comparison src/fftw-3.3.8/dft/scalar/codelets/t2_25.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:04:27 EDT 2018 */
23
24 #include "dft/codelet-dft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 25 -name t2_25 -include dft/scalar/t.h */
29
30 /*
31 * This function contains 440 FP additions, 434 FP multiplications,
32 * (or, 84 additions, 78 multiplications, 356 fused multiply/add),
33 * 186 stack variables, 47 constants, and 100 memory accesses
34 */
35 #include "dft/scalar/t.h"
36
37 static void t2_25(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP860541664, +0.860541664367944677098261680920518816412804187);
40 DK(KP560319534, +0.560319534973832390111614715371676131169633784);
41 DK(KP681693190, +0.681693190061530575150324149145440022633095390);
42 DK(KP949179823, +0.949179823508441261575555465843363271711583843);
43 DK(KP557913902, +0.557913902031834264187699648465567037992437152);
44 DK(KP249506682, +0.249506682107067890488084201715862638334226305);
45 DK(KP614372930, +0.614372930789563808870829930444362096004872855);
46 DK(KP621716863, +0.621716863012209892444754556304102309693593202);
47 DK(KP998026728, +0.998026728428271561952336806863450553336905220);
48 DK(KP906616052, +0.906616052148196230441134447086066874408359177);
49 DK(KP845997307, +0.845997307939530944175097360758058292389769300);
50 DK(KP968479752, +0.968479752739016373193524836781420152702090879);
51 DK(KP994076283, +0.994076283785401014123185814696322018529298887);
52 DK(KP772036680, +0.772036680810363904029489473607579825330539880);
53 DK(KP734762448, +0.734762448793050413546343770063151342619912334);
54 DK(KP062914667, +0.062914667253649757225485955897349402364686947);
55 DK(KP943557151, +0.943557151597354104399655195398983005179443399);
56 DK(KP803003575, +0.803003575438660414833440593570376004635464850);
57 DK(KP554608978, +0.554608978404018097464974850792216217022558774);
58 DK(KP248028675, +0.248028675328619457762448260696444630363259177);
59 DK(KP525970792, +0.525970792408939708442463226536226366643874659);
60 DK(KP726211448, +0.726211448929902658173535992263577167607493062);
61 DK(KP833417178, +0.833417178328688677408962550243238843138996060);
62 DK(KP921177326, +0.921177326965143320250447435415066029359282231);
63 DK(KP541454447, +0.541454447536312777046285590082819509052033189);
64 DK(KP242145790, +0.242145790282157779872542093866183953459003101);
65 DK(KP683113946, +0.683113946453479238701949862233725244439656928);
66 DK(KP559154169, +0.559154169276087864842202529084232643714075927);
67 DK(KP992114701, +0.992114701314477831049793042785778521453036709);
68 DK(KP968583161, +0.968583161128631119490168375464735813836012403);
69 DK(KP851038619, +0.851038619207379630836264138867114231259902550);
70 DK(KP912018591, +0.912018591466481957908415381764119056233607330);
71 DK(KP912575812, +0.912575812670962425556968549836277086778922727);
72 DK(KP470564281, +0.470564281212251493087595091036643380879947982);
73 DK(KP827271945, +0.827271945972475634034355757144307982555673741);
74 DK(KP126329378, +0.126329378446108174786050455341811215027378105);
75 DK(KP904730450, +0.904730450839922351881287709692877908104763647);
76 DK(KP831864738, +0.831864738706457140726048799369896829771167132);
77 DK(KP871714437, +0.871714437527667770979999223229522602943903653);
78 DK(KP549754652, +0.549754652192770074288023275540779861653779767);
79 DK(KP634619297, +0.634619297544148100711287640319130485732531031);
80 DK(KP939062505, +0.939062505817492352556001843133229685779824606);
81 DK(KP256756360, +0.256756360367726783319498520922669048172391148);
82 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
83 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
84 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
85 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
86 {
87 INT m;
88 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(50, rs)) {
89 E T2, T8, T3, T6, Tk, Tm, T5, T7, T19, Tb, T1b, Tc, Tw, TT, T1j;
90 E TE, T2p, T1c, T2U, TI, T11, T15, T2Q, T2M, T2m, T2i, T2e, Tn, Tr, TX;
91 E T31, T35, T1l, T1m, T1q, TA, T1K, T1O, T2a, T27, T1g, T2x, T2t, Th, Td;
92 E T1S, T2X, T1W;
93 {
94 E TS, TD, T2L, T10, TH, T2P, T14, T9, T1a, Tz, TW, T4, Ta, Tv, T1J;
95 E T1N;
96 T2 = W[0];
97 T8 = W[4];
98 T3 = W[2];
99 T6 = W[3];
100 T4 = T2 * T3;
101 TS = T3 * T8;
102 Ta = T2 * T6;
103 Tv = T2 * T8;
104 Tk = W[6];
105 TD = T8 * Tk;
106 T2L = T2 * Tk;
107 T10 = T3 * Tk;
108 Tm = W[7];
109 TH = T8 * Tm;
110 T2P = T2 * Tm;
111 T14 = T3 * Tm;
112 T5 = W[1];
113 T7 = FNMS(T5, T6, T4);
114 T19 = FMA(T5, T6, T4);
115 T9 = T7 * T8;
116 T1a = T19 * T8;
117 Tb = FMA(T5, T3, Ta);
118 T1b = FNMS(T5, T3, Ta);
119 Tc = W[5];
120 Tz = T2 * Tc;
121 TW = T3 * Tc;
122 Tw = FNMS(T5, Tc, Tv);
123 TT = FMA(T6, Tc, TS);
124 T1j = FMA(T5, Tc, Tv);
125 TE = FMA(Tc, Tm, TD);
126 T2p = FMA(T6, T8, TW);
127 T1c = FNMS(T1b, Tc, T1a);
128 T2U = FNMS(Tb, Tc, T9);
129 TI = FNMS(Tc, Tk, TH);
130 T11 = FMA(T6, Tm, T10);
131 T15 = FNMS(T6, Tk, T14);
132 T2Q = FNMS(T5, Tk, T2P);
133 T2M = FMA(T5, Tm, T2L);
134 {
135 E T2h, T2d, Tl, Tq;
136 T2m = FNMS(T6, Tc, TS);
137 T2h = T19 * Tm;
138 T2i = FNMS(T1b, Tk, T2h);
139 T2d = T19 * Tk;
140 T2e = FMA(T1b, Tm, T2d);
141 Tl = T7 * Tk;
142 Tn = FMA(Tb, Tm, Tl);
143 Tq = T7 * Tm;
144 Tr = FNMS(Tb, Tk, Tq);
145 }
146 {
147 E T30, T34, T1k, T1p;
148 T30 = TT * Tk;
149 T34 = TT * Tm;
150 TX = FNMS(T6, T8, TW);
151 T31 = FMA(TX, Tm, T30);
152 T35 = FNMS(TX, Tk, T34);
153 T1k = T1j * Tk;
154 T1p = T1j * Tm;
155 T1l = FNMS(T5, T8, Tz);
156 T1m = FMA(T1l, Tm, T1k);
157 T1q = FNMS(T1l, Tk, T1p);
158 }
159 T1J = Tw * Tk;
160 T1N = Tw * Tm;
161 TA = FMA(T5, T8, Tz);
162 T1K = FMA(TA, Tm, T1J);
163 T1O = FNMS(TA, Tk, T1N);
164 {
165 E T1f, T2s, T2w, Tg, T1R, T1V;
166 T1f = T19 * Tc;
167 T2a = FNMS(T1b, T8, T1f);
168 T27 = FMA(T1b, Tc, T1a);
169 T2s = T27 * Tk;
170 T2w = T27 * Tm;
171 T1g = FMA(T1b, T8, T1f);
172 T2x = FNMS(T2a, Tk, T2w);
173 T2t = FMA(T2a, Tm, T2s);
174 Tg = T7 * Tc;
175 Th = FNMS(Tb, T8, Tg);
176 Td = FMA(Tb, Tc, T9);
177 T1R = Td * Tk;
178 T1V = Td * Tm;
179 T1S = FMA(Th, Tm, T1R);
180 T2X = FMA(Tb, T8, Tg);
181 T1W = FNMS(Th, Tk, T1V);
182 }
183 }
184 {
185 E T1, T7r, T4s, T6a, T7G, T86, TM, T4f, T4g, T7q, T7B, T7C, T5j, T6n, T5q;
186 E T6k, T3a, T6m, T5g, T4a, T6j, T5n, T4z, T6z, T4G, T6C, T1v, T6y, T4w, T3t;
187 E T6B, T4D, T4O, T6v, T4V, T6s, T21, T6r, T4S, T3H, T6u, T4L, T54, T6g, T5b;
188 E T6d, T2C, T6f, T51, T3W, T6c, T58;
189 {
190 E Tj, T4j, TK, T4q, TC, T4o, Tt, T4l;
191 T1 = ri[0];
192 T7r = ii[0];
193 {
194 E Te, Tf, Ti, T4i;
195 Te = ri[WS(rs, 5)];
196 Tf = Td * Te;
197 Ti = ii[WS(rs, 5)];
198 T4i = Td * Ti;
199 Tj = FMA(Th, Ti, Tf);
200 T4j = FNMS(Th, Te, T4i);
201 }
202 {
203 E TF, TG, TJ, T4p;
204 TF = ri[WS(rs, 15)];
205 TG = TE * TF;
206 TJ = ii[WS(rs, 15)];
207 T4p = TE * TJ;
208 TK = FMA(TI, TJ, TG);
209 T4q = FNMS(TI, TF, T4p);
210 }
211 {
212 E Tx, Ty, TB, T4n;
213 Tx = ri[WS(rs, 10)];
214 Ty = Tw * Tx;
215 TB = ii[WS(rs, 10)];
216 T4n = Tw * TB;
217 TC = FMA(TA, TB, Ty);
218 T4o = FNMS(TA, Tx, T4n);
219 }
220 {
221 E To, Tp, Ts, T4k;
222 To = ri[WS(rs, 20)];
223 Tp = Tn * To;
224 Ts = ii[WS(rs, 20)];
225 T4k = Tn * Ts;
226 Tt = FMA(Tr, Ts, Tp);
227 T4l = FNMS(Tr, To, T4k);
228 }
229 {
230 E T4m, T4r, T7E, T7F;
231 T4m = T4j - T4l;
232 T4r = T4o - T4q;
233 T4s = FMA(KP618033988, T4r, T4m);
234 T6a = FNMS(KP618033988, T4m, T4r);
235 T7E = Tj - Tt;
236 T7F = TC - TK;
237 T7G = FMA(KP618033988, T7F, T7E);
238 T86 = FNMS(KP618033988, T7E, T7F);
239 }
240 {
241 E Tu, TL, T7o, T7p;
242 Tu = Tj + Tt;
243 TL = TC + TK;
244 TM = Tu + TL;
245 T4f = FNMS(KP250000000, TM, T1);
246 T4g = Tu - TL;
247 T7o = T4j + T4l;
248 T7p = T4o + T4q;
249 T7q = T7o + T7p;
250 T7B = FNMS(KP250000000, T7q, T7r);
251 T7C = T7o - T7p;
252 }
253 }
254 {
255 E T2G, T3Y, T2Z, T37, T38, T45, T47, T48, T2K, T2S, T2T, T40, T42, T43;
256 {
257 E T2D, T2E, T2F, T3X;
258 T2D = ri[WS(rs, 3)];
259 T2E = T3 * T2D;
260 T2F = ii[WS(rs, 3)];
261 T3X = T3 * T2F;
262 T2G = FMA(T6, T2F, T2E);
263 T3Y = FNMS(T6, T2D, T3X);
264 }
265 {
266 E T2V, T2W, T2Y, T44, T32, T33, T36, T46;
267 T2V = ri[WS(rs, 13)];
268 T2W = T2U * T2V;
269 T2Y = ii[WS(rs, 13)];
270 T44 = T2U * T2Y;
271 T32 = ri[WS(rs, 18)];
272 T33 = T31 * T32;
273 T36 = ii[WS(rs, 18)];
274 T46 = T31 * T36;
275 T2Z = FMA(T2X, T2Y, T2W);
276 T37 = FMA(T35, T36, T33);
277 T38 = T2Z + T37;
278 T45 = FNMS(T2X, T2V, T44);
279 T47 = FNMS(T35, T32, T46);
280 T48 = T45 + T47;
281 }
282 {
283 E T2H, T2I, T2J, T3Z, T2N, T2O, T2R, T41;
284 T2H = ri[WS(rs, 8)];
285 T2I = T1j * T2H;
286 T2J = ii[WS(rs, 8)];
287 T3Z = T1j * T2J;
288 T2N = ri[WS(rs, 23)];
289 T2O = T2M * T2N;
290 T2R = ii[WS(rs, 23)];
291 T41 = T2M * T2R;
292 T2K = FMA(T1l, T2J, T2I);
293 T2S = FMA(T2Q, T2R, T2O);
294 T2T = T2K + T2S;
295 T40 = FNMS(T1l, T2H, T3Z);
296 T42 = FNMS(T2Q, T2N, T41);
297 T43 = T40 + T42;
298 }
299 {
300 E T5h, T5i, T5o, T5p;
301 T5h = T42 - T40;
302 T5i = T47 - T45;
303 T5j = FMA(KP618033988, T5i, T5h);
304 T6n = FNMS(KP618033988, T5h, T5i);
305 T5o = T2K - T2S;
306 T5p = T2Z - T37;
307 T5q = FMA(KP618033988, T5p, T5o);
308 T6k = FNMS(KP618033988, T5o, T5p);
309 }
310 {
311 E T5f, T39, T5e, T5m, T49, T5l;
312 T5f = T38 - T2T;
313 T39 = T2T + T38;
314 T5e = FNMS(KP250000000, T39, T2G);
315 T3a = T2G + T39;
316 T6m = FMA(KP559016994, T5f, T5e);
317 T5g = FNMS(KP559016994, T5f, T5e);
318 T5m = T48 - T43;
319 T49 = T43 + T48;
320 T5l = FNMS(KP250000000, T49, T3Y);
321 T4a = T3Y + T49;
322 T6j = FMA(KP559016994, T5m, T5l);
323 T5n = FNMS(KP559016994, T5m, T5l);
324 }
325 }
326 {
327 E TR, T3h, T1i, T1s, T1t, T3o, T3q, T3r, TZ, T17, T18, T3j, T3l, T3m;
328 {
329 E TO, TP, TQ, T3g;
330 TO = ri[WS(rs, 1)];
331 TP = T2 * TO;
332 TQ = ii[WS(rs, 1)];
333 T3g = T2 * TQ;
334 TR = FMA(T5, TQ, TP);
335 T3h = FNMS(T5, TO, T3g);
336 }
337 {
338 E T1d, T1e, T1h, T3n, T1n, T1o, T1r, T3p;
339 T1d = ri[WS(rs, 11)];
340 T1e = T1c * T1d;
341 T1h = ii[WS(rs, 11)];
342 T3n = T1c * T1h;
343 T1n = ri[WS(rs, 16)];
344 T1o = T1m * T1n;
345 T1r = ii[WS(rs, 16)];
346 T3p = T1m * T1r;
347 T1i = FMA(T1g, T1h, T1e);
348 T1s = FMA(T1q, T1r, T1o);
349 T1t = T1i + T1s;
350 T3o = FNMS(T1g, T1d, T3n);
351 T3q = FNMS(T1q, T1n, T3p);
352 T3r = T3o + T3q;
353 }
354 {
355 E TU, TV, TY, T3i, T12, T13, T16, T3k;
356 TU = ri[WS(rs, 6)];
357 TV = TT * TU;
358 TY = ii[WS(rs, 6)];
359 T3i = TT * TY;
360 T12 = ri[WS(rs, 21)];
361 T13 = T11 * T12;
362 T16 = ii[WS(rs, 21)];
363 T3k = T11 * T16;
364 TZ = FMA(TX, TY, TV);
365 T17 = FMA(T15, T16, T13);
366 T18 = TZ + T17;
367 T3j = FNMS(TX, TU, T3i);
368 T3l = FNMS(T15, T12, T3k);
369 T3m = T3j + T3l;
370 }
371 {
372 E T4x, T4y, T4E, T4F;
373 T4x = T3j - T3l;
374 T4y = T3q - T3o;
375 T4z = FNMS(KP618033988, T4y, T4x);
376 T6z = FMA(KP618033988, T4x, T4y);
377 T4E = T17 - TZ;
378 T4F = T1s - T1i;
379 T4G = FMA(KP618033988, T4F, T4E);
380 T6C = FNMS(KP618033988, T4E, T4F);
381 }
382 {
383 E T4v, T1u, T4u, T4C, T3s, T4B;
384 T4v = T18 - T1t;
385 T1u = T18 + T1t;
386 T4u = FNMS(KP250000000, T1u, TR);
387 T1v = TR + T1u;
388 T6y = FNMS(KP559016994, T4v, T4u);
389 T4w = FMA(KP559016994, T4v, T4u);
390 T4C = T3m - T3r;
391 T3s = T3m + T3r;
392 T4B = FNMS(KP250000000, T3s, T3h);
393 T3t = T3h + T3s;
394 T6B = FNMS(KP559016994, T4C, T4B);
395 T4D = FMA(KP559016994, T4C, T4B);
396 }
397 }
398 {
399 E T1z, T3v, T1Q, T1Y, T1Z, T3C, T3E, T3F, T1D, T1H, T1I, T3x, T3z, T3A;
400 {
401 E T1w, T1x, T1y, T3u;
402 T1w = ri[WS(rs, 4)];
403 T1x = T7 * T1w;
404 T1y = ii[WS(rs, 4)];
405 T3u = T7 * T1y;
406 T1z = FMA(Tb, T1y, T1x);
407 T3v = FNMS(Tb, T1w, T3u);
408 }
409 {
410 E T1L, T1M, T1P, T3B, T1T, T1U, T1X, T3D;
411 T1L = ri[WS(rs, 14)];
412 T1M = T1K * T1L;
413 T1P = ii[WS(rs, 14)];
414 T3B = T1K * T1P;
415 T1T = ri[WS(rs, 19)];
416 T1U = T1S * T1T;
417 T1X = ii[WS(rs, 19)];
418 T3D = T1S * T1X;
419 T1Q = FMA(T1O, T1P, T1M);
420 T1Y = FMA(T1W, T1X, T1U);
421 T1Z = T1Q + T1Y;
422 T3C = FNMS(T1O, T1L, T3B);
423 T3E = FNMS(T1W, T1T, T3D);
424 T3F = T3C + T3E;
425 }
426 {
427 E T1A, T1B, T1C, T3w, T1E, T1F, T1G, T3y;
428 T1A = ri[WS(rs, 9)];
429 T1B = T8 * T1A;
430 T1C = ii[WS(rs, 9)];
431 T3w = T8 * T1C;
432 T1E = ri[WS(rs, 24)];
433 T1F = Tk * T1E;
434 T1G = ii[WS(rs, 24)];
435 T3y = Tk * T1G;
436 T1D = FMA(Tc, T1C, T1B);
437 T1H = FMA(Tm, T1G, T1F);
438 T1I = T1D + T1H;
439 T3x = FNMS(Tc, T1A, T3w);
440 T3z = FNMS(Tm, T1E, T3y);
441 T3A = T3x + T3z;
442 }
443 {
444 E T4M, T4N, T4T, T4U;
445 T4M = T1H - T1D;
446 T4N = T1Y - T1Q;
447 T4O = FMA(KP618033988, T4N, T4M);
448 T6v = FNMS(KP618033988, T4M, T4N);
449 T4T = T3z - T3x;
450 T4U = T3E - T3C;
451 T4V = FMA(KP618033988, T4U, T4T);
452 T6s = FNMS(KP618033988, T4T, T4U);
453 }
454 {
455 E T4R, T20, T4Q, T4K, T3G, T4J;
456 T4R = T1I - T1Z;
457 T20 = T1I + T1Z;
458 T4Q = FNMS(KP250000000, T20, T1z);
459 T21 = T1z + T20;
460 T6r = FNMS(KP559016994, T4R, T4Q);
461 T4S = FMA(KP559016994, T4R, T4Q);
462 T4K = T3F - T3A;
463 T3G = T3A + T3F;
464 T4J = FNMS(KP250000000, T3G, T3v);
465 T3H = T3v + T3G;
466 T6u = FMA(KP559016994, T4K, T4J);
467 T4L = FNMS(KP559016994, T4K, T4J);
468 }
469 }
470 {
471 E T26, T3K, T2r, T2z, T2A, T3R, T3T, T3U, T2c, T2k, T2l, T3M, T3O, T3P;
472 {
473 E T23, T24, T25, T3J;
474 T23 = ri[WS(rs, 2)];
475 T24 = T19 * T23;
476 T25 = ii[WS(rs, 2)];
477 T3J = T19 * T25;
478 T26 = FMA(T1b, T25, T24);
479 T3K = FNMS(T1b, T23, T3J);
480 }
481 {
482 E T2n, T2o, T2q, T3Q, T2u, T2v, T2y, T3S;
483 T2n = ri[WS(rs, 12)];
484 T2o = T2m * T2n;
485 T2q = ii[WS(rs, 12)];
486 T3Q = T2m * T2q;
487 T2u = ri[WS(rs, 17)];
488 T2v = T2t * T2u;
489 T2y = ii[WS(rs, 17)];
490 T3S = T2t * T2y;
491 T2r = FMA(T2p, T2q, T2o);
492 T2z = FMA(T2x, T2y, T2v);
493 T2A = T2r + T2z;
494 T3R = FNMS(T2p, T2n, T3Q);
495 T3T = FNMS(T2x, T2u, T3S);
496 T3U = T3R + T3T;
497 }
498 {
499 E T28, T29, T2b, T3L, T2f, T2g, T2j, T3N;
500 T28 = ri[WS(rs, 7)];
501 T29 = T27 * T28;
502 T2b = ii[WS(rs, 7)];
503 T3L = T27 * T2b;
504 T2f = ri[WS(rs, 22)];
505 T2g = T2e * T2f;
506 T2j = ii[WS(rs, 22)];
507 T3N = T2e * T2j;
508 T2c = FMA(T2a, T2b, T29);
509 T2k = FMA(T2i, T2j, T2g);
510 T2l = T2c + T2k;
511 T3M = FNMS(T2a, T28, T3L);
512 T3O = FNMS(T2i, T2f, T3N);
513 T3P = T3M + T3O;
514 }
515 {
516 E T52, T53, T59, T5a;
517 T52 = T3O - T3M;
518 T53 = T3R - T3T;
519 T54 = FNMS(KP618033988, T53, T52);
520 T6g = FMA(KP618033988, T52, T53);
521 T59 = T2k - T2c;
522 T5a = T2z - T2r;
523 T5b = FMA(KP618033988, T5a, T59);
524 T6d = FNMS(KP618033988, T59, T5a);
525 }
526 {
527 E T50, T2B, T4Z, T57, T3V, T56;
528 T50 = T2A - T2l;
529 T2B = T2l + T2A;
530 T4Z = FNMS(KP250000000, T2B, T26);
531 T2C = T26 + T2B;
532 T6f = FMA(KP559016994, T50, T4Z);
533 T51 = FNMS(KP559016994, T50, T4Z);
534 T57 = T3U - T3P;
535 T3V = T3P + T3U;
536 T56 = FNMS(KP250000000, T3V, T3K);
537 T3W = T3K + T3V;
538 T6c = FMA(KP559016994, T57, T56);
539 T58 = FNMS(KP559016994, T57, T56);
540 }
541 }
542 {
543 E T4c, T4e, TN, T3c, T3d, T3e, T4d, T3f;
544 {
545 E T3I, T4b, T22, T3b;
546 T3I = T3t - T3H;
547 T4b = T3W - T4a;
548 T4c = FMA(KP618033988, T4b, T3I);
549 T4e = FNMS(KP618033988, T3I, T4b);
550 TN = T1 + TM;
551 T22 = T1v + T21;
552 T3b = T2C + T3a;
553 T3c = T22 + T3b;
554 T3d = FNMS(KP250000000, T3c, TN);
555 T3e = T22 - T3b;
556 }
557 ri[0] = TN + T3c;
558 T4d = FNMS(KP559016994, T3e, T3d);
559 ri[WS(rs, 10)] = FNMS(KP951056516, T4e, T4d);
560 ri[WS(rs, 15)] = FMA(KP951056516, T4e, T4d);
561 T3f = FMA(KP559016994, T3e, T3d);
562 ri[WS(rs, 20)] = FNMS(KP951056516, T4c, T3f);
563 ri[WS(rs, 5)] = FMA(KP951056516, T4c, T3f);
564 }
565 {
566 E T7y, T7A, T7s, T7n, T7t, T7u, T7z, T7v;
567 {
568 E T7w, T7x, T7l, T7m;
569 T7w = T1v - T21;
570 T7x = T2C - T3a;
571 T7y = FMA(KP618033988, T7x, T7w);
572 T7A = FNMS(KP618033988, T7w, T7x);
573 T7s = T7q + T7r;
574 T7l = T3t + T3H;
575 T7m = T3W + T4a;
576 T7n = T7l + T7m;
577 T7t = FNMS(KP250000000, T7n, T7s);
578 T7u = T7l - T7m;
579 }
580 ii[0] = T7n + T7s;
581 T7z = FNMS(KP559016994, T7u, T7t);
582 ii[WS(rs, 10)] = FMA(KP951056516, T7A, T7z);
583 ii[WS(rs, 15)] = FNMS(KP951056516, T7A, T7z);
584 T7v = FMA(KP559016994, T7u, T7t);
585 ii[WS(rs, 5)] = FNMS(KP951056516, T7y, T7v);
586 ii[WS(rs, 20)] = FMA(KP951056516, T7y, T7v);
587 }
588 {
589 E T4t, T5H, T7H, T7T, T5A, T5D, T7P, T7O, T7I, T7J, T7K, T4Y, T5t, T5u, T62;
590 E T65, T81, T80, T7U, T7V, T7W, T5O, T5V, T5W, T4h, T7D;
591 T4h = FMA(KP559016994, T4g, T4f);
592 T4t = FMA(KP951056516, T4s, T4h);
593 T5H = FNMS(KP951056516, T4s, T4h);
594 T7D = FMA(KP559016994, T7C, T7B);
595 T7H = FNMS(KP951056516, T7G, T7D);
596 T7T = FMA(KP951056516, T7G, T7D);
597 {
598 E T4I, T5y, T5s, T5C, T4X, T5z, T5d, T5B;
599 {
600 E T4A, T4H, T5k, T5r;
601 T4A = FMA(KP951056516, T4z, T4w);
602 T4H = FMA(KP951056516, T4G, T4D);
603 T4I = FMA(KP256756360, T4H, T4A);
604 T5y = FNMS(KP256756360, T4A, T4H);
605 T5k = FNMS(KP951056516, T5j, T5g);
606 T5r = FNMS(KP951056516, T5q, T5n);
607 T5s = FMA(KP939062505, T5r, T5k);
608 T5C = FNMS(KP939062505, T5k, T5r);
609 }
610 {
611 E T4P, T4W, T55, T5c;
612 T4P = FMA(KP951056516, T4O, T4L);
613 T4W = FNMS(KP951056516, T4V, T4S);
614 T4X = FMA(KP634619297, T4W, T4P);
615 T5z = FNMS(KP634619297, T4P, T4W);
616 T55 = FNMS(KP951056516, T54, T51);
617 T5c = FMA(KP951056516, T5b, T58);
618 T5d = FMA(KP549754652, T5c, T55);
619 T5B = FNMS(KP549754652, T55, T5c);
620 }
621 T5A = FMA(KP871714437, T5z, T5y);
622 T5D = FNMS(KP831864738, T5C, T5B);
623 T7P = FNMS(KP831864738, T5s, T5d);
624 T7O = FNMS(KP871714437, T4X, T4I);
625 T7I = FNMS(KP871714437, T5z, T5y);
626 T7J = FMA(KP831864738, T5C, T5B);
627 T7K = FMA(KP904730450, T7J, T7I);
628 T4Y = FMA(KP871714437, T4X, T4I);
629 T5t = FMA(KP831864738, T5s, T5d);
630 T5u = FMA(KP904730450, T5t, T4Y);
631 }
632 {
633 E T5K, T63, T5U, T61, T5N, T64, T5R, T60;
634 {
635 E T5I, T5J, T5S, T5T;
636 T5I = FMA(KP951056516, T5j, T5g);
637 T5J = FMA(KP951056516, T5q, T5n);
638 T5K = FNMS(KP126329378, T5J, T5I);
639 T63 = FMA(KP126329378, T5I, T5J);
640 T5S = FNMS(KP951056516, T4O, T4L);
641 T5T = FMA(KP951056516, T4V, T4S);
642 T5U = FMA(KP827271945, T5T, T5S);
643 T61 = FNMS(KP827271945, T5S, T5T);
644 }
645 {
646 E T5L, T5M, T5P, T5Q;
647 T5L = FNMS(KP951056516, T5b, T58);
648 T5M = FMA(KP951056516, T54, T51);
649 T5N = FNMS(KP470564281, T5M, T5L);
650 T64 = FMA(KP470564281, T5L, T5M);
651 T5P = FNMS(KP951056516, T4G, T4D);
652 T5Q = FNMS(KP951056516, T4z, T4w);
653 T5R = FMA(KP634619297, T5Q, T5P);
654 T60 = FNMS(KP634619297, T5P, T5Q);
655 }
656 T62 = FMA(KP912575812, T61, T60);
657 T65 = FNMS(KP912018591, T64, T63);
658 T81 = FMA(KP912018591, T5N, T5K);
659 T80 = FMA(KP912575812, T5U, T5R);
660 T7U = FMA(KP912018591, T64, T63);
661 T7V = FNMS(KP912575812, T61, T60);
662 T7W = FMA(KP851038619, T7V, T7U);
663 T5O = FNMS(KP912018591, T5N, T5K);
664 T5V = FNMS(KP912575812, T5U, T5R);
665 T5W = FNMS(KP851038619, T5V, T5O);
666 }
667 ri[WS(rs, 1)] = FMA(KP968583161, T5u, T4t);
668 ii[WS(rs, 1)] = FMA(KP968583161, T7K, T7H);
669 ri[WS(rs, 4)] = FNMS(KP992114701, T5W, T5H);
670 ii[WS(rs, 4)] = FNMS(KP992114701, T7W, T7T);
671 {
672 E T5E, T5G, T5x, T5F, T5v, T5w;
673 T5E = FMA(KP559154169, T5D, T5A);
674 T5G = FNMS(KP683113946, T5A, T5D);
675 T5v = FNMS(KP242145790, T5u, T4t);
676 T5w = FNMS(KP904730450, T5t, T4Y);
677 T5x = FMA(KP541454447, T5w, T5v);
678 T5F = FNMS(KP541454447, T5w, T5v);
679 ri[WS(rs, 6)] = FMA(KP921177326, T5E, T5x);
680 ri[WS(rs, 16)] = FMA(KP833417178, T5G, T5F);
681 ri[WS(rs, 21)] = FNMS(KP921177326, T5E, T5x);
682 ri[WS(rs, 11)] = FNMS(KP833417178, T5G, T5F);
683 }
684 {
685 E T7Q, T7S, T7N, T7R, T7L, T7M;
686 T7Q = FMA(KP559154169, T7P, T7O);
687 T7S = FNMS(KP683113946, T7O, T7P);
688 T7L = FNMS(KP242145790, T7K, T7H);
689 T7M = FNMS(KP904730450, T7J, T7I);
690 T7N = FMA(KP541454447, T7M, T7L);
691 T7R = FNMS(KP541454447, T7M, T7L);
692 ii[WS(rs, 6)] = FNMS(KP921177326, T7Q, T7N);
693 ii[WS(rs, 16)] = FNMS(KP833417178, T7S, T7R);
694 ii[WS(rs, 21)] = FMA(KP921177326, T7Q, T7N);
695 ii[WS(rs, 11)] = FMA(KP833417178, T7S, T7R);
696 }
697 {
698 E T66, T68, T5Z, T67, T5X, T5Y;
699 T66 = FNMS(KP726211448, T65, T62);
700 T68 = FMA(KP525970792, T62, T65);
701 T5X = FMA(KP248028675, T5W, T5H);
702 T5Y = FMA(KP851038619, T5V, T5O);
703 T5Z = FMA(KP554608978, T5Y, T5X);
704 T67 = FNMS(KP554608978, T5Y, T5X);
705 ri[WS(rs, 9)] = FNMS(KP803003575, T66, T5Z);
706 ri[WS(rs, 19)] = FMA(KP943557151, T68, T67);
707 ri[WS(rs, 24)] = FMA(KP803003575, T66, T5Z);
708 ri[WS(rs, 14)] = FNMS(KP943557151, T68, T67);
709 }
710 {
711 E T82, T84, T7Z, T83, T7X, T7Y;
712 T82 = FMA(KP726211448, T81, T80);
713 T84 = FNMS(KP525970792, T80, T81);
714 T7X = FMA(KP248028675, T7W, T7T);
715 T7Y = FNMS(KP851038619, T7V, T7U);
716 T7Z = FMA(KP554608978, T7Y, T7X);
717 T83 = FNMS(KP554608978, T7Y, T7X);
718 ii[WS(rs, 9)] = FNMS(KP803003575, T82, T7Z);
719 ii[WS(rs, 19)] = FNMS(KP943557151, T84, T83);
720 ii[WS(rs, 24)] = FMA(KP803003575, T82, T7Z);
721 ii[WS(rs, 14)] = FMA(KP943557151, T84, T83);
722 }
723 }
724 {
725 E T6b, T6T, T87, T8j, T6M, T6P, T8r, T8q, T8k, T8l, T8m, T6q, T6F, T6G, T7e;
726 E T7h, T8f, T8e, T88, T89, T8a, T70, T77, T78, T69, T85;
727 T69 = FNMS(KP559016994, T4g, T4f);
728 T6b = FMA(KP951056516, T6a, T69);
729 T6T = FNMS(KP951056516, T6a, T69);
730 T85 = FNMS(KP559016994, T7C, T7B);
731 T87 = FMA(KP951056516, T86, T85);
732 T8j = FNMS(KP951056516, T86, T85);
733 {
734 E T6i, T6N, T6E, T6L, T6p, T6O, T6x, T6K;
735 {
736 E T6e, T6h, T6A, T6D;
737 T6e = FMA(KP951056516, T6d, T6c);
738 T6h = FMA(KP951056516, T6g, T6f);
739 T6i = FMA(KP062914667, T6h, T6e);
740 T6N = FNMS(KP062914667, T6e, T6h);
741 T6A = FNMS(KP951056516, T6z, T6y);
742 T6D = FMA(KP951056516, T6C, T6B);
743 T6E = FMA(KP939062505, T6D, T6A);
744 T6L = FNMS(KP939062505, T6A, T6D);
745 }
746 {
747 E T6l, T6o, T6t, T6w;
748 T6l = FNMS(KP951056516, T6k, T6j);
749 T6o = FNMS(KP951056516, T6n, T6m);
750 T6p = FNMS(KP827271945, T6o, T6l);
751 T6O = FMA(KP827271945, T6l, T6o);
752 T6t = FNMS(KP951056516, T6s, T6r);
753 T6w = FMA(KP951056516, T6v, T6u);
754 T6x = FNMS(KP126329378, T6w, T6t);
755 T6K = FMA(KP126329378, T6t, T6w);
756 }
757 T6M = FMA(KP734762448, T6L, T6K);
758 T6P = FNMS(KP772036680, T6O, T6N);
759 T8r = FNMS(KP772036680, T6p, T6i);
760 T8q = FMA(KP734762448, T6E, T6x);
761 T8k = FMA(KP772036680, T6O, T6N);
762 T8l = FNMS(KP734762448, T6L, T6K);
763 T8m = FMA(KP994076283, T8l, T8k);
764 T6q = FMA(KP772036680, T6p, T6i);
765 T6F = FNMS(KP734762448, T6E, T6x);
766 T6G = FNMS(KP994076283, T6F, T6q);
767 }
768 {
769 E T6W, T7f, T76, T7d, T6Z, T7g, T73, T7c;
770 {
771 E T6U, T6V, T74, T75;
772 T6U = FMA(KP951056516, T6k, T6j);
773 T6V = FMA(KP951056516, T6n, T6m);
774 T6W = FMA(KP062914667, T6V, T6U);
775 T7f = FNMS(KP062914667, T6U, T6V);
776 T74 = FMA(KP951056516, T6z, T6y);
777 T75 = FNMS(KP951056516, T6C, T6B);
778 T76 = FMA(KP549754652, T75, T74);
779 T7d = FNMS(KP549754652, T74, T75);
780 }
781 {
782 E T6X, T6Y, T71, T72;
783 T6X = FNMS(KP951056516, T6d, T6c);
784 T6Y = FNMS(KP951056516, T6g, T6f);
785 T6Z = FMA(KP634619297, T6Y, T6X);
786 T7g = FNMS(KP634619297, T6X, T6Y);
787 T71 = FNMS(KP951056516, T6v, T6u);
788 T72 = FMA(KP951056516, T6s, T6r);
789 T73 = FNMS(KP470564281, T72, T71);
790 T7c = FMA(KP470564281, T71, T72);
791 }
792 T7e = FMA(KP968479752, T7d, T7c);
793 T7h = FNMS(KP845997307, T7g, T7f);
794 T8f = FNMS(KP845997307, T6Z, T6W);
795 T8e = FNMS(KP968479752, T76, T73);
796 T88 = FMA(KP845997307, T7g, T7f);
797 T89 = FNMS(KP968479752, T7d, T7c);
798 T8a = FMA(KP906616052, T89, T88);
799 T70 = FMA(KP845997307, T6Z, T6W);
800 T77 = FMA(KP968479752, T76, T73);
801 T78 = FMA(KP906616052, T77, T70);
802 }
803 ri[WS(rs, 3)] = FMA(KP998026728, T6G, T6b);
804 ii[WS(rs, 3)] = FNMS(KP998026728, T8m, T8j);
805 ri[WS(rs, 2)] = FMA(KP998026728, T78, T6T);
806 ii[WS(rs, 2)] = FNMS(KP998026728, T8a, T87);
807 {
808 E T6Q, T6S, T6J, T6R, T6H, T6I;
809 T6Q = FNMS(KP621716863, T6P, T6M);
810 T6S = FMA(KP614372930, T6M, T6P);
811 T6H = FNMS(KP249506682, T6G, T6b);
812 T6I = FMA(KP994076283, T6F, T6q);
813 T6J = FNMS(KP557913902, T6I, T6H);
814 T6R = FMA(KP557913902, T6I, T6H);
815 ri[WS(rs, 23)] = FNMS(KP943557151, T6Q, T6J);
816 ri[WS(rs, 13)] = FMA(KP949179823, T6S, T6R);
817 ri[WS(rs, 8)] = FMA(KP943557151, T6Q, T6J);
818 ri[WS(rs, 18)] = FNMS(KP949179823, T6S, T6R);
819 }
820 {
821 E T8s, T8u, T8p, T8t, T8n, T8o;
822 T8s = FMA(KP621716863, T8r, T8q);
823 T8u = FNMS(KP614372930, T8q, T8r);
824 T8n = FMA(KP249506682, T8m, T8j);
825 T8o = FNMS(KP994076283, T8l, T8k);
826 T8p = FMA(KP557913902, T8o, T8n);
827 T8t = FNMS(KP557913902, T8o, T8n);
828 ii[WS(rs, 8)] = FNMS(KP943557151, T8s, T8p);
829 ii[WS(rs, 18)] = FNMS(KP949179823, T8u, T8t);
830 ii[WS(rs, 23)] = FMA(KP943557151, T8s, T8p);
831 ii[WS(rs, 13)] = FMA(KP949179823, T8u, T8t);
832 }
833 {
834 E T7i, T7k, T7b, T7j, T79, T7a;
835 T7i = FMA(KP681693190, T7h, T7e);
836 T7k = FNMS(KP560319534, T7e, T7h);
837 T79 = FNMS(KP249506682, T78, T6T);
838 T7a = FNMS(KP906616052, T77, T70);
839 T7b = FNMS(KP557913902, T7a, T79);
840 T7j = FMA(KP557913902, T7a, T79);
841 ri[WS(rs, 22)] = FNMS(KP860541664, T7i, T7b);
842 ri[WS(rs, 17)] = FMA(KP949179823, T7k, T7j);
843 ri[WS(rs, 7)] = FMA(KP860541664, T7i, T7b);
844 ri[WS(rs, 12)] = FNMS(KP949179823, T7k, T7j);
845 }
846 {
847 E T8g, T8i, T8d, T8h, T8b, T8c;
848 T8g = FMA(KP681693190, T8f, T8e);
849 T8i = FNMS(KP560319534, T8e, T8f);
850 T8b = FMA(KP249506682, T8a, T87);
851 T8c = FNMS(KP906616052, T89, T88);
852 T8d = FMA(KP557913902, T8c, T8b);
853 T8h = FNMS(KP557913902, T8c, T8b);
854 ii[WS(rs, 7)] = FMA(KP860541664, T8g, T8d);
855 ii[WS(rs, 17)] = FMA(KP949179823, T8i, T8h);
856 ii[WS(rs, 22)] = FNMS(KP860541664, T8g, T8d);
857 ii[WS(rs, 12)] = FNMS(KP949179823, T8i, T8h);
858 }
859 }
860 }
861 }
862 }
863 }
864
865 static const tw_instr twinstr[] = {
866 {TW_CEXP, 0, 1},
867 {TW_CEXP, 0, 3},
868 {TW_CEXP, 0, 9},
869 {TW_CEXP, 0, 24},
870 {TW_NEXT, 1, 0}
871 };
872
873 static const ct_desc desc = { 25, "t2_25", twinstr, &GENUS, {84, 78, 356, 0}, 0, 0, 0 };
874
875 void X(codelet_t2_25) (planner *p) {
876 X(kdft_dit_register) (p, t2_25, &desc);
877 }
878 #else
879
880 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 25 -name t2_25 -include dft/scalar/t.h */
881
882 /*
883 * This function contains 440 FP additions, 340 FP multiplications,
884 * (or, 280 additions, 180 multiplications, 160 fused multiply/add),
885 * 149 stack variables, 20 constants, and 100 memory accesses
886 */
887 #include "dft/scalar/t.h"
888
889 static void t2_25(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
890 {
891 DK(KP998026728, +0.998026728428271561952336806863450553336905220);
892 DK(KP062790519, +0.062790519529313376076178224565631133122484832);
893 DK(KP425779291, +0.425779291565072648862502445744251703979973042);
894 DK(KP904827052, +0.904827052466019527713668647932697593970413911);
895 DK(KP992114701, +0.992114701314477831049793042785778521453036709);
896 DK(KP125333233, +0.125333233564304245373118759816508793942918247);
897 DK(KP637423989, +0.637423989748689710176712811676016195434917298);
898 DK(KP770513242, +0.770513242775789230803009636396177847271667672);
899 DK(KP684547105, +0.684547105928688673732283357621209269889519233);
900 DK(KP728968627, +0.728968627421411523146730319055259111372571664);
901 DK(KP481753674, +0.481753674101715274987191502872129653528542010);
902 DK(KP876306680, +0.876306680043863587308115903922062583399064238);
903 DK(KP844327925, +0.844327925502015078548558063966681505381659241);
904 DK(KP535826794, +0.535826794978996618271308767867639978063575346);
905 DK(KP248689887, +0.248689887164854788242283746006447968417567406);
906 DK(KP968583161, +0.968583161128631119490168375464735813836012403);
907 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
908 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
909 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
910 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
911 {
912 INT m;
913 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(50, rs)) {
914 E T2, T5, T3, T6, T8, Td, T16, T14, Te, T9, T21, T23, Tx, TR, T1g;
915 E TB, T1f, TV, T1Q, Tg, T1S, Tk, T18, T2s, T1c, T2q, Tn, To, Tp, Tr;
916 E T28, T2x, TY, T2k, T2m, T2v, TG, TE, T10, T1h, T1E, T26, T1B, T1G, T1V;
917 E T1X, T1z, T1j;
918 {
919 E Tw, TT, Tz, TQ, Tv, TU, TA, TP;
920 {
921 E T4, Tc, T7, Tb;
922 T2 = W[0];
923 T5 = W[1];
924 T3 = W[2];
925 T6 = W[3];
926 T4 = T2 * T3;
927 Tc = T5 * T3;
928 T7 = T5 * T6;
929 Tb = T2 * T6;
930 T8 = T4 - T7;
931 Td = Tb + Tc;
932 T16 = Tb - Tc;
933 T14 = T4 + T7;
934 Te = W[5];
935 Tw = T5 * Te;
936 TT = T3 * Te;
937 Tz = T2 * Te;
938 TQ = T6 * Te;
939 T9 = W[4];
940 Tv = T2 * T9;
941 TU = T6 * T9;
942 TA = T5 * T9;
943 TP = T3 * T9;
944 }
945 T21 = TP - TQ;
946 T23 = TT + TU;
947 {
948 E T15, T17, Ta, Tf, T1a, T1b, Ti, Tj;
949 Tx = Tv - Tw;
950 TR = TP + TQ;
951 T1g = Tz - TA;
952 TB = Tz + TA;
953 T1f = Tv + Tw;
954 TV = TT - TU;
955 T15 = T14 * T9;
956 T17 = T16 * Te;
957 T1Q = T15 + T17;
958 Ta = T8 * T9;
959 Tf = Td * Te;
960 Tg = Ta + Tf;
961 T1a = T14 * Te;
962 T1b = T16 * T9;
963 T1S = T1a - T1b;
964 Ti = T8 * Te;
965 Tj = Td * T9;
966 Tk = Ti - Tj;
967 T18 = T15 - T17;
968 T2s = Ti + Tj;
969 T1c = T1a + T1b;
970 T2q = Ta - Tf;
971 Tn = W[6];
972 To = W[7];
973 Tp = FMA(T8, Tn, Td * To);
974 Tr = FNMS(Td, Tn, T8 * To);
975 T28 = FNMS(T1S, Tn, T1Q * To);
976 T2x = FNMS(TV, Tn, TR * To);
977 TY = FMA(T3, Tn, T6 * To);
978 T2k = FMA(T2, Tn, T5 * To);
979 T2m = FNMS(T5, Tn, T2 * To);
980 T2v = FMA(TR, Tn, TV * To);
981 TG = FNMS(Te, Tn, T9 * To);
982 TE = FMA(T9, Tn, Te * To);
983 T10 = FNMS(T6, Tn, T3 * To);
984 T1h = FMA(T1f, Tn, T1g * To);
985 T1E = FMA(Tg, Tn, Tk * To);
986 T26 = FMA(T1Q, Tn, T1S * To);
987 T1B = FNMS(TB, Tn, Tx * To);
988 T1G = FNMS(Tk, Tn, Tg * To);
989 T1V = FMA(T14, Tn, T16 * To);
990 T1X = FNMS(T16, Tn, T14 * To);
991 T1z = FMA(Tx, Tn, TB * To);
992 T1j = FNMS(T1g, Tn, T1f * To);
993 }
994 }
995 {
996 E T1, T6v, T2F, T6I, TK, T2G, T6u, T6J, T6N, T7c, T2O, T52, T2C, T6k, T48;
997 E T5X, T4L, T5s, T4j, T5W, T4K, T5v, T1o, T6g, T30, T5M, T4A, T56, T3b, T5N;
998 E T4B, T59, T1L, T6h, T3n, T5Q, T4D, T5g, T3y, T5P, T4E, T5d, T2d, T6j, T3L;
999 E T5T, T4I, T5l, T3W, T5U, T4H, T5o;
1000 {
1001 E Tm, T2I, Tt, T2J, Tu, T6s, TD, T2L, TI, T2M, TJ, T6t;
1002 T1 = ri[0];
1003 T6v = ii[0];
1004 {
1005 E Th, Tl, Tq, Ts;
1006 Th = ri[WS(rs, 5)];
1007 Tl = ii[WS(rs, 5)];
1008 Tm = FMA(Tg, Th, Tk * Tl);
1009 T2I = FNMS(Tk, Th, Tg * Tl);
1010 Tq = ri[WS(rs, 20)];
1011 Ts = ii[WS(rs, 20)];
1012 Tt = FMA(Tp, Tq, Tr * Ts);
1013 T2J = FNMS(Tr, Tq, Tp * Ts);
1014 }
1015 Tu = Tm + Tt;
1016 T6s = T2I + T2J;
1017 {
1018 E Ty, TC, TF, TH;
1019 Ty = ri[WS(rs, 10)];
1020 TC = ii[WS(rs, 10)];
1021 TD = FMA(Tx, Ty, TB * TC);
1022 T2L = FNMS(TB, Ty, Tx * TC);
1023 TF = ri[WS(rs, 15)];
1024 TH = ii[WS(rs, 15)];
1025 TI = FMA(TE, TF, TG * TH);
1026 T2M = FNMS(TG, TF, TE * TH);
1027 }
1028 TJ = TD + TI;
1029 T6t = T2L + T2M;
1030 T2F = KP559016994 * (Tu - TJ);
1031 T6I = KP559016994 * (T6s - T6t);
1032 TK = Tu + TJ;
1033 T2G = FNMS(KP250000000, TK, T1);
1034 T6u = T6s + T6t;
1035 T6J = FNMS(KP250000000, T6u, T6v);
1036 {
1037 E T6L, T6M, T2K, T2N;
1038 T6L = Tm - Tt;
1039 T6M = TD - TI;
1040 T6N = FMA(KP951056516, T6L, KP587785252 * T6M);
1041 T7c = FNMS(KP587785252, T6L, KP951056516 * T6M);
1042 T2K = T2I - T2J;
1043 T2N = T2L - T2M;
1044 T2O = FMA(KP951056516, T2K, KP587785252 * T2N);
1045 T52 = FNMS(KP587785252, T2K, KP951056516 * T2N);
1046 }
1047 }
1048 {
1049 E T2g, T4c, T43, T46, T4h, T4g, T49, T4a, T4d, T2p, T2A, T2B, T2e, T2f;
1050 T2e = ri[WS(rs, 3)];
1051 T2f = ii[WS(rs, 3)];
1052 T2g = FMA(T3, T2e, T6 * T2f);
1053 T4c = FNMS(T6, T2e, T3 * T2f);
1054 {
1055 E T2j, T41, T2z, T45, T2o, T42, T2u, T44;
1056 {
1057 E T2h, T2i, T2w, T2y;
1058 T2h = ri[WS(rs, 8)];
1059 T2i = ii[WS(rs, 8)];
1060 T2j = FMA(T1f, T2h, T1g * T2i);
1061 T41 = FNMS(T1g, T2h, T1f * T2i);
1062 T2w = ri[WS(rs, 18)];
1063 T2y = ii[WS(rs, 18)];
1064 T2z = FMA(T2v, T2w, T2x * T2y);
1065 T45 = FNMS(T2x, T2w, T2v * T2y);
1066 }
1067 {
1068 E T2l, T2n, T2r, T2t;
1069 T2l = ri[WS(rs, 23)];
1070 T2n = ii[WS(rs, 23)];
1071 T2o = FMA(T2k, T2l, T2m * T2n);
1072 T42 = FNMS(T2m, T2l, T2k * T2n);
1073 T2r = ri[WS(rs, 13)];
1074 T2t = ii[WS(rs, 13)];
1075 T2u = FMA(T2q, T2r, T2s * T2t);
1076 T44 = FNMS(T2s, T2r, T2q * T2t);
1077 }
1078 T43 = T41 - T42;
1079 T46 = T44 - T45;
1080 T4h = T2u - T2z;
1081 T4g = T2j - T2o;
1082 T49 = T41 + T42;
1083 T4a = T44 + T45;
1084 T4d = T49 + T4a;
1085 T2p = T2j + T2o;
1086 T2A = T2u + T2z;
1087 T2B = T2p + T2A;
1088 }
1089 T2C = T2g + T2B;
1090 T6k = T4c + T4d;
1091 {
1092 E T47, T5r, T40, T5q, T3Y, T3Z;
1093 T47 = FMA(KP951056516, T43, KP587785252 * T46);
1094 T5r = FNMS(KP587785252, T43, KP951056516 * T46);
1095 T3Y = KP559016994 * (T2p - T2A);
1096 T3Z = FNMS(KP250000000, T2B, T2g);
1097 T40 = T3Y + T3Z;
1098 T5q = T3Z - T3Y;
1099 T48 = T40 + T47;
1100 T5X = T5q + T5r;
1101 T4L = T40 - T47;
1102 T5s = T5q - T5r;
1103 }
1104 {
1105 E T4i, T5t, T4f, T5u, T4b, T4e;
1106 T4i = FMA(KP951056516, T4g, KP587785252 * T4h);
1107 T5t = FNMS(KP587785252, T4g, KP951056516 * T4h);
1108 T4b = KP559016994 * (T49 - T4a);
1109 T4e = FNMS(KP250000000, T4d, T4c);
1110 T4f = T4b + T4e;
1111 T5u = T4e - T4b;
1112 T4j = T4f - T4i;
1113 T5W = T5u - T5t;
1114 T4K = T4i + T4f;
1115 T5v = T5t + T5u;
1116 }
1117 }
1118 {
1119 E TO, T34, T2V, T2Y, T39, T38, T31, T32, T35, T13, T1m, T1n, TM, TN;
1120 TM = ri[WS(rs, 1)];
1121 TN = ii[WS(rs, 1)];
1122 TO = FMA(T2, TM, T5 * TN);
1123 T34 = FNMS(T5, TM, T2 * TN);
1124 {
1125 E TX, T2T, T1l, T2X, T12, T2U, T1e, T2W;
1126 {
1127 E TS, TW, T1i, T1k;
1128 TS = ri[WS(rs, 6)];
1129 TW = ii[WS(rs, 6)];
1130 TX = FMA(TR, TS, TV * TW);
1131 T2T = FNMS(TV, TS, TR * TW);
1132 T1i = ri[WS(rs, 16)];
1133 T1k = ii[WS(rs, 16)];
1134 T1l = FMA(T1h, T1i, T1j * T1k);
1135 T2X = FNMS(T1j, T1i, T1h * T1k);
1136 }
1137 {
1138 E TZ, T11, T19, T1d;
1139 TZ = ri[WS(rs, 21)];
1140 T11 = ii[WS(rs, 21)];
1141 T12 = FMA(TY, TZ, T10 * T11);
1142 T2U = FNMS(T10, TZ, TY * T11);
1143 T19 = ri[WS(rs, 11)];
1144 T1d = ii[WS(rs, 11)];
1145 T1e = FMA(T18, T19, T1c * T1d);
1146 T2W = FNMS(T1c, T19, T18 * T1d);
1147 }
1148 T2V = T2T - T2U;
1149 T2Y = T2W - T2X;
1150 T39 = T1e - T1l;
1151 T38 = TX - T12;
1152 T31 = T2T + T2U;
1153 T32 = T2W + T2X;
1154 T35 = T31 + T32;
1155 T13 = TX + T12;
1156 T1m = T1e + T1l;
1157 T1n = T13 + T1m;
1158 }
1159 T1o = TO + T1n;
1160 T6g = T34 + T35;
1161 {
1162 E T2Z, T55, T2S, T54, T2Q, T2R;
1163 T2Z = FMA(KP951056516, T2V, KP587785252 * T2Y);
1164 T55 = FNMS(KP587785252, T2V, KP951056516 * T2Y);
1165 T2Q = KP559016994 * (T13 - T1m);
1166 T2R = FNMS(KP250000000, T1n, TO);
1167 T2S = T2Q + T2R;
1168 T54 = T2R - T2Q;
1169 T30 = T2S + T2Z;
1170 T5M = T54 + T55;
1171 T4A = T2S - T2Z;
1172 T56 = T54 - T55;
1173 }
1174 {
1175 E T3a, T57, T37, T58, T33, T36;
1176 T3a = FMA(KP951056516, T38, KP587785252 * T39);
1177 T57 = FNMS(KP587785252, T38, KP951056516 * T39);
1178 T33 = KP559016994 * (T31 - T32);
1179 T36 = FNMS(KP250000000, T35, T34);
1180 T37 = T33 + T36;
1181 T58 = T36 - T33;
1182 T3b = T37 - T3a;
1183 T5N = T58 - T57;
1184 T4B = T3a + T37;
1185 T59 = T57 + T58;
1186 }
1187 }
1188 {
1189 E T1r, T3r, T3i, T3l, T3w, T3v, T3o, T3p, T3s, T1y, T1J, T1K, T1p, T1q;
1190 T1p = ri[WS(rs, 4)];
1191 T1q = ii[WS(rs, 4)];
1192 T1r = FMA(T8, T1p, Td * T1q);
1193 T3r = FNMS(Td, T1p, T8 * T1q);
1194 {
1195 E T1u, T3g, T1I, T3k, T1x, T3h, T1D, T3j;
1196 {
1197 E T1s, T1t, T1F, T1H;
1198 T1s = ri[WS(rs, 9)];
1199 T1t = ii[WS(rs, 9)];
1200 T1u = FMA(T9, T1s, Te * T1t);
1201 T3g = FNMS(Te, T1s, T9 * T1t);
1202 T1F = ri[WS(rs, 19)];
1203 T1H = ii[WS(rs, 19)];
1204 T1I = FMA(T1E, T1F, T1G * T1H);
1205 T3k = FNMS(T1G, T1F, T1E * T1H);
1206 }
1207 {
1208 E T1v, T1w, T1A, T1C;
1209 T1v = ri[WS(rs, 24)];
1210 T1w = ii[WS(rs, 24)];
1211 T1x = FMA(Tn, T1v, To * T1w);
1212 T3h = FNMS(To, T1v, Tn * T1w);
1213 T1A = ri[WS(rs, 14)];
1214 T1C = ii[WS(rs, 14)];
1215 T1D = FMA(T1z, T1A, T1B * T1C);
1216 T3j = FNMS(T1B, T1A, T1z * T1C);
1217 }
1218 T3i = T3g - T3h;
1219 T3l = T3j - T3k;
1220 T3w = T1D - T1I;
1221 T3v = T1u - T1x;
1222 T3o = T3g + T3h;
1223 T3p = T3j + T3k;
1224 T3s = T3o + T3p;
1225 T1y = T1u + T1x;
1226 T1J = T1D + T1I;
1227 T1K = T1y + T1J;
1228 }
1229 T1L = T1r + T1K;
1230 T6h = T3r + T3s;
1231 {
1232 E T3m, T5f, T3f, T5e, T3d, T3e;
1233 T3m = FMA(KP951056516, T3i, KP587785252 * T3l);
1234 T5f = FNMS(KP587785252, T3i, KP951056516 * T3l);
1235 T3d = KP559016994 * (T1y - T1J);
1236 T3e = FNMS(KP250000000, T1K, T1r);
1237 T3f = T3d + T3e;
1238 T5e = T3e - T3d;
1239 T3n = T3f + T3m;
1240 T5Q = T5e + T5f;
1241 T4D = T3f - T3m;
1242 T5g = T5e - T5f;
1243 }
1244 {
1245 E T3x, T5b, T3u, T5c, T3q, T3t;
1246 T3x = FMA(KP951056516, T3v, KP587785252 * T3w);
1247 T5b = FNMS(KP587785252, T3v, KP951056516 * T3w);
1248 T3q = KP559016994 * (T3o - T3p);
1249 T3t = FNMS(KP250000000, T3s, T3r);
1250 T3u = T3q + T3t;
1251 T5c = T3t - T3q;
1252 T3y = T3u - T3x;
1253 T5P = T5c - T5b;
1254 T4E = T3x + T3u;
1255 T5d = T5b + T5c;
1256 }
1257 }
1258 {
1259 E T1P, T3P, T3G, T3J, T3U, T3T, T3M, T3N, T3Q, T20, T2b, T2c, T1N, T1O;
1260 T1N = ri[WS(rs, 2)];
1261 T1O = ii[WS(rs, 2)];
1262 T1P = FMA(T14, T1N, T16 * T1O);
1263 T3P = FNMS(T16, T1N, T14 * T1O);
1264 {
1265 E T1U, T3E, T2a, T3I, T1Z, T3F, T25, T3H;
1266 {
1267 E T1R, T1T, T27, T29;
1268 T1R = ri[WS(rs, 7)];
1269 T1T = ii[WS(rs, 7)];
1270 T1U = FMA(T1Q, T1R, T1S * T1T);
1271 T3E = FNMS(T1S, T1R, T1Q * T1T);
1272 T27 = ri[WS(rs, 17)];
1273 T29 = ii[WS(rs, 17)];
1274 T2a = FMA(T26, T27, T28 * T29);
1275 T3I = FNMS(T28, T27, T26 * T29);
1276 }
1277 {
1278 E T1W, T1Y, T22, T24;
1279 T1W = ri[WS(rs, 22)];
1280 T1Y = ii[WS(rs, 22)];
1281 T1Z = FMA(T1V, T1W, T1X * T1Y);
1282 T3F = FNMS(T1X, T1W, T1V * T1Y);
1283 T22 = ri[WS(rs, 12)];
1284 T24 = ii[WS(rs, 12)];
1285 T25 = FMA(T21, T22, T23 * T24);
1286 T3H = FNMS(T23, T22, T21 * T24);
1287 }
1288 T3G = T3E - T3F;
1289 T3J = T3H - T3I;
1290 T3U = T25 - T2a;
1291 T3T = T1U - T1Z;
1292 T3M = T3E + T3F;
1293 T3N = T3H + T3I;
1294 T3Q = T3M + T3N;
1295 T20 = T1U + T1Z;
1296 T2b = T25 + T2a;
1297 T2c = T20 + T2b;
1298 }
1299 T2d = T1P + T2c;
1300 T6j = T3P + T3Q;
1301 {
1302 E T3K, T5k, T3D, T5j, T3B, T3C;
1303 T3K = FMA(KP951056516, T3G, KP587785252 * T3J);
1304 T5k = FNMS(KP587785252, T3G, KP951056516 * T3J);
1305 T3B = KP559016994 * (T20 - T2b);
1306 T3C = FNMS(KP250000000, T2c, T1P);
1307 T3D = T3B + T3C;
1308 T5j = T3C - T3B;
1309 T3L = T3D + T3K;
1310 T5T = T5j + T5k;
1311 T4I = T3D - T3K;
1312 T5l = T5j - T5k;
1313 }
1314 {
1315 E T3V, T5m, T3S, T5n, T3O, T3R;
1316 T3V = FMA(KP951056516, T3T, KP587785252 * T3U);
1317 T5m = FNMS(KP587785252, T3T, KP951056516 * T3U);
1318 T3O = KP559016994 * (T3M - T3N);
1319 T3R = FNMS(KP250000000, T3Q, T3P);
1320 T3S = T3O + T3R;
1321 T5n = T3R - T3O;
1322 T3W = T3S - T3V;
1323 T5U = T5n - T5m;
1324 T4H = T3V + T3S;
1325 T5o = T5m + T5n;
1326 }
1327 }
1328 {
1329 E T6m, T6o, TL, T2E, T6d, T6e, T6n, T6f;
1330 {
1331 E T6i, T6l, T1M, T2D;
1332 T6i = T6g - T6h;
1333 T6l = T6j - T6k;
1334 T6m = FMA(KP951056516, T6i, KP587785252 * T6l);
1335 T6o = FNMS(KP587785252, T6i, KP951056516 * T6l);
1336 TL = T1 + TK;
1337 T1M = T1o + T1L;
1338 T2D = T2d + T2C;
1339 T2E = T1M + T2D;
1340 T6d = KP559016994 * (T1M - T2D);
1341 T6e = FNMS(KP250000000, T2E, TL);
1342 }
1343 ri[0] = TL + T2E;
1344 T6n = T6e - T6d;
1345 ri[WS(rs, 10)] = T6n - T6o;
1346 ri[WS(rs, 15)] = T6n + T6o;
1347 T6f = T6d + T6e;
1348 ri[WS(rs, 20)] = T6f - T6m;
1349 ri[WS(rs, 5)] = T6f + T6m;
1350 }
1351 {
1352 E T6C, T6D, T6w, T6r, T6x, T6y, T6E, T6z;
1353 {
1354 E T6A, T6B, T6p, T6q;
1355 T6A = T1o - T1L;
1356 T6B = T2d - T2C;
1357 T6C = FMA(KP951056516, T6A, KP587785252 * T6B);
1358 T6D = FNMS(KP587785252, T6A, KP951056516 * T6B);
1359 T6w = T6u + T6v;
1360 T6p = T6g + T6h;
1361 T6q = T6j + T6k;
1362 T6r = T6p + T6q;
1363 T6x = KP559016994 * (T6p - T6q);
1364 T6y = FNMS(KP250000000, T6r, T6w);
1365 }
1366 ii[0] = T6r + T6w;
1367 T6E = T6y - T6x;
1368 ii[WS(rs, 10)] = T6D + T6E;
1369 ii[WS(rs, 15)] = T6E - T6D;
1370 T6z = T6x + T6y;
1371 ii[WS(rs, 5)] = T6z - T6C;
1372 ii[WS(rs, 20)] = T6C + T6z;
1373 }
1374 {
1375 E T2P, T4z, T6O, T70, T4m, T6T, T4n, T6S, T4U, T71, T4X, T6Z, T4O, T75, T4P;
1376 E T74, T4s, T6P, T4v, T6H, T2H, T6K;
1377 T2H = T2F + T2G;
1378 T2P = T2H + T2O;
1379 T4z = T2H - T2O;
1380 T6K = T6I + T6J;
1381 T6O = T6K - T6N;
1382 T70 = T6N + T6K;
1383 {
1384 E T3c, T3z, T3A, T3X, T4k, T4l;
1385 T3c = FMA(KP968583161, T30, KP248689887 * T3b);
1386 T3z = FMA(KP535826794, T3n, KP844327925 * T3y);
1387 T3A = T3c + T3z;
1388 T3X = FMA(KP876306680, T3L, KP481753674 * T3W);
1389 T4k = FMA(KP728968627, T48, KP684547105 * T4j);
1390 T4l = T3X + T4k;
1391 T4m = T3A + T4l;
1392 T6T = T3X - T4k;
1393 T4n = KP559016994 * (T3A - T4l);
1394 T6S = T3c - T3z;
1395 }
1396 {
1397 E T4S, T4T, T6X, T4V, T4W, T6Y;
1398 T4S = FNMS(KP844327925, T4A, KP535826794 * T4B);
1399 T4T = FNMS(KP637423989, T4E, KP770513242 * T4D);
1400 T6X = T4S + T4T;
1401 T4V = FMA(KP125333233, T4L, KP992114701 * T4K);
1402 T4W = FMA(KP904827052, T4I, KP425779291 * T4H);
1403 T6Y = T4W + T4V;
1404 T4U = T4S - T4T;
1405 T71 = KP559016994 * (T6X + T6Y);
1406 T4X = T4V - T4W;
1407 T6Z = T6X - T6Y;
1408 }
1409 {
1410 E T4C, T4F, T4G, T4J, T4M, T4N;
1411 T4C = FMA(KP535826794, T4A, KP844327925 * T4B);
1412 T4F = FMA(KP637423989, T4D, KP770513242 * T4E);
1413 T4G = T4C - T4F;
1414 T4J = FNMS(KP425779291, T4I, KP904827052 * T4H);
1415 T4M = FNMS(KP992114701, T4L, KP125333233 * T4K);
1416 T4N = T4J + T4M;
1417 T4O = T4G + T4N;
1418 T75 = T4J - T4M;
1419 T4P = KP559016994 * (T4G - T4N);
1420 T74 = T4C + T4F;
1421 }
1422 {
1423 E T4q, T4r, T6F, T4t, T4u, T6G;
1424 T4q = FNMS(KP248689887, T30, KP968583161 * T3b);
1425 T4r = FNMS(KP844327925, T3n, KP535826794 * T3y);
1426 T6F = T4q + T4r;
1427 T4t = FNMS(KP481753674, T3L, KP876306680 * T3W);
1428 T4u = FNMS(KP684547105, T48, KP728968627 * T4j);
1429 T6G = T4t + T4u;
1430 T4s = T4q - T4r;
1431 T6P = KP559016994 * (T6F - T6G);
1432 T4v = T4t - T4u;
1433 T6H = T6F + T6G;
1434 }
1435 ri[WS(rs, 1)] = T2P + T4m;
1436 ii[WS(rs, 1)] = T6H + T6O;
1437 ri[WS(rs, 4)] = T4z + T4O;
1438 ii[WS(rs, 4)] = T6Z + T70;
1439 {
1440 E T4w, T4y, T4p, T4x, T4o;
1441 T4w = FMA(KP951056516, T4s, KP587785252 * T4v);
1442 T4y = FNMS(KP587785252, T4s, KP951056516 * T4v);
1443 T4o = FNMS(KP250000000, T4m, T2P);
1444 T4p = T4n + T4o;
1445 T4x = T4o - T4n;
1446 ri[WS(rs, 21)] = T4p - T4w;
1447 ri[WS(rs, 16)] = T4x + T4y;
1448 ri[WS(rs, 6)] = T4p + T4w;
1449 ri[WS(rs, 11)] = T4x - T4y;
1450 }
1451 {
1452 E T6U, T6V, T6R, T6W, T6Q;
1453 T6U = FMA(KP951056516, T6S, KP587785252 * T6T);
1454 T6V = FNMS(KP587785252, T6S, KP951056516 * T6T);
1455 T6Q = FNMS(KP250000000, T6H, T6O);
1456 T6R = T6P + T6Q;
1457 T6W = T6Q - T6P;
1458 ii[WS(rs, 6)] = T6R - T6U;
1459 ii[WS(rs, 16)] = T6W - T6V;
1460 ii[WS(rs, 21)] = T6U + T6R;
1461 ii[WS(rs, 11)] = T6V + T6W;
1462 }
1463 {
1464 E T4Y, T50, T4R, T4Z, T4Q;
1465 T4Y = FMA(KP951056516, T4U, KP587785252 * T4X);
1466 T50 = FNMS(KP587785252, T4U, KP951056516 * T4X);
1467 T4Q = FNMS(KP250000000, T4O, T4z);
1468 T4R = T4P + T4Q;
1469 T4Z = T4Q - T4P;
1470 ri[WS(rs, 24)] = T4R - T4Y;
1471 ri[WS(rs, 19)] = T4Z + T50;
1472 ri[WS(rs, 9)] = T4R + T4Y;
1473 ri[WS(rs, 14)] = T4Z - T50;
1474 }
1475 {
1476 E T76, T77, T73, T78, T72;
1477 T76 = FMA(KP951056516, T74, KP587785252 * T75);
1478 T77 = FNMS(KP587785252, T74, KP951056516 * T75);
1479 T72 = FNMS(KP250000000, T6Z, T70);
1480 T73 = T71 + T72;
1481 T78 = T72 - T71;
1482 ii[WS(rs, 9)] = T73 - T76;
1483 ii[WS(rs, 19)] = T78 - T77;
1484 ii[WS(rs, 24)] = T76 + T73;
1485 ii[WS(rs, 14)] = T77 + T78;
1486 }
1487 }
1488 {
1489 E T53, T5L, T7e, T7q, T5y, T7j, T5z, T7i, T66, T7r, T69, T7p, T60, T7v, T61;
1490 E T7u, T5E, T7f, T5H, T7b, T51, T7d;
1491 T51 = T2G - T2F;
1492 T53 = T51 - T52;
1493 T5L = T51 + T52;
1494 T7d = T6J - T6I;
1495 T7e = T7c + T7d;
1496 T7q = T7d - T7c;
1497 {
1498 E T5a, T5h, T5i, T5p, T5w, T5x;
1499 T5a = FMA(KP876306680, T56, KP481753674 * T59);
1500 T5h = FNMS(KP425779291, T5g, KP904827052 * T5d);
1501 T5i = T5a + T5h;
1502 T5p = FMA(KP535826794, T5l, KP844327925 * T5o);
1503 T5w = FMA(KP062790519, T5s, KP998026728 * T5v);
1504 T5x = T5p + T5w;
1505 T5y = T5i + T5x;
1506 T7j = T5p - T5w;
1507 T5z = KP559016994 * (T5i - T5x);
1508 T7i = T5a - T5h;
1509 }
1510 {
1511 E T64, T65, T7n, T67, T68, T7o;
1512 T64 = FNMS(KP684547105, T5M, KP728968627 * T5N);
1513 T65 = FMA(KP125333233, T5Q, KP992114701 * T5P);
1514 T7n = T64 - T65;
1515 T67 = FNMS(KP998026728, T5T, KP062790519 * T5U);
1516 T68 = FMA(KP770513242, T5X, KP637423989 * T5W);
1517 T7o = T67 - T68;
1518 T66 = T64 + T65;
1519 T7r = KP559016994 * (T7n - T7o);
1520 T69 = T67 + T68;
1521 T7p = T7n + T7o;
1522 }
1523 {
1524 E T5O, T5R, T5S, T5V, T5Y, T5Z;
1525 T5O = FMA(KP728968627, T5M, KP684547105 * T5N);
1526 T5R = FNMS(KP992114701, T5Q, KP125333233 * T5P);
1527 T5S = T5O + T5R;
1528 T5V = FMA(KP062790519, T5T, KP998026728 * T5U);
1529 T5Y = FNMS(KP637423989, T5X, KP770513242 * T5W);
1530 T5Z = T5V + T5Y;
1531 T60 = T5S + T5Z;
1532 T7v = T5V - T5Y;
1533 T61 = KP559016994 * (T5S - T5Z);
1534 T7u = T5O - T5R;
1535 }
1536 {
1537 E T5C, T5D, T79, T5F, T5G, T7a;
1538 T5C = FNMS(KP481753674, T56, KP876306680 * T59);
1539 T5D = FMA(KP904827052, T5g, KP425779291 * T5d);
1540 T79 = T5C - T5D;
1541 T5F = FNMS(KP844327925, T5l, KP535826794 * T5o);
1542 T5G = FNMS(KP998026728, T5s, KP062790519 * T5v);
1543 T7a = T5F + T5G;
1544 T5E = T5C + T5D;
1545 T7f = KP559016994 * (T79 - T7a);
1546 T5H = T5F - T5G;
1547 T7b = T79 + T7a;
1548 }
1549 ri[WS(rs, 2)] = T53 + T5y;
1550 ii[WS(rs, 2)] = T7b + T7e;
1551 ri[WS(rs, 3)] = T5L + T60;
1552 ii[WS(rs, 3)] = T7p + T7q;
1553 {
1554 E T5I, T5K, T5B, T5J, T5A;
1555 T5I = FMA(KP951056516, T5E, KP587785252 * T5H);
1556 T5K = FNMS(KP587785252, T5E, KP951056516 * T5H);
1557 T5A = FNMS(KP250000000, T5y, T53);
1558 T5B = T5z + T5A;
1559 T5J = T5A - T5z;
1560 ri[WS(rs, 22)] = T5B - T5I;
1561 ri[WS(rs, 17)] = T5J + T5K;
1562 ri[WS(rs, 7)] = T5B + T5I;
1563 ri[WS(rs, 12)] = T5J - T5K;
1564 }
1565 {
1566 E T7k, T7l, T7h, T7m, T7g;
1567 T7k = FMA(KP951056516, T7i, KP587785252 * T7j);
1568 T7l = FNMS(KP587785252, T7i, KP951056516 * T7j);
1569 T7g = FNMS(KP250000000, T7b, T7e);
1570 T7h = T7f + T7g;
1571 T7m = T7g - T7f;
1572 ii[WS(rs, 7)] = T7h - T7k;
1573 ii[WS(rs, 17)] = T7m - T7l;
1574 ii[WS(rs, 22)] = T7k + T7h;
1575 ii[WS(rs, 12)] = T7l + T7m;
1576 }
1577 {
1578 E T6a, T6c, T63, T6b, T62;
1579 T6a = FMA(KP951056516, T66, KP587785252 * T69);
1580 T6c = FNMS(KP587785252, T66, KP951056516 * T69);
1581 T62 = FNMS(KP250000000, T60, T5L);
1582 T63 = T61 + T62;
1583 T6b = T62 - T61;
1584 ri[WS(rs, 23)] = T63 - T6a;
1585 ri[WS(rs, 18)] = T6b + T6c;
1586 ri[WS(rs, 8)] = T63 + T6a;
1587 ri[WS(rs, 13)] = T6b - T6c;
1588 }
1589 {
1590 E T7w, T7x, T7t, T7y, T7s;
1591 T7w = FMA(KP951056516, T7u, KP587785252 * T7v);
1592 T7x = FNMS(KP587785252, T7u, KP951056516 * T7v);
1593 T7s = FNMS(KP250000000, T7p, T7q);
1594 T7t = T7r + T7s;
1595 T7y = T7s - T7r;
1596 ii[WS(rs, 8)] = T7t - T7w;
1597 ii[WS(rs, 18)] = T7y - T7x;
1598 ii[WS(rs, 23)] = T7w + T7t;
1599 ii[WS(rs, 13)] = T7x + T7y;
1600 }
1601 }
1602 }
1603 }
1604 }
1605 }
1606
1607 static const tw_instr twinstr[] = {
1608 {TW_CEXP, 0, 1},
1609 {TW_CEXP, 0, 3},
1610 {TW_CEXP, 0, 9},
1611 {TW_CEXP, 0, 24},
1612 {TW_NEXT, 1, 0}
1613 };
1614
1615 static const ct_desc desc = { 25, "t2_25", twinstr, &GENUS, {280, 180, 160, 0}, 0, 0, 0 };
1616
1617 void X(codelet_t2_25) (planner *p) {
1618 X(kdft_dit_register) (p, t2_25, &desc);
1619 }
1620 #endif