW, TV); | |
124 ii[WS(rs, 3)] = FNMS(KP951056516, TW, TV); | |
125 TR = FMA(KP559016994, TQ, TP); | |
126 ii[WS(rs, 1)] = FNMS(KP951056516, TU, TR); | |
127 ii[WS(rs, 4)] = FMA(KP951056516, TU, TR); | |
128 } | |
129 } | |
130 } | |
131 } | |
132 } | |
133 | |
134 static const tw_instr twinstr[] = { | |
135 {TW_CEXP, 0, 1}, | |
136 {TW_CEXP, 0, 3}, | |
137 {TW_NEXT, 1, 0} | |
138 }; | |
139 | |
140 static const ct_desc desc = { 5, "t2_5", twinstr, &GENUS, {14, 10, 30, 0}, 0, 0, 0 }; | |
141 | |
142 void X(codelet_t2_5) (planner *p) { | |
143 X(kdft_dit_register) (p, t2_5, &desc); | |
144 } | |
145 #else | |
146 | |
147 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 5 -name t2_5 -include dft/scalar/t.h */ | |
148 | |
149 /* | |
150 * This function contains 44 FP additions, 32 FP multiplications, | |
151 * (or, 30 additions, 18 multiplications, 14 fused multiply/add), | |
152 * 37 stack variables, 4 constants, and 20 memory accesses | |
153 */ | |
154 #include "dft/scalar/t.h" | |
155 | |
156 static void t2_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
157 { | |
158 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
159 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
160 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
161 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
162 { | |
163 INT m; | |
164 for (m = mb, W = W + (mb * 4); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) { | |
165 E T2, T4, T7, T9, Tb, Tl, Tf, Tj; | |
166 { | |
167 E T8, Te, Ta, Td; | |
168 T2 = W[0]; | |
169 T4 = W[1]; | |
170 T7 = W[2]; | |
171 T9 = W[3]; | |
172 T8 = T2 * T7; | |
173 Te = T4 * T7; | |
174 Ta = T4 * T9; | |
175 Td = T2 * T9; | |
176 Tb = T8 - Ta; | |
177 Tl = Td - Te; | |
178 Tf = Td + Te; | |
179 Tj = T8 + Ta; | |
180 } | |
181 { | |
182 E T1, TI, Ty, TB, TN, TM, TF, TG, TH, Ti, Tr, Ts; | |
183 T1 = ri[0]; | |
184 TI = ii[0]; | |
185 { | |
186 E T6, Tw, Tq, TA, Th, Tx, Tn, Tz; | |
187 { | |
188 E T3, T5, To, Tp; | |
189 T3 = ri[WS(rs, 1)]; | |
190 T5 = ii[WS(rs, 1)]; | |
191 T6 = FMA(T2, T3, T4 * T5); | |
192 Tw = FNMS(T4, T3, T2 * T5); | |
193 To = ri[WS(rs, 3)]; | |
194 Tp = ii[WS(rs, 3)]; | |
195 Tq = FMA(T7, To, T9 * Tp); | |
196 TA = FNMS(T9, To, T7 * Tp); | |
197 } | |
198 { | |
199 E Tc, Tg, Tk, Tm; | |
200 Tc = ri[WS(rs, 4)]; | |
201 Tg = ii[WS(rs, 4)]; | |
202 Th = FMA(Tb, Tc, Tf * Tg); | |
203 Tx = FNMS(Tf, Tc, Tb * Tg); | |
204 Tk = ri[WS(rs, 2)]; | |
205 Tm = ii[WS(rs, 2)]; | |
206 Tn = FMA(Tj, Tk, Tl * Tm); | |
207 Tz = FNMS(Tl, Tk, Tj * Tm); | |
208 } | |
209 Ty = Tw - Tx; | |
210 TB = Tz - TA; | |
211 TN = Tn - Tq; | |
212 TM = T6 - Th; | |
213 TF = Tw + Tx; | |
214 TG = Tz + TA; | |
215 TH = TF + TG; | |
216 Ti = T6 + Th; | |
217 Tr = Tn + Tq; | |
218 Ts = Ti + Tr; | |
219 } | |
220 ri[0] = T1 + Ts; | |
221 ii[0] = TH + TI; | |
222 { | |
223 E TC, TE, Tv, TD, Tt, Tu; | |
224 TC = FMA(KP951056516, Ty, KP587785252 * TB); | |
225 TE = FNMS(KP587785252, Ty, KP951056516 * TB); | |
226 Tt = KP559016994 * (Ti - Tr); | |
227 Tu = FNMS(KP250000000, Ts, T1); | |
228 Tv = Tt + Tu; | |
229 TD = Tu - Tt; | |
230 ri[WS(rs, 4)] = Tv - TC; | |
231 ri[WS(rs, 3)] = TD + TE; | |
232 ri[WS(rs, 1)] = Tv + TC; | |
233 ri[WS(rs, 2)] = TD - TE; | |
234 } | |
235 { | |
236 E TO, TP, TL, TQ, TJ, TK; | |
237 TO = FMA(KP951056516, TM, KP587785252 * TN); | |
238 TP = FNMS(KP587785252, TM, KP951056516 * TN); | |
239 TJ = KP559016994 * (TF - TG); | |
240 TK = FNMS(KP250000000, TH, TI); | |
241 TL = TJ + TK; | |
242 TQ = TK - TJ; | |
243 ii[WS(rs, 1)] = TL - TO; | |
244 ii[WS(rs, 3)] = TQ - TP; | |
245 ii[WS(rs, 4)] = TO + TL; | |
246 ii[WS(rs, 2)] = TP + TQ; | |
247 } | |
248 } | |
249 } | |
250 } | |
251 } | |
252 | |
253 static const tw_instr twinstr[] = { | |
254 {TW_CEXP, 0, 1}, | |
255 {TW_CEXP, 0, 3}, | |
256 {TW_NEXT, 1, 0} | |
257 }; | |
258 | |
259 static const ct_desc desc = { 5, "t2_5", twinstr, &GENUS, {30, 18, 14, 0}, 0, 0, 0 }; | |
260 | |
261 void X(codelet_t2_5) (planner *p) { | |
262 X(kdft_dit_register) (p, t2_5, &desc); | |
263 } | |
264 #endif |