Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/scalar/codelets/t2_32.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:20 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -name t2_32 -include dft/scalar/t.h */ | |
29 | |
30 /* | |
31 * This function contains 488 FP additions, 350 FP multiplications, | |
32 * (or, 236 additions, 98 multiplications, 252 fused multiply/add), | |
33 * 164 stack variables, 7 constants, and 128 memory accesses | |
34 */ | |
35 #include "dft/scalar/t.h" | |
36 | |
37 static void t2_32(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
40 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
41 DK(KP198912367, +0.198912367379658006911597622644676228597850501); | |
42 DK(KP668178637, +0.668178637919298919997757686523080761552472251); | |
43 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
44 DK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
45 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
46 { | |
47 INT m; | |
48 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) { | |
49 E T2, T8, T3, T6, Te, Ti, T5, T7, TJ, Tb, TM, Tc, Ts, T23, T1w; | |
50 E T19, TA, TE, T1s, T1N, T1o, T1C, T1F, T1K, T15, T11, T2F, T31, T2J, T34; | |
51 E T3f, T3z, T3j, T3C, Tw, T3M, T3Q, T1z, T2s, T2w, T1d, T3n, T3r, T26, T2T; | |
52 E T2X, Th, TR, TP, Td, Tj, TW, Tn, TS, T1U, T2b, T29, T1R, T1V, T2g; | |
53 E T1Z, T2c; | |
54 { | |
55 E Tz, T1n, T10, TD, T1r, T14, T9, T1Q, Tv, T1c; | |
56 { | |
57 E T4, T18, Ta, Tr; | |
58 T2 = W[0]; | |
59 T8 = W[4]; | |
60 T3 = W[2]; | |
61 T6 = W[3]; | |
62 T4 = T2 * T3; | |
63 T18 = T3 * T8; | |
64 Ta = T2 * T6; | |
65 Tr = T2 * T8; | |
66 Te = W[6]; | |
67 Tz = T3 * Te; | |
68 T1n = T8 * Te; | |
69 T10 = T2 * Te; | |
70 Ti = W[7]; | |
71 TD = T3 * Ti; | |
72 T1r = T8 * Ti; | |
73 T14 = T2 * Ti; | |
74 T5 = W[1]; | |
75 T7 = FMA(T5, T6, T4); | |
76 TJ = FNMS(T5, T6, T4); | |
77 T9 = T7 * T8; | |
78 T1Q = TJ * T8; | |
79 Tb = FNMS(T5, T3, Ta); | |
80 TM = FMA(T5, T3, Ta); | |
81 Tc = W[5]; | |
82 Tv = T2 * Tc; | |
83 T1c = T3 * Tc; | |
84 Ts = FMA(T5, Tc, Tr); | |
85 T23 = FMA(T6, Tc, T18); | |
86 T1w = FNMS(T5, Tc, Tr); | |
87 T19 = FNMS(T6, Tc, T18); | |
88 } | |
89 TA = FMA(T6, Ti, Tz); | |
90 TE = FNMS(T6, Te, TD); | |
91 T1s = FNMS(Tc, Te, T1r); | |
92 T1N = FMA(T6, Te, TD); | |
93 T1o = FMA(Tc, Ti, T1n); | |
94 T1C = FMA(T5, Ti, T10); | |
95 T1F = FNMS(T5, Te, T14); | |
96 T1K = FNMS(T6, Ti, Tz); | |
97 T15 = FMA(T5, Te, T14); | |
98 T11 = FNMS(T5, Ti, T10); | |
99 { | |
100 E T2E, T2I, T2S, T2W; | |
101 T2E = T7 * Te; | |
102 T2F = FMA(Tb, Ti, T2E); | |
103 T31 = FNMS(Tb, Ti, T2E); | |
104 T2I = T7 * Ti; | |
105 T2J = FNMS(Tb, Te, T2I); | |
106 T34 = FMA(Tb, Te, T2I); | |
107 { | |
108 E T3e, T3i, T3L, T3P; | |
109 T3e = TJ * Te; | |
110 T3f = FNMS(TM, Ti, T3e); | |
111 T3z = FMA(TM, Ti, T3e); | |
112 T3i = TJ * Ti; | |
113 T3j = FMA(TM, Te, T3i); | |
114 T3C = FNMS(TM, Te, T3i); | |
115 T3L = Ts * Te; | |
116 T3P = Ts * Ti; | |
117 Tw = FNMS(T5, T8, Tv); | |
118 T3M = FMA(Tw, Ti, T3L); | |
119 T3Q = FNMS(Tw, Te, T3P); | |
120 } | |
121 { | |
122 E T2r, T2v, T3m, T3q; | |
123 T2r = T1w * Te; | |
124 T2v = T1w * Ti; | |
125 T1z = FMA(T5, T8, Tv); | |
126 T2s = FMA(T1z, Ti, T2r); | |
127 T2w = FNMS(T1z, Te, T2v); | |
128 T3m = T19 * Te; | |
129 T3q = T19 * Ti; | |
130 T1d = FMA(T6, T8, T1c); | |
131 T3n = FMA(T1d, Ti, T3m); | |
132 T3r = FNMS(T1d, Te, T3q); | |
133 } | |
134 T2S = T23 * Te; | |
135 T2W = T23 * Ti; | |
136 T26 = FNMS(T6, T8, T1c); | |
137 T2T = FMA(T26, Ti, T2S); | |
138 T2X = FNMS(T26, Te, T2W); | |
139 { | |
140 E TQ, TV, Tf, Tm, Tg; | |
141 Tg = T7 * Tc; | |
142 Th = FMA(Tb, T8, Tg); | |
143 TR = FNMS(Tb, T8, Tg); | |
144 TP = FMA(Tb, Tc, T9); | |
145 TQ = TP * Te; | |
146 TV = TP * Ti; | |
147 Td = FNMS(Tb, Tc, T9); | |
148 Tf = Td * Te; | |
149 Tm = Td * Ti; | |
150 Tj = FMA(Th, Ti, Tf); | |
151 TW = FNMS(TR, Te, TV); | |
152 Tn = FNMS(Th, Te, Tm); | |
153 TS = FMA(TR, Ti, TQ); | |
154 } | |
155 { | |
156 E T2a, T2f, T1S, T1Y, T1T; | |
157 T1T = TJ * Tc; | |
158 T1U = FMA(TM, T8, T1T); | |
159 T2b = FNMS(TM, T8, T1T); | |
160 T29 = FMA(TM, Tc, T1Q); | |
161 T2a = T29 * Te; | |
162 T2f = T29 * Ti; | |
163 T1R = FNMS(TM, Tc, T1Q); | |
164 T1S = T1R * Te; | |
165 T1Y = T1R * Ti; | |
166 T1V = FMA(T1U, Ti, T1S); | |
167 T2g = FNMS(T2b, Te, T2f); | |
168 T1Z = FNMS(T1U, Te, T1Y); | |
169 T2c = FMA(T2b, Ti, T2a); | |
170 } | |
171 } | |
172 } | |
173 { | |
174 E Tq, T46, T8H, T97, TH, T98, T4b, T8D, TZ, T7f, T4j, T6t, T1g, T7g, T4q; | |
175 E T6u, T1v, T1I, T7m, T7j, T7k, T7l, T4z, T6x, T4G, T6y, T22, T2j, T7o, T7p; | |
176 E T7q, T7r, T4O, T6A, T4V, T6B, T3G, T7L, T7I, T8n, T5E, T6P, T61, T6M, T2N; | |
177 E T7A, T7x, T8i, T55, T6I, T5s, T6F, T43, T7J, T7O, T8o, T5L, T62, T5S, T63; | |
178 E T3c, T7y, T7D, T8j, T5c, T5t, T5j, T5u; | |
179 { | |
180 E T1, T8G, Tk, Tl, To, T8E, Tp, T8F; | |
181 T1 = ri[0]; | |
182 T8G = ii[0]; | |
183 Tk = ri[WS(rs, 16)]; | |
184 Tl = Tj * Tk; | |
185 To = ii[WS(rs, 16)]; | |
186 T8E = Tj * To; | |
187 Tp = FMA(Tn, To, Tl); | |
188 Tq = T1 + Tp; | |
189 T46 = T1 - Tp; | |
190 T8F = FNMS(Tn, Tk, T8E); | |
191 T8H = T8F + T8G; | |
192 T97 = T8G - T8F; | |
193 } | |
194 { | |
195 E Tt, Tu, Tx, T47, TB, TC, TF, T49; | |
196 Tt = ri[WS(rs, 8)]; | |
197 Tu = Ts * Tt; | |
198 Tx = ii[WS(rs, 8)]; | |
199 T47 = Ts * Tx; | |
200 TB = ri[WS(rs, 24)]; | |
201 TC = TA * TB; | |
202 TF = ii[WS(rs, 24)]; | |
203 T49 = TA * TF; | |
204 { | |
205 E Ty, TG, T48, T4a; | |
206 Ty = FMA(Tw, Tx, Tu); | |
207 TG = FMA(TE, TF, TC); | |
208 TH = Ty + TG; | |
209 T98 = Ty - TG; | |
210 T48 = FNMS(Tw, Tt, T47); | |
211 T4a = FNMS(TE, TB, T49); | |
212 T4b = T48 - T4a; | |
213 T8D = T48 + T4a; | |
214 } | |
215 } | |
216 { | |
217 E TO, T4f, TY, T4h, T4d, T4i; | |
218 { | |
219 E TK, TL, TN, T4e; | |
220 TK = ri[WS(rs, 4)]; | |
221 TL = TJ * TK; | |
222 TN = ii[WS(rs, 4)]; | |
223 T4e = TJ * TN; | |
224 TO = FMA(TM, TN, TL); | |
225 T4f = FNMS(TM, TK, T4e); | |
226 } | |
227 { | |
228 E TT, TU, TX, T4g; | |
229 TT = ri[WS(rs, 20)]; | |
230 TU = TS * TT; | |
231 TX = ii[WS(rs, 20)]; | |
232 T4g = TS * TX; | |
233 TY = FMA(TW, TX, TU); | |
234 T4h = FNMS(TW, TT, T4g); | |
235 } | |
236 TZ = TO + TY; | |
237 T7f = T4f + T4h; | |
238 T4d = TO - TY; | |
239 T4i = T4f - T4h; | |
240 T4j = T4d + T4i; | |
241 T6t = T4i - T4d; | |
242 } | |
243 { | |
244 E T17, T4m, T1f, T4o, T4k, T4p; | |
245 { | |
246 E T12, T13, T16, T4l; | |
247 T12 = ri[WS(rs, 28)]; | |
248 T13 = T11 * T12; | |
249 T16 = ii[WS(rs, 28)]; | |
250 T4l = T11 * T16; | |
251 T17 = FMA(T15, T16, T13); | |
252 T4m = FNMS(T15, T12, T4l); | |
253 } | |
254 { | |
255 E T1a, T1b, T1e, T4n; | |
256 T1a = ri[WS(rs, 12)]; | |
257 T1b = T19 * T1a; | |
258 T1e = ii[WS(rs, 12)]; | |
259 T4n = T19 * T1e; | |
260 T1f = FMA(T1d, T1e, T1b); | |
261 T4o = FNMS(T1d, T1a, T4n); | |
262 } | |
263 T1g = T17 + T1f; | |
264 T7g = T4m + T4o; | |
265 T4k = T17 - T1f; | |
266 T4p = T4m - T4o; | |
267 T4q = T4k - T4p; | |
268 T6u = T4k + T4p; | |
269 } | |
270 { | |
271 E T1m, T4u, T1H, T4E, T1u, T4w, T1B, T4C; | |
272 { | |
273 E T1j, T1k, T1l, T4t; | |
274 T1j = ri[WS(rs, 2)]; | |
275 T1k = T7 * T1j; | |
276 T1l = ii[WS(rs, 2)]; | |
277 T4t = T7 * T1l; | |
278 T1m = FMA(Tb, T1l, T1k); | |
279 T4u = FNMS(Tb, T1j, T4t); | |
280 } | |
281 { | |
282 E T1D, T1E, T1G, T4D; | |
283 T1D = ri[WS(rs, 26)]; | |
284 T1E = T1C * T1D; | |
285 T1G = ii[WS(rs, 26)]; | |
286 T4D = T1C * T1G; | |
287 T1H = FMA(T1F, T1G, T1E); | |
288 T4E = FNMS(T1F, T1D, T4D); | |
289 } | |
290 { | |
291 E T1p, T1q, T1t, T4v; | |
292 T1p = ri[WS(rs, 18)]; | |
293 T1q = T1o * T1p; | |
294 T1t = ii[WS(rs, 18)]; | |
295 T4v = T1o * T1t; | |
296 T1u = FMA(T1s, T1t, T1q); | |
297 T4w = FNMS(T1s, T1p, T4v); | |
298 } | |
299 { | |
300 E T1x, T1y, T1A, T4B; | |
301 T1x = ri[WS(rs, 10)]; | |
302 T1y = T1w * T1x; | |
303 T1A = ii[WS(rs, 10)]; | |
304 T4B = T1w * T1A; | |
305 T1B = FMA(T1z, T1A, T1y); | |
306 T4C = FNMS(T1z, T1x, T4B); | |
307 } | |
308 T1v = T1m + T1u; | |
309 T1I = T1B + T1H; | |
310 T7m = T1v - T1I; | |
311 T7j = T4u + T4w; | |
312 T7k = T4C + T4E; | |
313 T7l = T7j - T7k; | |
314 { | |
315 E T4x, T4y, T4A, T4F; | |
316 T4x = T4u - T4w; | |
317 T4y = T1B - T1H; | |
318 T4z = T4x - T4y; | |
319 T6x = T4x + T4y; | |
320 T4A = T1m - T1u; | |
321 T4F = T4C - T4E; | |
322 T4G = T4A + T4F; | |
323 T6y = T4A - T4F; | |
324 } | |
325 } | |
326 { | |
327 E T1P, T4J, T2i, T4T, T21, T4L, T28, T4R; | |
328 { | |
329 E T1L, T1M, T1O, T4I; | |
330 T1L = ri[WS(rs, 30)]; | |
331 T1M = T1K * T1L; | |
332 T1O = ii[WS(rs, 30)]; | |
333 T4I = T1K * T1O; | |
334 T1P = FMA(T1N, T1O, T1M); | |
335 T4J = FNMS(T1N, T1L, T4I); | |
336 } | |
337 { | |
338 E T2d, T2e, T2h, T4S; | |
339 T2d = ri[WS(rs, 22)]; | |
340 T2e = T2c * T2d; | |
341 T2h = ii[WS(rs, 22)]; | |
342 T4S = T2c * T2h; | |
343 T2i = FMA(T2g, T2h, T2e); | |
344 T4T = FNMS(T2g, T2d, T4S); | |
345 } | |
346 { | |
347 E T1W, T1X, T20, T4K; | |
348 T1W = ri[WS(rs, 14)]; | |
349 T1X = T1V * T1W; | |
350 T20 = ii[WS(rs, 14)]; | |
351 T4K = T1V * T20; | |
352 T21 = FMA(T1Z, T20, T1X); | |
353 T4L = FNMS(T1Z, T1W, T4K); | |
354 } | |
355 { | |
356 E T24, T25, T27, T4Q; | |
357 T24 = ri[WS(rs, 6)]; | |
358 T25 = T23 * T24; | |
359 T27 = ii[WS(rs, 6)]; | |
360 T4Q = T23 * T27; | |
361 T28 = FMA(T26, T27, T25); | |
362 T4R = FNMS(T26, T24, T4Q); | |
363 } | |
364 T22 = T1P + T21; | |
365 T2j = T28 + T2i; | |
366 T7o = T22 - T2j; | |
367 T7p = T4J + T4L; | |
368 T7q = T4R + T4T; | |
369 T7r = T7p - T7q; | |
370 { | |
371 E T4M, T4N, T4P, T4U; | |
372 T4M = T4J - T4L; | |
373 T4N = T28 - T2i; | |
374 T4O = T4M - T4N; | |
375 T6A = T4M + T4N; | |
376 T4P = T1P - T21; | |
377 T4U = T4R - T4T; | |
378 T4V = T4P + T4U; | |
379 T6B = T4P - T4U; | |
380 } | |
381 } | |
382 { | |
383 E T3l, T5z, T3E, T5Z, T3t, T5B, T3y, T5X; | |
384 { | |
385 E T3g, T3h, T3k, T5y; | |
386 T3g = ri[WS(rs, 31)]; | |
387 T3h = T3f * T3g; | |
388 T3k = ii[WS(rs, 31)]; | |
389 T5y = T3f * T3k; | |
390 T3l = FMA(T3j, T3k, T3h); | |
391 T5z = FNMS(T3j, T3g, T5y); | |
392 } | |
393 { | |
394 E T3A, T3B, T3D, T5Y; | |
395 T3A = ri[WS(rs, 23)]; | |
396 T3B = T3z * T3A; | |
397 T3D = ii[WS(rs, 23)]; | |
398 T5Y = T3z * T3D; | |
399 T3E = FMA(T3C, T3D, T3B); | |
400 T5Z = FNMS(T3C, T3A, T5Y); | |
401 } | |
402 { | |
403 E T3o, T3p, T3s, T5A; | |
404 T3o = ri[WS(rs, 15)]; | |
405 T3p = T3n * T3o; | |
406 T3s = ii[WS(rs, 15)]; | |
407 T5A = T3n * T3s; | |
408 T3t = FMA(T3r, T3s, T3p); | |
409 T5B = FNMS(T3r, T3o, T5A); | |
410 } | |
411 { | |
412 E T3v, T3w, T3x, T5W; | |
413 T3v = ri[WS(rs, 7)]; | |
414 T3w = TP * T3v; | |
415 T3x = ii[WS(rs, 7)]; | |
416 T5W = TP * T3x; | |
417 T3y = FMA(TR, T3x, T3w); | |
418 T5X = FNMS(TR, T3v, T5W); | |
419 } | |
420 { | |
421 E T3u, T3F, T7G, T7H; | |
422 T3u = T3l + T3t; | |
423 T3F = T3y + T3E; | |
424 T3G = T3u + T3F; | |
425 T7L = T3u - T3F; | |
426 T7G = T5z + T5B; | |
427 T7H = T5X + T5Z; | |
428 T7I = T7G - T7H; | |
429 T8n = T7G + T7H; | |
430 } | |
431 { | |
432 E T5C, T5D, T5V, T60; | |
433 T5C = T5z - T5B; | |
434 T5D = T3y - T3E; | |
435 T5E = T5C - T5D; | |
436 T6P = T5C + T5D; | |
437 T5V = T3l - T3t; | |
438 T60 = T5X - T5Z; | |
439 T61 = T5V + T60; | |
440 T6M = T5V - T60; | |
441 } | |
442 } | |
443 { | |
444 E T2q, T50, T2L, T5q, T2y, T52, T2D, T5o; | |
445 { | |
446 E T2n, T2o, T2p, T4Z; | |
447 T2n = ri[WS(rs, 1)]; | |
448 T2o = T2 * T2n; | |
449 T2p = ii[WS(rs, 1)]; | |
450 T4Z = T2 * T2p; | |
451 T2q = FMA(T5, T2p, T2o); | |
452 T50 = FNMS(T5, T2n, T4Z); | |
453 } | |
454 { | |
455 E T2G, T2H, T2K, T5p; | |
456 T2G = ri[WS(rs, 25)]; | |
457 T2H = T2F * T2G; | |
458 T2K = ii[WS(rs, 25)]; | |
459 T5p = T2F * T2K; | |
460 T2L = FMA(T2J, T2K, T2H); | |
461 T5q = FNMS(T2J, T2G, T5p); | |
462 } | |
463 { | |
464 E T2t, T2u, T2x, T51; | |
465 T2t = ri[WS(rs, 17)]; | |
466 T2u = T2s * T2t; | |
467 T2x = ii[WS(rs, 17)]; | |
468 T51 = T2s * T2x; | |
469 T2y = FMA(T2w, T2x, T2u); | |
470 T52 = FNMS(T2w, T2t, T51); | |
471 } | |
472 { | |
473 E T2A, T2B, T2C, T5n; | |
474 T2A = ri[WS(rs, 9)]; | |
475 T2B = T8 * T2A; | |
476 T2C = ii[WS(rs, 9)]; | |
477 T5n = T8 * T2C; | |
478 T2D = FMA(Tc, T2C, T2B); | |
479 T5o = FNMS(Tc, T2A, T5n); | |
480 } | |
481 { | |
482 E T2z, T2M, T7v, T7w; | |
483 T2z = T2q + T2y; | |
484 T2M = T2D + T2L; | |
485 T2N = T2z + T2M; | |
486 T7A = T2z - T2M; | |
487 T7v = T50 + T52; | |
488 T7w = T5o + T5q; | |
489 T7x = T7v - T7w; | |
490 T8i = T7v + T7w; | |
491 } | |
492 { | |
493 E T53, T54, T5m, T5r; | |
494 T53 = T50 - T52; | |
495 T54 = T2D - T2L; | |
496 T55 = T53 - T54; | |
497 T6I = T53 + T54; | |
498 T5m = T2q - T2y; | |
499 T5r = T5o - T5q; | |
500 T5s = T5m + T5r; | |
501 T6F = T5m - T5r; | |
502 } | |
503 } | |
504 { | |
505 E T3K, T5G, T41, T5Q, T3S, T5I, T3X, T5O; | |
506 { | |
507 E T3H, T3I, T3J, T5F; | |
508 T3H = ri[WS(rs, 3)]; | |
509 T3I = T3 * T3H; | |
510 T3J = ii[WS(rs, 3)]; | |
511 T5F = T3 * T3J; | |
512 T3K = FMA(T6, T3J, T3I); | |
513 T5G = FNMS(T6, T3H, T5F); | |
514 } | |
515 { | |
516 E T3Y, T3Z, T40, T5P; | |
517 T3Y = ri[WS(rs, 11)]; | |
518 T3Z = Td * T3Y; | |
519 T40 = ii[WS(rs, 11)]; | |
520 T5P = Td * T40; | |
521 T41 = FMA(Th, T40, T3Z); | |
522 T5Q = FNMS(Th, T3Y, T5P); | |
523 } | |
524 { | |
525 E T3N, T3O, T3R, T5H; | |
526 T3N = ri[WS(rs, 19)]; | |
527 T3O = T3M * T3N; | |
528 T3R = ii[WS(rs, 19)]; | |
529 T5H = T3M * T3R; | |
530 T3S = FMA(T3Q, T3R, T3O); | |
531 T5I = FNMS(T3Q, T3N, T5H); | |
532 } | |
533 { | |
534 E T3U, T3V, T3W, T5N; | |
535 T3U = ri[WS(rs, 27)]; | |
536 T3V = Te * T3U; | |
537 T3W = ii[WS(rs, 27)]; | |
538 T5N = Te * T3W; | |
539 T3X = FMA(Ti, T3W, T3V); | |
540 T5O = FNMS(Ti, T3U, T5N); | |
541 } | |
542 { | |
543 E T3T, T42, T7M, T7N; | |
544 T3T = T3K + T3S; | |
545 T42 = T3X + T41; | |
546 T43 = T3T + T42; | |
547 T7J = T42 - T3T; | |
548 T7M = T5G + T5I; | |
549 T7N = T5O + T5Q; | |
550 T7O = T7M - T7N; | |
551 T8o = T7M + T7N; | |
552 } | |
553 { | |
554 E T5J, T5K, T5M, T5R; | |
555 T5J = T5G - T5I; | |
556 T5K = T3K - T3S; | |
557 T5L = T5J - T5K; | |
558 T62 = T5K + T5J; | |
559 T5M = T3X - T41; | |
560 T5R = T5O - T5Q; | |
561 T5S = T5M + T5R; | |
562 T63 = T5M - T5R; | |
563 } | |
564 } | |
565 { | |
566 E T2R, T57, T3a, T5h, T2Z, T59, T36, T5f; | |
567 { | |
568 E T2O, T2P, T2Q, T56; | |
569 T2O = ri[WS(rs, 5)]; | |
570 T2P = T29 * T2O; | |
571 T2Q = ii[WS(rs, 5)]; | |
572 T56 = T29 * T2Q; | |
573 T2R = FMA(T2b, T2Q, T2P); | |
574 T57 = FNMS(T2b, T2O, T56); | |
575 } | |
576 { | |
577 E T37, T38, T39, T5g; | |
578 T37 = ri[WS(rs, 13)]; | |
579 T38 = T1R * T37; | |
580 T39 = ii[WS(rs, 13)]; | |
581 T5g = T1R * T39; | |
582 T3a = FMA(T1U, T39, T38); | |
583 T5h = FNMS(T1U, T37, T5g); | |
584 } | |
585 { | |
586 E T2U, T2V, T2Y, T58; | |
587 T2U = ri[WS(rs, 21)]; | |
588 T2V = T2T * T2U; | |
589 T2Y = ii[WS(rs, 21)]; | |
590 T58 = T2T * T2Y; | |
591 T2Z = FMA(T2X, T2Y, T2V); | |
592 T59 = FNMS(T2X, T2U, T58); | |
593 } | |
594 { | |
595 E T32, T33, T35, T5e; | |
596 T32 = ri[WS(rs, 29)]; | |
597 T33 = T31 * T32; | |
598 T35 = ii[WS(rs, 29)]; | |
599 T5e = T31 * T35; | |
600 T36 = FMA(T34, T35, T33); | |
601 T5f = FNMS(T34, T32, T5e); | |
602 } | |
603 { | |
604 E T30, T3b, T7B, T7C; | |
605 T30 = T2R + T2Z; | |
606 T3b = T36 + T3a; | |
607 T3c = T30 + T3b; | |
608 T7y = T3b - T30; | |
609 T7B = T57 + T59; | |
610 T7C = T5f + T5h; | |
611 T7D = T7B - T7C; | |
612 T8j = T7B + T7C; | |
613 } | |
614 { | |
615 E T5a, T5b, T5d, T5i; | |
616 T5a = T57 - T59; | |
617 T5b = T2R - T2Z; | |
618 T5c = T5a - T5b; | |
619 T5t = T5b + T5a; | |
620 T5d = T36 - T3a; | |
621 T5i = T5f - T5h; | |
622 T5j = T5d + T5i; | |
623 T5u = T5d - T5i; | |
624 } | |
625 } | |
626 { | |
627 E T1i, T8c, T8z, T8A, T8J, T8O, T2l, T8N, T45, T8L, T8l, T8t, T8q, T8u, T8f; | |
628 E T8B; | |
629 { | |
630 E TI, T1h, T8x, T8y; | |
631 TI = Tq + TH; | |
632 T1h = TZ + T1g; | |
633 T1i = TI + T1h; | |
634 T8c = TI - T1h; | |
635 T8x = T8i + T8j; | |
636 T8y = T8n + T8o; | |
637 T8z = T8x - T8y; | |
638 T8A = T8x + T8y; | |
639 } | |
640 { | |
641 E T8C, T8I, T1J, T2k; | |
642 T8C = T7f + T7g; | |
643 T8I = T8D + T8H; | |
644 T8J = T8C + T8I; | |
645 T8O = T8I - T8C; | |
646 T1J = T1v + T1I; | |
647 T2k = T22 + T2j; | |
648 T2l = T1J + T2k; | |
649 T8N = T2k - T1J; | |
650 } | |
651 { | |
652 E T3d, T44, T8h, T8k; | |
653 T3d = T2N + T3c; | |
654 T44 = T3G + T43; | |
655 T45 = T3d + T44; | |
656 T8L = T44 - T3d; | |
657 T8h = T2N - T3c; | |
658 T8k = T8i - T8j; | |
659 T8l = T8h + T8k; | |
660 T8t = T8k - T8h; | |
661 } | |
662 { | |
663 E T8m, T8p, T8d, T8e; | |
664 T8m = T3G - T43; | |
665 T8p = T8n - T8o; | |
666 T8q = T8m - T8p; | |
667 T8u = T8m + T8p; | |
668 T8d = T7j + T7k; | |
669 T8e = T7p + T7q; | |
670 T8f = T8d - T8e; | |
671 T8B = T8d + T8e; | |
672 } | |
673 { | |
674 E T2m, T8K, T8w, T8M; | |
675 T2m = T1i + T2l; | |
676 ri[WS(rs, 16)] = T2m - T45; | |
677 ri[0] = T2m + T45; | |
678 T8K = T8B + T8J; | |
679 ii[0] = T8A + T8K; | |
680 ii[WS(rs, 16)] = T8K - T8A; | |
681 T8w = T1i - T2l; | |
682 ri[WS(rs, 24)] = T8w - T8z; | |
683 ri[WS(rs, 8)] = T8w + T8z; | |
684 T8M = T8J - T8B; | |
685 ii[WS(rs, 8)] = T8L + T8M; | |
686 ii[WS(rs, 24)] = T8M - T8L; | |
687 } | |
688 { | |
689 E T8g, T8r, T8P, T8Q; | |
690 T8g = T8c + T8f; | |
691 T8r = T8l + T8q; | |
692 ri[WS(rs, 20)] = FNMS(KP707106781, T8r, T8g); | |
693 ri[WS(rs, 4)] = FMA(KP707106781, T8r, T8g); | |
694 T8P = T8N + T8O; | |
695 T8Q = T8t + T8u; | |
696 ii[WS(rs, 4)] = FMA(KP707106781, T8Q, T8P); | |
697 ii[WS(rs, 20)] = FNMS(KP707106781, T8Q, T8P); | |
698 } | |
699 { | |
700 E T8s, T8v, T8R, T8S; | |
701 T8s = T8c - T8f; | |
702 T8v = T8t - T8u; | |
703 ri[WS(rs, 28)] = FNMS(KP707106781, T8v, T8s); | |
704 ri[WS(rs, 12)] = FMA(KP707106781, T8v, T8s); | |
705 T8R = T8O - T8N; | |
706 T8S = T8q - T8l; | |
707 ii[WS(rs, 12)] = FMA(KP707106781, T8S, T8R); | |
708 ii[WS(rs, 28)] = FNMS(KP707106781, T8S, T8R); | |
709 } | |
710 } | |
711 { | |
712 E T7i, T7W, T86, T8a, T8V, T91, T7t, T8W, T7F, T7T, T7Z, T92, T83, T89, T7Q; | |
713 E T7U; | |
714 { | |
715 E T7e, T7h, T84, T85; | |
716 T7e = Tq - TH; | |
717 T7h = T7f - T7g; | |
718 T7i = T7e - T7h; | |
719 T7W = T7e + T7h; | |
720 T84 = T7L + T7O; | |
721 T85 = T7I + T7J; | |
722 T86 = FNMS(KP414213562, T85, T84); | |
723 T8a = FMA(KP414213562, T84, T85); | |
724 } | |
725 { | |
726 E T8T, T8U, T7n, T7s; | |
727 T8T = T1g - TZ; | |
728 T8U = T8H - T8D; | |
729 T8V = T8T + T8U; | |
730 T91 = T8U - T8T; | |
731 T7n = T7l - T7m; | |
732 T7s = T7o + T7r; | |
733 T7t = T7n - T7s; | |
734 T8W = T7n + T7s; | |
735 } | |
736 { | |
737 E T7z, T7E, T7X, T7Y; | |
738 T7z = T7x - T7y; | |
739 T7E = T7A - T7D; | |
740 T7F = FMA(KP414213562, T7E, T7z); | |
741 T7T = FNMS(KP414213562, T7z, T7E); | |
742 T7X = T7m + T7l; | |
743 T7Y = T7o - T7r; | |
744 T7Z = T7X + T7Y; | |
745 T92 = T7Y - T7X; | |
746 } | |
747 { | |
748 E T81, T82, T7K, T7P; | |
749 T81 = T7A + T7D; | |
750 T82 = T7x + T7y; | |
751 T83 = FMA(KP414213562, T82, T81); | |
752 T89 = FNMS(KP414213562, T81, T82); | |
753 T7K = T7I - T7J; | |
754 T7P = T7L - T7O; | |
755 T7Q = FNMS(KP414213562, T7P, T7K); | |
756 T7U = FMA(KP414213562, T7K, T7P); | |
757 } | |
758 { | |
759 E T7u, T7R, T93, T94; | |
760 T7u = FMA(KP707106781, T7t, T7i); | |
761 T7R = T7F - T7Q; | |
762 ri[WS(rs, 22)] = FNMS(KP923879532, T7R, T7u); | |
763 ri[WS(rs, 6)] = FMA(KP923879532, T7R, T7u); | |
764 T93 = FMA(KP707106781, T92, T91); | |
765 T94 = T7U - T7T; | |
766 ii[WS(rs, 6)] = FMA(KP923879532, T94, T93); | |
767 ii[WS(rs, 22)] = FNMS(KP923879532, T94, T93); | |
768 } | |
769 { | |
770 E T7S, T7V, T95, T96; | |
771 T7S = FNMS(KP707106781, T7t, T7i); | |
772 T7V = T7T + T7U; | |
773 ri[WS(rs, 14)] = FNMS(KP923879532, T7V, T7S); | |
774 ri[WS(rs, 30)] = FMA(KP923879532, T7V, T7S); | |
775 T95 = FNMS(KP707106781, T92, T91); | |
776 T96 = T7F + T7Q; | |
777 ii[WS(rs, 14)] = FNMS(KP923879532, T96, T95); | |
778 ii[WS(rs, 30)] = FMA(KP923879532, T96, T95); | |
779 } | |
780 { | |
781 E T80, T87, T8X, T8Y; | |
782 T80 = FMA(KP707106781, T7Z, T7W); | |
783 T87 = T83 + T86; | |
784 ri[WS(rs, 18)] = FNMS(KP923879532, T87, T80); | |
785 ri[WS(rs, 2)] = FMA(KP923879532, T87, T80); | |
786 T8X = FMA(KP707106781, T8W, T8V); | |
787 T8Y = T89 + T8a; | |
788 ii[WS(rs, 2)] = FMA(KP923879532, T8Y, T8X); | |
789 ii[WS(rs, 18)] = FNMS(KP923879532, T8Y, T8X); | |
790 } | |
791 { | |
792 E T88, T8b, T8Z, T90; | |
793 T88 = FNMS(KP707106781, T7Z, T7W); | |
794 T8b = T89 - T8a; | |
795 ri[WS(rs, 26)] = FNMS(KP923879532, T8b, T88); | |
796 ri[WS(rs, 10)] = FMA(KP923879532, T8b, T88); | |
797 T8Z = FNMS(KP707106781, T8W, T8V); | |
798 T90 = T86 - T83; | |
799 ii[WS(rs, 10)] = FMA(KP923879532, T90, T8Z); | |
800 ii[WS(rs, 26)] = FNMS(KP923879532, T90, T8Z); | |
801 } | |
802 } | |
803 { | |
804 E T4s, T6c, T4X, T9c, T9b, T9h, T6f, T9i, T66, T6q, T6a, T6m, T5x, T6p, T69; | |
805 E T6j; | |
806 { | |
807 E T4c, T4r, T6d, T6e; | |
808 T4c = T46 + T4b; | |
809 T4r = T4j + T4q; | |
810 T4s = FNMS(KP707106781, T4r, T4c); | |
811 T6c = FMA(KP707106781, T4r, T4c); | |
812 { | |
813 E T4H, T4W, T99, T9a; | |
814 T4H = FNMS(KP414213562, T4G, T4z); | |
815 T4W = FMA(KP414213562, T4V, T4O); | |
816 T4X = T4H - T4W; | |
817 T9c = T4H + T4W; | |
818 T99 = T97 - T98; | |
819 T9a = T6t + T6u; | |
820 T9b = FMA(KP707106781, T9a, T99); | |
821 T9h = FNMS(KP707106781, T9a, T99); | |
822 } | |
823 T6d = FMA(KP414213562, T4z, T4G); | |
824 T6e = FNMS(KP414213562, T4O, T4V); | |
825 T6f = T6d + T6e; | |
826 T9i = T6e - T6d; | |
827 { | |
828 E T5U, T6l, T65, T6k, T5T, T64; | |
829 T5T = T5L + T5S; | |
830 T5U = FNMS(KP707106781, T5T, T5E); | |
831 T6l = FMA(KP707106781, T5T, T5E); | |
832 T64 = T62 + T63; | |
833 T65 = FNMS(KP707106781, T64, T61); | |
834 T6k = FMA(KP707106781, T64, T61); | |
835 T66 = FNMS(KP668178637, T65, T5U); | |
836 T6q = FMA(KP198912367, T6k, T6l); | |
837 T6a = FMA(KP668178637, T5U, T65); | |
838 T6m = FNMS(KP198912367, T6l, T6k); | |
839 } | |
840 { | |
841 E T5l, T6i, T5w, T6h, T5k, T5v; | |
842 T5k = T5c + T5j; | |
843 T5l = FNMS(KP707106781, T5k, T55); | |
844 T6i = FMA(KP707106781, T5k, T55); | |
845 T5v = T5t + T5u; | |
846 T5w = FNMS(KP707106781, T5v, T5s); | |
847 T6h = FMA(KP707106781, T5v, T5s); | |
848 T5x = FMA(KP668178637, T5w, T5l); | |
849 T6p = FNMS(KP198912367, T6h, T6i); | |
850 T69 = FNMS(KP668178637, T5l, T5w); | |
851 T6j = FMA(KP198912367, T6i, T6h); | |
852 } | |
853 } | |
854 { | |
855 E T4Y, T67, T9j, T9k; | |
856 T4Y = FMA(KP923879532, T4X, T4s); | |
857 T67 = T5x - T66; | |
858 ri[WS(rs, 21)] = FNMS(KP831469612, T67, T4Y); | |
859 ri[WS(rs, 5)] = FMA(KP831469612, T67, T4Y); | |
860 T9j = FMA(KP923879532, T9i, T9h); | |
861 T9k = T6a - T69; | |
862 ii[WS(rs, 5)] = FMA(KP831469612, T9k, T9j); | |
863 ii[WS(rs, 21)] = FNMS(KP831469612, T9k, T9j); | |
864 } | |
865 { | |
866 E T68, T6b, T9l, T9m; | |
867 T68 = FNMS(KP923879532, T4X, T4s); | |
868 T6b = T69 + T6a; | |
869 ri[WS(rs, 13)] = FNMS(KP831469612, T6b, T68); | |
870 ri[WS(rs, 29)] = FMA(KP831469612, T6b, T68); | |
871 T9l = FNMS(KP923879532, T9i, T9h); | |
872 T9m = T5x + T66; | |
873 ii[WS(rs, 13)] = FNMS(KP831469612, T9m, T9l); | |
874 ii[WS(rs, 29)] = FMA(KP831469612, T9m, T9l); | |
875 } | |
876 { | |
877 E T6g, T6n, T9d, T9e; | |
878 T6g = FMA(KP923879532, T6f, T6c); | |
879 T6n = T6j + T6m; | |
880 ri[WS(rs, 17)] = FNMS(KP980785280, T6n, T6g); | |
881 ri[WS(rs, 1)] = FMA(KP980785280, T6n, T6g); | |
882 T9d = FMA(KP923879532, T9c, T9b); | |
883 T9e = T6p + T6q; | |
884 ii[WS(rs, 1)] = FMA(KP980785280, T9e, T9d); | |
885 ii[WS(rs, 17)] = FNMS(KP980785280, T9e, T9d); | |
886 } | |
887 { | |
888 E T6o, T6r, T9f, T9g; | |
889 T6o = FNMS(KP923879532, T6f, T6c); | |
890 T6r = T6p - T6q; | |
891 ri[WS(rs, 25)] = FNMS(KP980785280, T6r, T6o); | |
892 ri[WS(rs, 9)] = FMA(KP980785280, T6r, T6o); | |
893 T9f = FNMS(KP923879532, T9c, T9b); | |
894 T9g = T6m - T6j; | |
895 ii[WS(rs, 9)] = FMA(KP980785280, T9g, T9f); | |
896 ii[WS(rs, 25)] = FNMS(KP980785280, T9g, T9f); | |
897 } | |
898 } | |
899 { | |
900 E T6w, T6Y, T6D, T9w, T9p, T9v, T71, T9q, T6S, T7c, T6W, T78, T6L, T7b, T6V; | |
901 E T75; | |
902 { | |
903 E T6s, T6v, T6Z, T70; | |
904 T6s = T46 - T4b; | |
905 T6v = T6t - T6u; | |
906 T6w = FMA(KP707106781, T6v, T6s); | |
907 T6Y = FNMS(KP707106781, T6v, T6s); | |
908 { | |
909 E T6z, T6C, T9n, T9o; | |
910 T6z = FMA(KP414213562, T6y, T6x); | |
911 T6C = FNMS(KP414213562, T6B, T6A); | |
912 T6D = T6z - T6C; | |
913 T9w = T6z + T6C; | |
914 T9n = T98 + T97; | |
915 T9o = T4q - T4j; | |
916 T9p = FMA(KP707106781, T9o, T9n); | |
917 T9v = FNMS(KP707106781, T9o, T9n); | |
918 } | |
919 T6Z = FNMS(KP414213562, T6x, T6y); | |
920 T70 = FMA(KP414213562, T6A, T6B); | |
921 T71 = T6Z + T70; | |
922 T9q = T70 - T6Z; | |
923 { | |
924 E T6O, T77, T6R, T76, T6N, T6Q; | |
925 T6N = T5S - T5L; | |
926 T6O = FNMS(KP707106781, T6N, T6M); | |
927 T77 = FMA(KP707106781, T6N, T6M); | |
928 T6Q = T62 - T63; | |
929 T6R = FNMS(KP707106781, T6Q, T6P); | |
930 T76 = FMA(KP707106781, T6Q, T6P); | |
931 T6S = FNMS(KP668178637, T6R, T6O); | |
932 T7c = FMA(KP198912367, T76, T77); | |
933 T6W = FMA(KP668178637, T6O, T6R); | |
934 T78 = FNMS(KP198912367, T77, T76); | |
935 } | |
936 { | |
937 E T6H, T74, T6K, T73, T6G, T6J; | |
938 T6G = T5j - T5c; | |
939 T6H = FNMS(KP707106781, T6G, T6F); | |
940 T74 = FMA(KP707106781, T6G, T6F); | |
941 T6J = T5t - T5u; | |
942 T6K = FNMS(KP707106781, T6J, T6I); | |
943 T73 = FMA(KP707106781, T6J, T6I); | |
944 T6L = FMA(KP668178637, T6K, T6H); | |
945 T7b = FNMS(KP198912367, T73, T74); | |
946 T6V = FNMS(KP668178637, T6H, T6K); | |
947 T75 = FMA(KP198912367, T74, T73); | |
948 } | |
949 } | |
950 { | |
951 E T6E, T6T, T9r, T9s; | |
952 T6E = FMA(KP923879532, T6D, T6w); | |
953 T6T = T6L + T6S; | |
954 ri[WS(rs, 19)] = FNMS(KP831469612, T6T, T6E); | |
955 ri[WS(rs, 3)] = FMA(KP831469612, T6T, T6E); | |
956 T9r = FMA(KP923879532, T9q, T9p); | |
957 T9s = T6V + T6W; | |
958 ii[WS(rs, 3)] = FMA(KP831469612, T9s, T9r); | |
959 ii[WS(rs, 19)] = FNMS(KP831469612, T9s, T9r); | |
960 } | |
961 { | |
962 E T6U, T6X, T9t, T9u; | |
963 T6U = FNMS(KP923879532, T6D, T6w); | |
964 T6X = T6V - T6W; | |
965 ri[WS(rs, 27)] = FNMS(KP831469612, T6X, T6U); | |
966 ri[WS(rs, 11)] = FMA(KP831469612, T6X, T6U); | |
967 T9t = FNMS(KP923879532, T9q, T9p); | |
968 T9u = T6S - T6L; | |
969 ii[WS(rs, 11)] = FMA(KP831469612, T9u, T9t); | |
970 ii[WS(rs, 27)] = FNMS(KP831469612, T9u, T9t); | |
971 } | |
972 { | |
973 E T72, T79, T9x, T9y; | |
974 T72 = FNMS(KP923879532, T71, T6Y); | |
975 T79 = T75 - T78; | |
976 ri[WS(rs, 23)] = FNMS(KP980785280, T79, T72); | |
977 ri[WS(rs, 7)] = FMA(KP980785280, T79, T72); | |
978 T9x = FNMS(KP923879532, T9w, T9v); | |
979 T9y = T7c - T7b; | |
980 ii[WS(rs, 7)] = FMA(KP980785280, T9y, T9x); | |
981 ii[WS(rs, 23)] = FNMS(KP980785280, T9y, T9x); | |
982 } | |
983 { | |
984 E T7a, T7d, T9z, T9A; | |
985 T7a = FMA(KP923879532, T71, T6Y); | |
986 T7d = T7b + T7c; | |
987 ri[WS(rs, 15)] = FNMS(KP980785280, T7d, T7a); | |
988 ri[WS(rs, 31)] = FMA(KP980785280, T7d, T7a); | |
989 T9z = FMA(KP923879532, T9w, T9v); | |
990 T9A = T75 + T78; | |
991 ii[WS(rs, 15)] = FNMS(KP980785280, T9A, T9z); | |
992 ii[WS(rs, 31)] = FMA(KP980785280, T9A, T9z); | |
993 } | |
994 } | |
995 } | |
996 } | |
997 } | |
998 } | |
999 | |
1000 static const tw_instr twinstr[] = { | |
1001 {TW_CEXP, 0, 1}, | |
1002 {TW_CEXP, 0, 3}, | |
1003 {TW_CEXP, 0, 9}, | |
1004 {TW_CEXP, 0, 27}, | |
1005 {TW_NEXT, 1, 0} | |
1006 }; | |
1007 | |
1008 static const ct_desc desc = { 32, "t2_32", twinstr, &GENUS, {236, 98, 252, 0}, 0, 0, 0 }; | |
1009 | |
1010 void X(codelet_t2_32) (planner *p) { | |
1011 X(kdft_dit_register) (p, t2_32, &desc); | |
1012 } | |
1013 #else | |
1014 | |
1015 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -name t2_32 -include dft/scalar/t.h */ | |
1016 | |
1017 /* | |
1018 * This function contains 488 FP additions, 280 FP multiplications, | |
1019 * (or, 376 additions, 168 multiplications, 112 fused multiply/add), | |
1020 * 158 stack variables, 7 constants, and 128 memory accesses | |
1021 */ | |
1022 #include "dft/scalar/t.h" | |
1023 | |
1024 static void t2_32(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
1025 { | |
1026 DK(KP195090322, +0.195090322016128267848284868477022240927691618); | |
1027 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
1028 DK(KP555570233, +0.555570233019602224742830813948532874374937191); | |
1029 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
1030 DK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
1031 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
1032 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
1033 { | |
1034 INT m; | |
1035 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) { | |
1036 E T2, T5, T3, T6, T8, TM, TO, Td, T9, Te, Th, Tl, TD, TH, T1y; | |
1037 E T1H, T15, T1A, T11, T1F, T1n, T1p, T2q, T2I, T2u, T2K, T2V, T3b, T2Z, T3d; | |
1038 E Tu, Ty, T3l, T3n, T1t, T1v, T2f, T2h, T1a, T1e, T32, T34, T1W, T1Y, T2C; | |
1039 E T2E, Tg, TR, Tk, TS, Tm, TV, To, TT, T1M, T21, T1P, T22, T1Q, T25; | |
1040 E T1S, T23; | |
1041 { | |
1042 E Ts, T1d, Tx, T18, Tt, T1c, Tw, T19, TB, T14, TG, TZ, TC, T13, TF; | |
1043 E T10; | |
1044 { | |
1045 E T4, Tc, T7, Tb; | |
1046 T2 = W[0]; | |
1047 T5 = W[1]; | |
1048 T3 = W[2]; | |
1049 T6 = W[3]; | |
1050 T4 = T2 * T3; | |
1051 Tc = T5 * T3; | |
1052 T7 = T5 * T6; | |
1053 Tb = T2 * T6; | |
1054 T8 = T4 + T7; | |
1055 TM = T4 - T7; | |
1056 TO = Tb + Tc; | |
1057 Td = Tb - Tc; | |
1058 T9 = W[4]; | |
1059 Ts = T2 * T9; | |
1060 T1d = T6 * T9; | |
1061 Tx = T5 * T9; | |
1062 T18 = T3 * T9; | |
1063 Te = W[5]; | |
1064 Tt = T5 * Te; | |
1065 T1c = T3 * Te; | |
1066 Tw = T2 * Te; | |
1067 T19 = T6 * Te; | |
1068 Th = W[6]; | |
1069 TB = T3 * Th; | |
1070 T14 = T5 * Th; | |
1071 TG = T6 * Th; | |
1072 TZ = T2 * Th; | |
1073 Tl = W[7]; | |
1074 TC = T6 * Tl; | |
1075 T13 = T2 * Tl; | |
1076 TF = T3 * Tl; | |
1077 T10 = T5 * Tl; | |
1078 } | |
1079 TD = TB + TC; | |
1080 TH = TF - TG; | |
1081 T1y = TZ + T10; | |
1082 T1H = TF + TG; | |
1083 T15 = T13 + T14; | |
1084 T1A = T13 - T14; | |
1085 T11 = TZ - T10; | |
1086 T1F = TB - TC; | |
1087 T1n = FMA(T9, Th, Te * Tl); | |
1088 T1p = FNMS(Te, Th, T9 * Tl); | |
1089 { | |
1090 E T2o, T2p, T2s, T2t; | |
1091 T2o = T8 * Th; | |
1092 T2p = Td * Tl; | |
1093 T2q = T2o + T2p; | |
1094 T2I = T2o - T2p; | |
1095 T2s = T8 * Tl; | |
1096 T2t = Td * Th; | |
1097 T2u = T2s - T2t; | |
1098 T2K = T2s + T2t; | |
1099 } | |
1100 { | |
1101 E T2T, T2U, T2X, T2Y; | |
1102 T2T = TM * Th; | |
1103 T2U = TO * Tl; | |
1104 T2V = T2T - T2U; | |
1105 T3b = T2T + T2U; | |
1106 T2X = TM * Tl; | |
1107 T2Y = TO * Th; | |
1108 T2Z = T2X + T2Y; | |
1109 T3d = T2X - T2Y; | |
1110 Tu = Ts + Tt; | |
1111 Ty = Tw - Tx; | |
1112 T3l = FMA(Tu, Th, Ty * Tl); | |
1113 T3n = FNMS(Ty, Th, Tu * Tl); | |
1114 } | |
1115 T1t = Ts - Tt; | |
1116 T1v = Tw + Tx; | |
1117 T2f = FMA(T1t, Th, T1v * Tl); | |
1118 T2h = FNMS(T1v, Th, T1t * Tl); | |
1119 T1a = T18 - T19; | |
1120 T1e = T1c + T1d; | |
1121 T32 = FMA(T1a, Th, T1e * Tl); | |
1122 T34 = FNMS(T1e, Th, T1a * Tl); | |
1123 T1W = T18 + T19; | |
1124 T1Y = T1c - T1d; | |
1125 T2C = FMA(T1W, Th, T1Y * Tl); | |
1126 T2E = FNMS(T1Y, Th, T1W * Tl); | |
1127 { | |
1128 E Ta, Tf, Ti, Tj; | |
1129 Ta = T8 * T9; | |
1130 Tf = Td * Te; | |
1131 Tg = Ta - Tf; | |
1132 TR = Ta + Tf; | |
1133 Ti = T8 * Te; | |
1134 Tj = Td * T9; | |
1135 Tk = Ti + Tj; | |
1136 TS = Ti - Tj; | |
1137 } | |
1138 Tm = FMA(Tg, Th, Tk * Tl); | |
1139 TV = FNMS(TS, Th, TR * Tl); | |
1140 To = FNMS(Tk, Th, Tg * Tl); | |
1141 TT = FMA(TR, Th, TS * Tl); | |
1142 { | |
1143 E T1K, T1L, T1N, T1O; | |
1144 T1K = TM * T9; | |
1145 T1L = TO * Te; | |
1146 T1M = T1K - T1L; | |
1147 T21 = T1K + T1L; | |
1148 T1N = TM * Te; | |
1149 T1O = TO * T9; | |
1150 T1P = T1N + T1O; | |
1151 T22 = T1N - T1O; | |
1152 } | |
1153 T1Q = FMA(T1M, Th, T1P * Tl); | |
1154 T25 = FNMS(T22, Th, T21 * Tl); | |
1155 T1S = FNMS(T1P, Th, T1M * Tl); | |
1156 T23 = FMA(T21, Th, T22 * Tl); | |
1157 } | |
1158 { | |
1159 E TL, T6f, T8c, T8q, T3F, T5t, T7I, T7W, T2y, T6B, T6y, T7j, T4k, T5J, T4B; | |
1160 E T5G, T3h, T6H, T6O, T7o, T4L, T5N, T52, T5Q, T1i, T7V, T6i, T7D, T3K, T5u; | |
1161 E T3P, T5v, T1E, T6n, T6m, T7e, T3W, T5y, T41, T5z, T29, T6p, T6s, T7f, T47; | |
1162 E T5B, T4c, T5C, T2R, T6z, T6E, T7k, T4v, T5H, T4E, T5K, T3y, T6P, T6K, T7p; | |
1163 E T4W, T5R, T55, T5O; | |
1164 { | |
1165 E T1, T7G, Tq, T7F, TA, T3C, TJ, T3D, Tn, Tp; | |
1166 T1 = ri[0]; | |
1167 T7G = ii[0]; | |
1168 Tn = ri[WS(rs, 16)]; | |
1169 Tp = ii[WS(rs, 16)]; | |
1170 Tq = FMA(Tm, Tn, To * Tp); | |
1171 T7F = FNMS(To, Tn, Tm * Tp); | |
1172 { | |
1173 E Tv, Tz, TE, TI; | |
1174 Tv = ri[WS(rs, 8)]; | |
1175 Tz = ii[WS(rs, 8)]; | |
1176 TA = FMA(Tu, Tv, Ty * Tz); | |
1177 T3C = FNMS(Ty, Tv, Tu * Tz); | |
1178 TE = ri[WS(rs, 24)]; | |
1179 TI = ii[WS(rs, 24)]; | |
1180 TJ = FMA(TD, TE, TH * TI); | |
1181 T3D = FNMS(TH, TE, TD * TI); | |
1182 } | |
1183 { | |
1184 E Tr, TK, T8a, T8b; | |
1185 Tr = T1 + Tq; | |
1186 TK = TA + TJ; | |
1187 TL = Tr + TK; | |
1188 T6f = Tr - TK; | |
1189 T8a = T7G - T7F; | |
1190 T8b = TA - TJ; | |
1191 T8c = T8a - T8b; | |
1192 T8q = T8b + T8a; | |
1193 } | |
1194 { | |
1195 E T3B, T3E, T7E, T7H; | |
1196 T3B = T1 - Tq; | |
1197 T3E = T3C - T3D; | |
1198 T3F = T3B - T3E; | |
1199 T5t = T3B + T3E; | |
1200 T7E = T3C + T3D; | |
1201 T7H = T7F + T7G; | |
1202 T7I = T7E + T7H; | |
1203 T7W = T7H - T7E; | |
1204 } | |
1205 } | |
1206 { | |
1207 E T2e, T4g, T2w, T4z, T2j, T4h, T2n, T4y; | |
1208 { | |
1209 E T2c, T2d, T2r, T2v; | |
1210 T2c = ri[WS(rs, 1)]; | |
1211 T2d = ii[WS(rs, 1)]; | |
1212 T2e = FMA(T2, T2c, T5 * T2d); | |
1213 T4g = FNMS(T5, T2c, T2 * T2d); | |
1214 T2r = ri[WS(rs, 25)]; | |
1215 T2v = ii[WS(rs, 25)]; | |
1216 T2w = FMA(T2q, T2r, T2u * T2v); | |
1217 T4z = FNMS(T2u, T2r, T2q * T2v); | |
1218 } | |
1219 { | |
1220 E T2g, T2i, T2l, T2m; | |
1221 T2g = ri[WS(rs, 17)]; | |
1222 T2i = ii[WS(rs, 17)]; | |
1223 T2j = FMA(T2f, T2g, T2h * T2i); | |
1224 T4h = FNMS(T2h, T2g, T2f * T2i); | |
1225 T2l = ri[WS(rs, 9)]; | |
1226 T2m = ii[WS(rs, 9)]; | |
1227 T2n = FMA(T9, T2l, Te * T2m); | |
1228 T4y = FNMS(Te, T2l, T9 * T2m); | |
1229 } | |
1230 { | |
1231 E T2k, T2x, T6w, T6x; | |
1232 T2k = T2e + T2j; | |
1233 T2x = T2n + T2w; | |
1234 T2y = T2k + T2x; | |
1235 T6B = T2k - T2x; | |
1236 T6w = T4g + T4h; | |
1237 T6x = T4y + T4z; | |
1238 T6y = T6w - T6x; | |
1239 T7j = T6w + T6x; | |
1240 } | |
1241 { | |
1242 E T4i, T4j, T4x, T4A; | |
1243 T4i = T4g - T4h; | |
1244 T4j = T2n - T2w; | |
1245 T4k = T4i + T4j; | |
1246 T5J = T4i - T4j; | |
1247 T4x = T2e - T2j; | |
1248 T4A = T4y - T4z; | |
1249 T4B = T4x - T4A; | |
1250 T5G = T4x + T4A; | |
1251 } | |
1252 } | |
1253 { | |
1254 E T31, T4Y, T3f, T4J, T36, T4Z, T3a, T4I; | |
1255 { | |
1256 E T2W, T30, T3c, T3e; | |
1257 T2W = ri[WS(rs, 31)]; | |
1258 T30 = ii[WS(rs, 31)]; | |
1259 T31 = FMA(T2V, T2W, T2Z * T30); | |
1260 T4Y = FNMS(T2Z, T2W, T2V * T30); | |
1261 T3c = ri[WS(rs, 23)]; | |
1262 T3e = ii[WS(rs, 23)]; | |
1263 T3f = FMA(T3b, T3c, T3d * T3e); | |
1264 T4J = FNMS(T3d, T3c, T3b * T3e); | |
1265 } | |
1266 { | |
1267 E T33, T35, T38, T39; | |
1268 T33 = ri[WS(rs, 15)]; | |
1269 T35 = ii[WS(rs, 15)]; | |
1270 T36 = FMA(T32, T33, T34 * T35); | |
1271 T4Z = FNMS(T34, T33, T32 * T35); | |
1272 T38 = ri[WS(rs, 7)]; | |
1273 T39 = ii[WS(rs, 7)]; | |
1274 T3a = FMA(TR, T38, TS * T39); | |
1275 T4I = FNMS(TS, T38, TR * T39); | |
1276 } | |
1277 { | |
1278 E T37, T3g, T6M, T6N; | |
1279 T37 = T31 + T36; | |
1280 T3g = T3a + T3f; | |
1281 T3h = T37 + T3g; | |
1282 T6H = T37 - T3g; | |
1283 T6M = T4Y + T4Z; | |
1284 T6N = T4I + T4J; | |
1285 T6O = T6M - T6N; | |
1286 T7o = T6M + T6N; | |
1287 } | |
1288 { | |
1289 E T4H, T4K, T50, T51; | |
1290 T4H = T31 - T36; | |
1291 T4K = T4I - T4J; | |
1292 T4L = T4H - T4K; | |
1293 T5N = T4H + T4K; | |
1294 T50 = T4Y - T4Z; | |
1295 T51 = T3a - T3f; | |
1296 T52 = T50 + T51; | |
1297 T5Q = T50 - T51; | |
1298 } | |
1299 } | |
1300 { | |
1301 E TQ, T3G, T1g, T3N, TX, T3H, T17, T3M; | |
1302 { | |
1303 E TN, TP, T1b, T1f; | |
1304 TN = ri[WS(rs, 4)]; | |
1305 TP = ii[WS(rs, 4)]; | |
1306 TQ = FMA(TM, TN, TO * TP); | |
1307 T3G = FNMS(TO, TN, TM * TP); | |
1308 T1b = ri[WS(rs, 12)]; | |
1309 T1f = ii[WS(rs, 12)]; | |
1310 T1g = FMA(T1a, T1b, T1e * T1f); | |
1311 T3N = FNMS(T1e, T1b, T1a * T1f); | |
1312 } | |
1313 { | |
1314 E TU, TW, T12, T16; | |
1315 TU = ri[WS(rs, 20)]; | |
1316 TW = ii[WS(rs, 20)]; | |
1317 TX = FMA(TT, TU, TV * TW); | |
1318 T3H = FNMS(TV, TU, TT * TW); | |
1319 T12 = ri[WS(rs, 28)]; | |
1320 T16 = ii[WS(rs, 28)]; | |
1321 T17 = FMA(T11, T12, T15 * T16); | |
1322 T3M = FNMS(T15, T12, T11 * T16); | |
1323 } | |
1324 { | |
1325 E TY, T1h, T6g, T6h; | |
1326 TY = TQ + TX; | |
1327 T1h = T17 + T1g; | |
1328 T1i = TY + T1h; | |
1329 T7V = T1h - TY; | |
1330 T6g = T3G + T3H; | |
1331 T6h = T3M + T3N; | |
1332 T6i = T6g - T6h; | |
1333 T7D = T6g + T6h; | |
1334 } | |
1335 { | |
1336 E T3I, T3J, T3L, T3O; | |
1337 T3I = T3G - T3H; | |
1338 T3J = TQ - TX; | |
1339 T3K = T3I - T3J; | |
1340 T5u = T3J + T3I; | |
1341 T3L = T17 - T1g; | |
1342 T3O = T3M - T3N; | |
1343 T3P = T3L + T3O; | |
1344 T5v = T3L - T3O; | |
1345 } | |
1346 } | |
1347 { | |
1348 E T1m, T3S, T1C, T3Z, T1r, T3T, T1x, T3Y; | |
1349 { | |
1350 E T1k, T1l, T1z, T1B; | |
1351 T1k = ri[WS(rs, 2)]; | |
1352 T1l = ii[WS(rs, 2)]; | |
1353 T1m = FMA(T8, T1k, Td * T1l); | |
1354 T3S = FNMS(Td, T1k, T8 * T1l); | |
1355 T1z = ri[WS(rs, 26)]; | |
1356 T1B = ii[WS(rs, 26)]; | |
1357 T1C = FMA(T1y, T1z, T1A * T1B); | |
1358 T3Z = FNMS(T1A, T1z, T1y * T1B); | |
1359 } | |
1360 { | |
1361 E T1o, T1q, T1u, T1w; | |
1362 T1o = ri[WS(rs, 18)]; | |
1363 T1q = ii[WS(rs, 18)]; | |
1364 T1r = FMA(T1n, T1o, T1p * T1q); | |
1365 T3T = FNMS(T1p, T1o, T1n * T1q); | |
1366 T1u = ri[WS(rs, 10)]; | |
1367 T1w = ii[WS(rs, 10)]; | |
1368 T1x = FMA(T1t, T1u, T1v * T1w); | |
1369 T3Y = FNMS(T1v, T1u, T1t * T1w); | |
1370 } | |
1371 { | |
1372 E T1s, T1D, T6k, T6l; | |
1373 T1s = T1m + T1r; | |
1374 T1D = T1x + T1C; | |
1375 T1E = T1s + T1D; | |
1376 T6n = T1s - T1D; | |
1377 T6k = T3S + T3T; | |
1378 T6l = T3Y + T3Z; | |
1379 T6m = T6k - T6l; | |
1380 T7e = T6k + T6l; | |
1381 } | |
1382 { | |
1383 E T3U, T3V, T3X, T40; | |
1384 T3U = T3S - T3T; | |
1385 T3V = T1x - T1C; | |
1386 T3W = T3U + T3V; | |
1387 T5y = T3U - T3V; | |
1388 T3X = T1m - T1r; | |
1389 T40 = T3Y - T3Z; | |
1390 T41 = T3X - T40; | |
1391 T5z = T3X + T40; | |
1392 } | |
1393 } | |
1394 { | |
1395 E T1J, T43, T27, T4a, T1U, T44, T20, T49; | |
1396 { | |
1397 E T1G, T1I, T24, T26; | |
1398 T1G = ri[WS(rs, 30)]; | |
1399 T1I = ii[WS(rs, 30)]; | |
1400 T1J = FMA(T1F, T1G, T1H * T1I); | |
1401 T43 = FNMS(T1H, T1G, T1F * T1I); | |
1402 T24 = ri[WS(rs, 22)]; | |
1403 T26 = ii[WS(rs, 22)]; | |
1404 T27 = FMA(T23, T24, T25 * T26); | |
1405 T4a = FNMS(T25, T24, T23 * T26); | |
1406 } | |
1407 { | |
1408 E T1R, T1T, T1X, T1Z; | |
1409 T1R = ri[WS(rs, 14)]; | |
1410 T1T = ii[WS(rs, 14)]; | |
1411 T1U = FMA(T1Q, T1R, T1S * T1T); | |
1412 T44 = FNMS(T1S, T1R, T1Q * T1T); | |
1413 T1X = ri[WS(rs, 6)]; | |
1414 T1Z = ii[WS(rs, 6)]; | |
1415 T20 = FMA(T1W, T1X, T1Y * T1Z); | |
1416 T49 = FNMS(T1Y, T1X, T1W * T1Z); | |
1417 } | |
1418 { | |
1419 E T1V, T28, T6q, T6r; | |
1420 T1V = T1J + T1U; | |
1421 T28 = T20 + T27; | |
1422 T29 = T1V + T28; | |
1423 T6p = T1V - T28; | |
1424 T6q = T43 + T44; | |
1425 T6r = T49 + T4a; | |
1426 T6s = T6q - T6r; | |
1427 T7f = T6q + T6r; | |
1428 } | |
1429 { | |
1430 E T45, T46, T48, T4b; | |
1431 T45 = T43 - T44; | |
1432 T46 = T20 - T27; | |
1433 T47 = T45 + T46; | |
1434 T5B = T45 - T46; | |
1435 T48 = T1J - T1U; | |
1436 T4b = T49 - T4a; | |
1437 T4c = T48 - T4b; | |
1438 T5C = T48 + T4b; | |
1439 } | |
1440 } | |
1441 { | |
1442 E T2B, T4r, T2G, T4s, T4q, T4t, T2M, T4m, T2P, T4n, T4l, T4o; | |
1443 { | |
1444 E T2z, T2A, T2D, T2F; | |
1445 T2z = ri[WS(rs, 5)]; | |
1446 T2A = ii[WS(rs, 5)]; | |
1447 T2B = FMA(T21, T2z, T22 * T2A); | |
1448 T4r = FNMS(T22, T2z, T21 * T2A); | |
1449 T2D = ri[WS(rs, 21)]; | |
1450 T2F = ii[WS(rs, 21)]; | |
1451 T2G = FMA(T2C, T2D, T2E * T2F); | |
1452 T4s = FNMS(T2E, T2D, T2C * T2F); | |
1453 } | |
1454 T4q = T2B - T2G; | |
1455 T4t = T4r - T4s; | |
1456 { | |
1457 E T2J, T2L, T2N, T2O; | |
1458 T2J = ri[WS(rs, 29)]; | |
1459 T2L = ii[WS(rs, 29)]; | |
1460 T2M = FMA(T2I, T2J, T2K * T2L); | |
1461 T4m = FNMS(T2K, T2J, T2I * T2L); | |
1462 T2N = ri[WS(rs, 13)]; | |
1463 T2O = ii[WS(rs, 13)]; | |
1464 T2P = FMA(T1M, T2N, T1P * T2O); | |
1465 T4n = FNMS(T1P, T2N, T1M * T2O); | |
1466 } | |
1467 T4l = T2M - T2P; | |
1468 T4o = T4m - T4n; | |
1469 { | |
1470 E T2H, T2Q, T6C, T6D; | |
1471 T2H = T2B + T2G; | |
1472 T2Q = T2M + T2P; | |
1473 T2R = T2H + T2Q; | |
1474 T6z = T2Q - T2H; | |
1475 T6C = T4r + T4s; | |
1476 T6D = T4m + T4n; | |
1477 T6E = T6C - T6D; | |
1478 T7k = T6C + T6D; | |
1479 } | |
1480 { | |
1481 E T4p, T4u, T4C, T4D; | |
1482 T4p = T4l - T4o; | |
1483 T4u = T4q + T4t; | |
1484 T4v = KP707106781 * (T4p - T4u); | |
1485 T5H = KP707106781 * (T4u + T4p); | |
1486 T4C = T4t - T4q; | |
1487 T4D = T4l + T4o; | |
1488 T4E = KP707106781 * (T4C - T4D); | |
1489 T5K = KP707106781 * (T4C + T4D); | |
1490 } | |
1491 } | |
1492 { | |
1493 E T3k, T4M, T3p, T4N, T4O, T4P, T3t, T4S, T3w, T4T, T4R, T4U; | |
1494 { | |
1495 E T3i, T3j, T3m, T3o; | |
1496 T3i = ri[WS(rs, 3)]; | |
1497 T3j = ii[WS(rs, 3)]; | |
1498 T3k = FMA(T3, T3i, T6 * T3j); | |
1499 T4M = FNMS(T6, T3i, T3 * T3j); | |
1500 T3m = ri[WS(rs, 19)]; | |
1501 T3o = ii[WS(rs, 19)]; | |
1502 T3p = FMA(T3l, T3m, T3n * T3o); | |
1503 T4N = FNMS(T3n, T3m, T3l * T3o); | |
1504 } | |
1505 T4O = T4M - T4N; | |
1506 T4P = T3k - T3p; | |
1507 { | |
1508 E T3r, T3s, T3u, T3v; | |
1509 T3r = ri[WS(rs, 27)]; | |
1510 T3s = ii[WS(rs, 27)]; | |
1511 T3t = FMA(Th, T3r, Tl * T3s); | |
1512 T4S = FNMS(Tl, T3r, Th * T3s); | |
1513 T3u = ri[WS(rs, 11)]; | |
1514 T3v = ii[WS(rs, 11)]; | |
1515 T3w = FMA(Tg, T3u, Tk * T3v); | |
1516 T4T = FNMS(Tk, T3u, Tg * T3v); | |
1517 } | |
1518 T4R = T3t - T3w; | |
1519 T4U = T4S - T4T; | |
1520 { | |
1521 E T3q, T3x, T6I, T6J; | |
1522 T3q = T3k + T3p; | |
1523 T3x = T3t + T3w; | |
1524 T3y = T3q + T3x; | |
1525 T6P = T3x - T3q; | |
1526 T6I = T4M + T4N; | |
1527 T6J = T4S + T4T; | |
1528 T6K = T6I - T6J; | |
1529 T7p = T6I + T6J; | |
1530 } | |
1531 { | |
1532 E T4Q, T4V, T53, T54; | |
1533 T4Q = T4O - T4P; | |
1534 T4V = T4R + T4U; | |
1535 T4W = KP707106781 * (T4Q - T4V); | |
1536 T5R = KP707106781 * (T4Q + T4V); | |
1537 T53 = T4R - T4U; | |
1538 T54 = T4P + T4O; | |
1539 T55 = KP707106781 * (T53 - T54); | |
1540 T5O = KP707106781 * (T54 + T53); | |
1541 } | |
1542 } | |
1543 { | |
1544 E T2b, T7x, T7K, T7M, T3A, T7L, T7A, T7B; | |
1545 { | |
1546 E T1j, T2a, T7C, T7J; | |
1547 T1j = TL + T1i; | |
1548 T2a = T1E + T29; | |
1549 T2b = T1j + T2a; | |
1550 T7x = T1j - T2a; | |
1551 T7C = T7e + T7f; | |
1552 T7J = T7D + T7I; | |
1553 T7K = T7C + T7J; | |
1554 T7M = T7J - T7C; | |
1555 } | |
1556 { | |
1557 E T2S, T3z, T7y, T7z; | |
1558 T2S = T2y + T2R; | |
1559 T3z = T3h + T3y; | |
1560 T3A = T2S + T3z; | |
1561 T7L = T3z - T2S; | |
1562 T7y = T7j + T7k; | |
1563 T7z = T7o + T7p; | |
1564 T7A = T7y - T7z; | |
1565 T7B = T7y + T7z; | |
1566 } | |
1567 ri[WS(rs, 16)] = T2b - T3A; | |
1568 ii[WS(rs, 16)] = T7K - T7B; | |
1569 ri[0] = T2b + T3A; | |
1570 ii[0] = T7B + T7K; | |
1571 ri[WS(rs, 24)] = T7x - T7A; | |
1572 ii[WS(rs, 24)] = T7M - T7L; | |
1573 ri[WS(rs, 8)] = T7x + T7A; | |
1574 ii[WS(rs, 8)] = T7L + T7M; | |
1575 } | |
1576 { | |
1577 E T7h, T7t, T7Q, T7S, T7m, T7u, T7r, T7v; | |
1578 { | |
1579 E T7d, T7g, T7O, T7P; | |
1580 T7d = TL - T1i; | |
1581 T7g = T7e - T7f; | |
1582 T7h = T7d + T7g; | |
1583 T7t = T7d - T7g; | |
1584 T7O = T29 - T1E; | |
1585 T7P = T7I - T7D; | |
1586 T7Q = T7O + T7P; | |
1587 T7S = T7P - T7O; | |
1588 } | |
1589 { | |
1590 E T7i, T7l, T7n, T7q; | |
1591 T7i = T2y - T2R; | |
1592 T7l = T7j - T7k; | |
1593 T7m = T7i + T7l; | |
1594 T7u = T7l - T7i; | |
1595 T7n = T3h - T3y; | |
1596 T7q = T7o - T7p; | |
1597 T7r = T7n - T7q; | |
1598 T7v = T7n + T7q; | |
1599 } | |
1600 { | |
1601 E T7s, T7N, T7w, T7R; | |
1602 T7s = KP707106781 * (T7m + T7r); | |
1603 ri[WS(rs, 20)] = T7h - T7s; | |
1604 ri[WS(rs, 4)] = T7h + T7s; | |
1605 T7N = KP707106781 * (T7u + T7v); | |
1606 ii[WS(rs, 4)] = T7N + T7Q; | |
1607 ii[WS(rs, 20)] = T7Q - T7N; | |
1608 T7w = KP707106781 * (T7u - T7v); | |
1609 ri[WS(rs, 28)] = T7t - T7w; | |
1610 ri[WS(rs, 12)] = T7t + T7w; | |
1611 T7R = KP707106781 * (T7r - T7m); | |
1612 ii[WS(rs, 12)] = T7R + T7S; | |
1613 ii[WS(rs, 28)] = T7S - T7R; | |
1614 } | |
1615 } | |
1616 { | |
1617 E T6j, T7X, T83, T6X, T6u, T7U, T77, T7b, T70, T82, T6G, T6U, T74, T7a, T6R; | |
1618 E T6V; | |
1619 { | |
1620 E T6o, T6t, T6A, T6F; | |
1621 T6j = T6f - T6i; | |
1622 T7X = T7V + T7W; | |
1623 T83 = T7W - T7V; | |
1624 T6X = T6f + T6i; | |
1625 T6o = T6m - T6n; | |
1626 T6t = T6p + T6s; | |
1627 T6u = KP707106781 * (T6o - T6t); | |
1628 T7U = KP707106781 * (T6o + T6t); | |
1629 { | |
1630 E T75, T76, T6Y, T6Z; | |
1631 T75 = T6H + T6K; | |
1632 T76 = T6O + T6P; | |
1633 T77 = FNMS(KP382683432, T76, KP923879532 * T75); | |
1634 T7b = FMA(KP923879532, T76, KP382683432 * T75); | |
1635 T6Y = T6n + T6m; | |
1636 T6Z = T6p - T6s; | |
1637 T70 = KP707106781 * (T6Y + T6Z); | |
1638 T82 = KP707106781 * (T6Z - T6Y); | |
1639 } | |
1640 T6A = T6y - T6z; | |
1641 T6F = T6B - T6E; | |
1642 T6G = FMA(KP923879532, T6A, KP382683432 * T6F); | |
1643 T6U = FNMS(KP923879532, T6F, KP382683432 * T6A); | |
1644 { | |
1645 E T72, T73, T6L, T6Q; | |
1646 T72 = T6y + T6z; | |
1647 T73 = T6B + T6E; | |
1648 T74 = FMA(KP382683432, T72, KP923879532 * T73); | |
1649 T7a = FNMS(KP382683432, T73, KP923879532 * T72); | |
1650 T6L = T6H - T6K; | |
1651 T6Q = T6O - T6P; | |
1652 T6R = FNMS(KP923879532, T6Q, KP382683432 * T6L); | |
1653 T6V = FMA(KP382683432, T6Q, KP923879532 * T6L); | |
1654 } | |
1655 } | |
1656 { | |
1657 E T6v, T6S, T81, T84; | |
1658 T6v = T6j + T6u; | |
1659 T6S = T6G + T6R; | |
1660 ri[WS(rs, 22)] = T6v - T6S; | |
1661 ri[WS(rs, 6)] = T6v + T6S; | |
1662 T81 = T6U + T6V; | |
1663 T84 = T82 + T83; | |
1664 ii[WS(rs, 6)] = T81 + T84; | |
1665 ii[WS(rs, 22)] = T84 - T81; | |
1666 } | |
1667 { | |
1668 E T6T, T6W, T85, T86; | |
1669 T6T = T6j - T6u; | |
1670 T6W = T6U - T6V; | |
1671 ri[WS(rs, 30)] = T6T - T6W; | |
1672 ri[WS(rs, 14)] = T6T + T6W; | |
1673 T85 = T6R - T6G; | |
1674 T86 = T83 - T82; | |
1675 ii[WS(rs, 14)] = T85 + T86; | |
1676 ii[WS(rs, 30)] = T86 - T85; | |
1677 } | |
1678 { | |
1679 E T71, T78, T7T, T7Y; | |
1680 T71 = T6X + T70; | |
1681 T78 = T74 + T77; | |
1682 ri[WS(rs, 18)] = T71 - T78; | |
1683 ri[WS(rs, 2)] = T71 + T78; | |
1684 T7T = T7a + T7b; | |
1685 T7Y = T7U + T7X; | |
1686 ii[WS(rs, 2)] = T7T + T7Y; | |
1687 ii[WS(rs, 18)] = T7Y - T7T; | |
1688 } | |
1689 { | |
1690 E T79, T7c, T7Z, T80; | |
1691 T79 = T6X - T70; | |
1692 T7c = T7a - T7b; | |
1693 ri[WS(rs, 26)] = T79 - T7c; | |
1694 ri[WS(rs, 10)] = T79 + T7c; | |
1695 T7Z = T77 - T74; | |
1696 T80 = T7X - T7U; | |
1697 ii[WS(rs, 10)] = T7Z + T80; | |
1698 ii[WS(rs, 26)] = T80 - T7Z; | |
1699 } | |
1700 } | |
1701 { | |
1702 E T3R, T5d, T8r, T8x, T4e, T8o, T5n, T5r, T4G, T5a, T5g, T8w, T5k, T5q, T57; | |
1703 E T5b, T3Q, T8p; | |
1704 T3Q = KP707106781 * (T3K - T3P); | |
1705 T3R = T3F - T3Q; | |
1706 T5d = T3F + T3Q; | |
1707 T8p = KP707106781 * (T5v - T5u); | |
1708 T8r = T8p + T8q; | |
1709 T8x = T8q - T8p; | |
1710 { | |
1711 E T42, T4d, T5l, T5m; | |
1712 T42 = FNMS(KP923879532, T41, KP382683432 * T3W); | |
1713 T4d = FMA(KP382683432, T47, KP923879532 * T4c); | |
1714 T4e = T42 - T4d; | |
1715 T8o = T42 + T4d; | |
1716 T5l = T4L + T4W; | |
1717 T5m = T52 + T55; | |
1718 T5n = FNMS(KP555570233, T5m, KP831469612 * T5l); | |
1719 T5r = FMA(KP831469612, T5m, KP555570233 * T5l); | |
1720 } | |
1721 { | |
1722 E T4w, T4F, T5e, T5f; | |
1723 T4w = T4k - T4v; | |
1724 T4F = T4B - T4E; | |
1725 T4G = FMA(KP980785280, T4w, KP195090322 * T4F); | |
1726 T5a = FNMS(KP980785280, T4F, KP195090322 * T4w); | |
1727 T5e = FMA(KP923879532, T3W, KP382683432 * T41); | |
1728 T5f = FNMS(KP923879532, T47, KP382683432 * T4c); | |
1729 T5g = T5e + T5f; | |
1730 T8w = T5f - T5e; | |
1731 } | |
1732 { | |
1733 E T5i, T5j, T4X, T56; | |
1734 T5i = T4k + T4v; | |
1735 T5j = T4B + T4E; | |
1736 T5k = FMA(KP555570233, T5i, KP831469612 * T5j); | |
1737 T5q = FNMS(KP555570233, T5j, KP831469612 * T5i); | |
1738 T4X = T4L - T4W; | |
1739 T56 = T52 - T55; | |
1740 T57 = FNMS(KP980785280, T56, KP195090322 * T4X); | |
1741 T5b = FMA(KP195090322, T56, KP980785280 * T4X); | |
1742 } | |
1743 { | |
1744 E T4f, T58, T8v, T8y; | |
1745 T4f = T3R + T4e; | |
1746 T58 = T4G + T57; | |
1747 ri[WS(rs, 23)] = T4f - T58; | |
1748 ri[WS(rs, 7)] = T4f + T58; | |
1749 T8v = T5a + T5b; | |
1750 T8y = T8w + T8x; | |
1751 ii[WS(rs, 7)] = T8v + T8y; | |
1752 ii[WS(rs, 23)] = T8y - T8v; | |
1753 } | |
1754 { | |
1755 E T59, T5c, T8z, T8A; | |
1756 T59 = T3R - T4e; | |
1757 T5c = T5a - T5b; | |
1758 ri[WS(rs, 31)] = T59 - T5c; | |
1759 ri[WS(rs, 15)] = T59 + T5c; | |
1760 T8z = T57 - T4G; | |
1761 T8A = T8x - T8w; | |
1762 ii[WS(rs, 15)] = T8z + T8A; | |
1763 ii[WS(rs, 31)] = T8A - T8z; | |
1764 } | |
1765 { | |
1766 E T5h, T5o, T8n, T8s; | |
1767 T5h = T5d + T5g; | |
1768 T5o = T5k + T5n; | |
1769 ri[WS(rs, 19)] = T5h - T5o; | |
1770 ri[WS(rs, 3)] = T5h + T5o; | |
1771 T8n = T5q + T5r; | |
1772 T8s = T8o + T8r; | |
1773 ii[WS(rs, 3)] = T8n + T8s; | |
1774 ii[WS(rs, 19)] = T8s - T8n; | |
1775 } | |
1776 { | |
1777 E T5p, T5s, T8t, T8u; | |
1778 T5p = T5d - T5g; | |
1779 T5s = T5q - T5r; | |
1780 ri[WS(rs, 27)] = T5p - T5s; | |
1781 ri[WS(rs, 11)] = T5p + T5s; | |
1782 T8t = T5n - T5k; | |
1783 T8u = T8r - T8o; | |
1784 ii[WS(rs, 11)] = T8t + T8u; | |
1785 ii[WS(rs, 27)] = T8u - T8t; | |
1786 } | |
1787 } | |
1788 { | |
1789 E T5x, T5Z, T8d, T8j, T5E, T88, T69, T6d, T5M, T5W, T62, T8i, T66, T6c, T5T; | |
1790 E T5X, T5w, T89; | |
1791 T5w = KP707106781 * (T5u + T5v); | |
1792 T5x = T5t - T5w; | |
1793 T5Z = T5t + T5w; | |
1794 T89 = KP707106781 * (T3K + T3P); | |
1795 T8d = T89 + T8c; | |
1796 T8j = T8c - T89; | |
1797 { | |
1798 E T5A, T5D, T67, T68; | |
1799 T5A = FNMS(KP382683432, T5z, KP923879532 * T5y); | |
1800 T5D = FMA(KP923879532, T5B, KP382683432 * T5C); | |
1801 T5E = T5A - T5D; | |
1802 T88 = T5A + T5D; | |
1803 T67 = T5N + T5O; | |
1804 T68 = T5Q + T5R; | |
1805 T69 = FNMS(KP195090322, T68, KP980785280 * T67); | |
1806 T6d = FMA(KP195090322, T67, KP980785280 * T68); | |
1807 } | |
1808 { | |
1809 E T5I, T5L, T60, T61; | |
1810 T5I = T5G - T5H; | |
1811 T5L = T5J - T5K; | |
1812 T5M = FMA(KP555570233, T5I, KP831469612 * T5L); | |
1813 T5W = FNMS(KP831469612, T5I, KP555570233 * T5L); | |
1814 T60 = FMA(KP382683432, T5y, KP923879532 * T5z); | |
1815 T61 = FNMS(KP382683432, T5B, KP923879532 * T5C); | |
1816 T62 = T60 + T61; | |
1817 T8i = T61 - T60; | |
1818 } | |
1819 { | |
1820 E T64, T65, T5P, T5S; | |
1821 T64 = T5G + T5H; | |
1822 T65 = T5J + T5K; | |
1823 T66 = FMA(KP980785280, T64, KP195090322 * T65); | |
1824 T6c = FNMS(KP195090322, T64, KP980785280 * T65); | |
1825 T5P = T5N - T5O; | |
1826 T5S = T5Q - T5R; | |
1827 T5T = FNMS(KP831469612, T5S, KP555570233 * T5P); | |
1828 T5X = FMA(KP831469612, T5P, KP555570233 * T5S); | |
1829 } | |
1830 { | |
1831 E T5F, T5U, T8h, T8k; | |
1832 T5F = T5x + T5E; | |
1833 T5U = T5M + T5T; | |
1834 ri[WS(rs, 21)] = T5F - T5U; | |
1835 ri[WS(rs, 5)] = T5F + T5U; | |
1836 T8h = T5W + T5X; | |
1837 T8k = T8i + T8j; | |
1838 ii[WS(rs, 5)] = T8h + T8k; | |
1839 ii[WS(rs, 21)] = T8k - T8h; | |
1840 } | |
1841 { | |
1842 E T5V, T5Y, T8l, T8m; | |
1843 T5V = T5x - T5E; | |
1844 T5Y = T5W - T5X; | |
1845 ri[WS(rs, 29)] = T5V - T5Y; | |
1846 ri[WS(rs, 13)] = T5V + T5Y; | |
1847 T8l = T5T - T5M; | |
1848 T8m = T8j - T8i; | |
1849 ii[WS(rs, 13)] = T8l + T8m; | |
1850 ii[WS(rs, 29)] = T8m - T8l; | |
1851 } | |
1852 { | |
1853 E T63, T6a, T87, T8e; | |
1854 T63 = T5Z + T62; | |
1855 T6a = T66 + T69; | |
1856 ri[WS(rs, 17)] = T63 - T6a; | |
1857 ri[WS(rs, 1)] = T63 + T6a; | |
1858 T87 = T6c + T6d; | |
1859 T8e = T88 + T8d; | |
1860 ii[WS(rs, 1)] = T87 + T8e; | |
1861 ii[WS(rs, 17)] = T8e - T87; | |
1862 } | |
1863 { | |
1864 E T6b, T6e, T8f, T8g; | |
1865 T6b = T5Z - T62; | |
1866 T6e = T6c - T6d; | |
1867 ri[WS(rs, 25)] = T6b - T6e; | |
1868 ri[WS(rs, 9)] = T6b + T6e; | |
1869 T8f = T69 - T66; | |
1870 T8g = T8d - T88; | |
1871 ii[WS(rs, 9)] = T8f + T8g; | |
1872 ii[WS(rs, 25)] = T8g - T8f; | |
1873 } | |
1874 } | |
1875 } | |
1876 } | |
1877 } | |
1878 } | |
1879 | |
1880 static const tw_instr twinstr[] = { | |
1881 {TW_CEXP, 0, 1}, | |
1882 {TW_CEXP, 0, 3}, | |
1883 {TW_CEXP, 0, 9}, | |
1884 {TW_CEXP, 0, 27}, | |
1885 {TW_NEXT, 1, 0} | |
1886 }; | |
1887 | |
1888 static const ct_desc desc = { 32, "t2_32", twinstr, &GENUS, {376, 168, 112, 0}, 0, 0, 0 }; | |
1889 | |
1890 void X(codelet_t2_32) (planner *p) { | |
1891 X(kdft_dit_register) (p, t2_32, &desc); | |
1892 } | |
1893 #endif |