Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/scalar/codelets/t2_20.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:26 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -name t2_20 -include dft/scalar/t.h */ | |
29 | |
30 /* | |
31 * This function contains 276 FP additions, 198 FP multiplications, | |
32 * (or, 136 additions, 58 multiplications, 140 fused multiply/add), | |
33 * 95 stack variables, 4 constants, and 80 memory accesses | |
34 */ | |
35 #include "dft/scalar/t.h" | |
36 | |
37 static void t2_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
43 { | |
44 INT m; | |
45 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) { | |
46 E T2, Th, Tf, T6, T5, Ti, Tl, T1n, T3, Tt, Tv, T7, T17, T1L, T24; | |
47 E Tb, T13, T1P, T21, T1b, T1D, T1A, T1H, T1f, TA, Tw, Tq, Tm, TK, T1S; | |
48 E TO, T1p, T1q, T1u, T2n, T2k, T2h, T2d; | |
49 { | |
50 E Tk, Ta, T1e, T4, T1a, Tj, T12, T1G, T16, T1K, Tg, Tz; | |
51 T2 = W[0]; | |
52 Th = W[3]; | |
53 Tf = W[2]; | |
54 Tg = T2 * Tf; | |
55 Tk = T2 * Th; | |
56 T6 = W[5]; | |
57 Ta = T2 * T6; | |
58 T1e = Tf * T6; | |
59 T5 = W[1]; | |
60 Ti = FNMS(T5, Th, Tg); | |
61 Tl = FMA(T5, Tf, Tk); | |
62 T1n = FMA(T5, Th, Tg); | |
63 T3 = W[4]; | |
64 T4 = T2 * T3; | |
65 T1a = Tf * T3; | |
66 Tj = Ti * T3; | |
67 Tt = W[6]; | |
68 T12 = Tf * Tt; | |
69 T1G = T2 * Tt; | |
70 Tv = W[7]; | |
71 T16 = Tf * Tv; | |
72 T1K = T2 * Tv; | |
73 T7 = FNMS(T5, T6, T4); | |
74 T17 = FNMS(Th, Tt, T16); | |
75 T1L = FNMS(T5, Tt, T1K); | |
76 T24 = FMA(Th, T3, T1e); | |
77 Tb = FMA(T5, T3, Ta); | |
78 T13 = FMA(Th, Tv, T12); | |
79 T1P = FNMS(Tl, T6, Tj); | |
80 T21 = FNMS(Th, T6, T1a); | |
81 T1b = FMA(Th, T6, T1a); | |
82 T1D = FNMS(T5, T3, Ta); | |
83 T1A = FMA(T5, T6, T4); | |
84 T1H = FMA(T5, Tv, T1G); | |
85 T1f = FNMS(Th, T3, T1e); | |
86 Tz = Ti * Tv; | |
87 TA = FNMS(Tl, Tt, Tz); | |
88 { | |
89 E Tu, Tp, TJ, TN; | |
90 Tu = Ti * Tt; | |
91 Tw = FMA(Tl, Tv, Tu); | |
92 Tp = Ti * T6; | |
93 Tq = FNMS(Tl, T3, Tp); | |
94 Tm = FMA(Tl, T6, Tj); | |
95 TJ = Tm * Tt; | |
96 TN = Tm * Tv; | |
97 TK = FMA(Tq, Tv, TJ); | |
98 T1S = FMA(Tl, T3, Tp); | |
99 TO = FNMS(Tq, Tt, TN); | |
100 { | |
101 E T1o, T2g, T1t, T2c; | |
102 T1o = T1n * T3; | |
103 T2g = T1n * Tv; | |
104 T1t = T1n * T6; | |
105 T2c = T1n * Tt; | |
106 T1p = FNMS(T5, Tf, Tk); | |
107 T1q = FNMS(T1p, T6, T1o); | |
108 T1u = FMA(T1p, T3, T1t); | |
109 T2n = FNMS(T1p, T3, T1t); | |
110 T2k = FMA(T1p, T6, T1o); | |
111 T2h = FNMS(T1p, Tt, T2g); | |
112 T2d = FMA(T1p, Tv, T2c); | |
113 } | |
114 } | |
115 } | |
116 { | |
117 E Te, T2C, T4L, T57, TD, T58, T2H, T4H, T11, T2v, T4k, T4v, T2P, T3P, T3C; | |
118 E T3Z, T2r, T2z, T4g, T4z, T3b, T3T, T3u, T43, T20, T2y, T4d, T4y, T34, T3S; | |
119 E T3n, T42, T1y, T2w, T4n, T4w, T2W, T3Q, T3J, T40; | |
120 { | |
121 E T1, T4K, T8, T9, Tc, T4I, Td, T4J; | |
122 T1 = ri[0]; | |
123 T4K = ii[0]; | |
124 T8 = ri[WS(rs, 10)]; | |
125 T9 = T7 * T8; | |
126 Tc = ii[WS(rs, 10)]; | |
127 T4I = T7 * Tc; | |
128 Td = FMA(Tb, Tc, T9); | |
129 Te = T1 + Td; | |
130 T2C = T1 - Td; | |
131 T4J = FNMS(Tb, T8, T4I); | |
132 T4L = T4J + T4K; | |
133 T57 = T4K - T4J; | |
134 } | |
135 { | |
136 E Tn, To, Tr, T2D, Tx, Ty, TB, T2F; | |
137 Tn = ri[WS(rs, 5)]; | |
138 To = Tm * Tn; | |
139 Tr = ii[WS(rs, 5)]; | |
140 T2D = Tm * Tr; | |
141 Tx = ri[WS(rs, 15)]; | |
142 Ty = Tw * Tx; | |
143 TB = ii[WS(rs, 15)]; | |
144 T2F = Tw * TB; | |
145 { | |
146 E Ts, TC, T2E, T2G; | |
147 Ts = FMA(Tq, Tr, To); | |
148 TC = FMA(TA, TB, Ty); | |
149 TD = Ts + TC; | |
150 T58 = Ts - TC; | |
151 T2E = FNMS(Tq, Tn, T2D); | |
152 T2G = FNMS(TA, Tx, T2F); | |
153 T2H = T2E - T2G; | |
154 T4H = T2E + T2G; | |
155 } | |
156 } | |
157 { | |
158 E TI, T3x, TZ, T2N, TQ, T3z, TV, T2L; | |
159 { | |
160 E TF, TG, TH, T3w; | |
161 TF = ri[WS(rs, 4)]; | |
162 TG = Ti * TF; | |
163 TH = ii[WS(rs, 4)]; | |
164 T3w = Ti * TH; | |
165 TI = FMA(Tl, TH, TG); | |
166 T3x = FNMS(Tl, TF, T3w); | |
167 } | |
168 { | |
169 E TW, TX, TY, T2M; | |
170 TW = ri[WS(rs, 19)]; | |
171 TX = Tt * TW; | |
172 TY = ii[WS(rs, 19)]; | |
173 T2M = Tt * TY; | |
174 TZ = FMA(Tv, TY, TX); | |
175 T2N = FNMS(Tv, TW, T2M); | |
176 } | |
177 { | |
178 E TL, TM, TP, T3y; | |
179 TL = ri[WS(rs, 14)]; | |
180 TM = TK * TL; | |
181 TP = ii[WS(rs, 14)]; | |
182 T3y = TK * TP; | |
183 TQ = FMA(TO, TP, TM); | |
184 T3z = FNMS(TO, TL, T3y); | |
185 } | |
186 { | |
187 E TS, TT, TU, T2K; | |
188 TS = ri[WS(rs, 9)]; | |
189 TT = T3 * TS; | |
190 TU = ii[WS(rs, 9)]; | |
191 T2K = T3 * TU; | |
192 TV = FMA(T6, TU, TT); | |
193 T2L = FNMS(T6, TS, T2K); | |
194 } | |
195 { | |
196 E TR, T10, T4i, T4j; | |
197 TR = TI + TQ; | |
198 T10 = TV + TZ; | |
199 T11 = TR - T10; | |
200 T2v = TR + T10; | |
201 T4i = T3x + T3z; | |
202 T4j = T2L + T2N; | |
203 T4k = T4i - T4j; | |
204 T4v = T4i + T4j; | |
205 } | |
206 { | |
207 E T2J, T2O, T3A, T3B; | |
208 T2J = TI - TQ; | |
209 T2O = T2L - T2N; | |
210 T2P = T2J - T2O; | |
211 T3P = T2J + T2O; | |
212 T3A = T3x - T3z; | |
213 T3B = TV - TZ; | |
214 T3C = T3A + T3B; | |
215 T3Z = T3A - T3B; | |
216 } | |
217 } | |
218 { | |
219 E T26, T3p, T2p, T39, T2a, T3r, T2j, T37; | |
220 { | |
221 E T22, T23, T25, T3o; | |
222 T22 = ri[WS(rs, 12)]; | |
223 T23 = T21 * T22; | |
224 T25 = ii[WS(rs, 12)]; | |
225 T3o = T21 * T25; | |
226 T26 = FMA(T24, T25, T23); | |
227 T3p = FNMS(T24, T22, T3o); | |
228 } | |
229 { | |
230 E T2l, T2m, T2o, T38; | |
231 T2l = ri[WS(rs, 7)]; | |
232 T2m = T2k * T2l; | |
233 T2o = ii[WS(rs, 7)]; | |
234 T38 = T2k * T2o; | |
235 T2p = FMA(T2n, T2o, T2m); | |
236 T39 = FNMS(T2n, T2l, T38); | |
237 } | |
238 { | |
239 E T27, T28, T29, T3q; | |
240 T27 = ri[WS(rs, 2)]; | |
241 T28 = T1n * T27; | |
242 T29 = ii[WS(rs, 2)]; | |
243 T3q = T1n * T29; | |
244 T2a = FMA(T1p, T29, T28); | |
245 T3r = FNMS(T1p, T27, T3q); | |
246 } | |
247 { | |
248 E T2e, T2f, T2i, T36; | |
249 T2e = ri[WS(rs, 17)]; | |
250 T2f = T2d * T2e; | |
251 T2i = ii[WS(rs, 17)]; | |
252 T36 = T2d * T2i; | |
253 T2j = FMA(T2h, T2i, T2f); | |
254 T37 = FNMS(T2h, T2e, T36); | |
255 } | |
256 { | |
257 E T2b, T2q, T4e, T4f; | |
258 T2b = T26 + T2a; | |
259 T2q = T2j + T2p; | |
260 T2r = T2b - T2q; | |
261 T2z = T2b + T2q; | |
262 T4e = T3p + T3r; | |
263 T4f = T37 + T39; | |
264 T4g = T4e - T4f; | |
265 T4z = T4e + T4f; | |
266 } | |
267 { | |
268 E T35, T3a, T3s, T3t; | |
269 T35 = T26 - T2a; | |
270 T3a = T37 - T39; | |
271 T3b = T35 - T3a; | |
272 T3T = T35 + T3a; | |
273 T3s = T3p - T3r; | |
274 T3t = T2j - T2p; | |
275 T3u = T3s + T3t; | |
276 T43 = T3s - T3t; | |
277 } | |
278 } | |
279 { | |
280 E T1F, T3i, T1Y, T32, T1N, T3k, T1U, T30; | |
281 { | |
282 E T1B, T1C, T1E, T3h; | |
283 T1B = ri[WS(rs, 8)]; | |
284 T1C = T1A * T1B; | |
285 T1E = ii[WS(rs, 8)]; | |
286 T3h = T1A * T1E; | |
287 T1F = FMA(T1D, T1E, T1C); | |
288 T3i = FNMS(T1D, T1B, T3h); | |
289 } | |
290 { | |
291 E T1V, T1W, T1X, T31; | |
292 T1V = ri[WS(rs, 3)]; | |
293 T1W = Tf * T1V; | |
294 T1X = ii[WS(rs, 3)]; | |
295 T31 = Tf * T1X; | |
296 T1Y = FMA(Th, T1X, T1W); | |
297 T32 = FNMS(Th, T1V, T31); | |
298 } | |
299 { | |
300 E T1I, T1J, T1M, T3j; | |
301 T1I = ri[WS(rs, 18)]; | |
302 T1J = T1H * T1I; | |
303 T1M = ii[WS(rs, 18)]; | |
304 T3j = T1H * T1M; | |
305 T1N = FMA(T1L, T1M, T1J); | |
306 T3k = FNMS(T1L, T1I, T3j); | |
307 } | |
308 { | |
309 E T1Q, T1R, T1T, T2Z; | |
310 T1Q = ri[WS(rs, 13)]; | |
311 T1R = T1P * T1Q; | |
312 T1T = ii[WS(rs, 13)]; | |
313 T2Z = T1P * T1T; | |
314 T1U = FMA(T1S, T1T, T1R); | |
315 T30 = FNMS(T1S, T1Q, T2Z); | |
316 } | |
317 { | |
318 E T1O, T1Z, T4b, T4c; | |
319 T1O = T1F + T1N; | |
320 T1Z = T1U + T1Y; | |
321 T20 = T1O - T1Z; | |
322 T2y = T1O + T1Z; | |
323 T4b = T3i + T3k; | |
324 T4c = T30 + T32; | |
325 T4d = T4b - T4c; | |
326 T4y = T4b + T4c; | |
327 } | |
328 { | |
329 E T2Y, T33, T3l, T3m; | |
330 T2Y = T1F - T1N; | |
331 T33 = T30 - T32; | |
332 T34 = T2Y - T33; | |
333 T3S = T2Y + T33; | |
334 T3l = T3i - T3k; | |
335 T3m = T1U - T1Y; | |
336 T3n = T3l + T3m; | |
337 T42 = T3l - T3m; | |
338 } | |
339 } | |
340 { | |
341 E T19, T3E, T1w, T2U, T1h, T3G, T1m, T2S; | |
342 { | |
343 E T14, T15, T18, T3D; | |
344 T14 = ri[WS(rs, 16)]; | |
345 T15 = T13 * T14; | |
346 T18 = ii[WS(rs, 16)]; | |
347 T3D = T13 * T18; | |
348 T19 = FMA(T17, T18, T15); | |
349 T3E = FNMS(T17, T14, T3D); | |
350 } | |
351 { | |
352 E T1r, T1s, T1v, T2T; | |
353 T1r = ri[WS(rs, 11)]; | |
354 T1s = T1q * T1r; | |
355 T1v = ii[WS(rs, 11)]; | |
356 T2T = T1q * T1v; | |
357 T1w = FMA(T1u, T1v, T1s); | |
358 T2U = FNMS(T1u, T1r, T2T); | |
359 } | |
360 { | |
361 E T1c, T1d, T1g, T3F; | |
362 T1c = ri[WS(rs, 6)]; | |
363 T1d = T1b * T1c; | |
364 T1g = ii[WS(rs, 6)]; | |
365 T3F = T1b * T1g; | |
366 T1h = FMA(T1f, T1g, T1d); | |
367 T3G = FNMS(T1f, T1c, T3F); | |
368 } | |
369 { | |
370 E T1j, T1k, T1l, T2R; | |
371 T1j = ri[WS(rs, 1)]; | |
372 T1k = T2 * T1j; | |
373 T1l = ii[WS(rs, 1)]; | |
374 T2R = T2 * T1l; | |
375 T1m = FMA(T5, T1l, T1k); | |
376 T2S = FNMS(T5, T1j, T2R); | |
377 } | |
378 { | |
379 E T1i, T1x, T4l, T4m; | |
380 T1i = T19 + T1h; | |
381 T1x = T1m + T1w; | |
382 T1y = T1i - T1x; | |
383 T2w = T1i + T1x; | |
384 T4l = T3E + T3G; | |
385 T4m = T2S + T2U; | |
386 T4n = T4l - T4m; | |
387 T4w = T4l + T4m; | |
388 } | |
389 { | |
390 E T2Q, T2V, T3H, T3I; | |
391 T2Q = T19 - T1h; | |
392 T2V = T2S - T2U; | |
393 T2W = T2Q - T2V; | |
394 T3Q = T2Q + T2V; | |
395 T3H = T3E - T3G; | |
396 T3I = T1m - T1w; | |
397 T3J = T3H + T3I; | |
398 T40 = T3H - T3I; | |
399 } | |
400 } | |
401 { | |
402 E T4p, T4r, TE, T2t, T48, T49, T4q, T4a; | |
403 { | |
404 E T4h, T4o, T1z, T2s; | |
405 T4h = T4d - T4g; | |
406 T4o = T4k - T4n; | |
407 T4p = FNMS(KP618033988, T4o, T4h); | |
408 T4r = FMA(KP618033988, T4h, T4o); | |
409 TE = Te - TD; | |
410 T1z = T11 + T1y; | |
411 T2s = T20 + T2r; | |
412 T2t = T1z + T2s; | |
413 T48 = FNMS(KP250000000, T2t, TE); | |
414 T49 = T1z - T2s; | |
415 } | |
416 ri[WS(rs, 10)] = TE + T2t; | |
417 T4q = FMA(KP559016994, T49, T48); | |
418 ri[WS(rs, 14)] = FNMS(KP951056516, T4r, T4q); | |
419 ri[WS(rs, 6)] = FMA(KP951056516, T4r, T4q); | |
420 T4a = FNMS(KP559016994, T49, T48); | |
421 ri[WS(rs, 2)] = FNMS(KP951056516, T4p, T4a); | |
422 ri[WS(rs, 18)] = FMA(KP951056516, T4p, T4a); | |
423 } | |
424 { | |
425 E T54, T56, T4V, T4Y, T4Z, T50, T55, T51; | |
426 { | |
427 E T52, T53, T4W, T4X; | |
428 T52 = T20 - T2r; | |
429 T53 = T11 - T1y; | |
430 T54 = FNMS(KP618033988, T53, T52); | |
431 T56 = FMA(KP618033988, T52, T53); | |
432 T4V = T4L - T4H; | |
433 T4W = T4k + T4n; | |
434 T4X = T4d + T4g; | |
435 T4Y = T4W + T4X; | |
436 T4Z = FNMS(KP250000000, T4Y, T4V); | |
437 T50 = T4W - T4X; | |
438 } | |
439 ii[WS(rs, 10)] = T4Y + T4V; | |
440 T55 = FMA(KP559016994, T50, T4Z); | |
441 ii[WS(rs, 6)] = FNMS(KP951056516, T56, T55); | |
442 ii[WS(rs, 14)] = FMA(KP951056516, T56, T55); | |
443 T51 = FNMS(KP559016994, T50, T4Z); | |
444 ii[WS(rs, 2)] = FMA(KP951056516, T54, T51); | |
445 ii[WS(rs, 18)] = FNMS(KP951056516, T54, T51); | |
446 } | |
447 { | |
448 E T4B, T4D, T2u, T2B, T4s, T4t, T4C, T4u; | |
449 { | |
450 E T4x, T4A, T2x, T2A; | |
451 T4x = T4v - T4w; | |
452 T4A = T4y - T4z; | |
453 T4B = FMA(KP618033988, T4A, T4x); | |
454 T4D = FNMS(KP618033988, T4x, T4A); | |
455 T2u = Te + TD; | |
456 T2x = T2v + T2w; | |
457 T2A = T2y + T2z; | |
458 T2B = T2x + T2A; | |
459 T4s = FNMS(KP250000000, T2B, T2u); | |
460 T4t = T2x - T2A; | |
461 } | |
462 ri[0] = T2u + T2B; | |
463 T4C = FNMS(KP559016994, T4t, T4s); | |
464 ri[WS(rs, 12)] = FNMS(KP951056516, T4D, T4C); | |
465 ri[WS(rs, 8)] = FMA(KP951056516, T4D, T4C); | |
466 T4u = FMA(KP559016994, T4t, T4s); | |
467 ri[WS(rs, 4)] = FNMS(KP951056516, T4B, T4u); | |
468 ri[WS(rs, 16)] = FMA(KP951056516, T4B, T4u); | |
469 } | |
470 { | |
471 E T4S, T4U, T4M, T4G, T4N, T4O, T4T, T4P; | |
472 { | |
473 E T4Q, T4R, T4E, T4F; | |
474 T4Q = T2v - T2w; | |
475 T4R = T2y - T2z; | |
476 T4S = FMA(KP618033988, T4R, T4Q); | |
477 T4U = FNMS(KP618033988, T4Q, T4R); | |
478 T4M = T4H + T4L; | |
479 T4E = T4v + T4w; | |
480 T4F = T4y + T4z; | |
481 T4G = T4E + T4F; | |
482 T4N = FNMS(KP250000000, T4G, T4M); | |
483 T4O = T4E - T4F; | |
484 } | |
485 ii[0] = T4G + T4M; | |
486 T4T = FNMS(KP559016994, T4O, T4N); | |
487 ii[WS(rs, 8)] = FNMS(KP951056516, T4U, T4T); | |
488 ii[WS(rs, 12)] = FMA(KP951056516, T4U, T4T); | |
489 T4P = FMA(KP559016994, T4O, T4N); | |
490 ii[WS(rs, 4)] = FMA(KP951056516, T4S, T4P); | |
491 ii[WS(rs, 16)] = FNMS(KP951056516, T4S, T4P); | |
492 } | |
493 { | |
494 E T3L, T3N, T2I, T3d, T3e, T3f, T3M, T3g; | |
495 { | |
496 E T3v, T3K, T2X, T3c; | |
497 T3v = T3n - T3u; | |
498 T3K = T3C - T3J; | |
499 T3L = FNMS(KP618033988, T3K, T3v); | |
500 T3N = FMA(KP618033988, T3v, T3K); | |
501 T2I = T2C - T2H; | |
502 T2X = T2P + T2W; | |
503 T3c = T34 + T3b; | |
504 T3d = T2X + T3c; | |
505 T3e = FNMS(KP250000000, T3d, T2I); | |
506 T3f = T2X - T3c; | |
507 } | |
508 ri[WS(rs, 15)] = T2I + T3d; | |
509 T3M = FMA(KP559016994, T3f, T3e); | |
510 ri[WS(rs, 11)] = FMA(KP951056516, T3N, T3M); | |
511 ri[WS(rs, 19)] = FNMS(KP951056516, T3N, T3M); | |
512 T3g = FNMS(KP559016994, T3f, T3e); | |
513 ri[WS(rs, 3)] = FMA(KP951056516, T3L, T3g); | |
514 ri[WS(rs, 7)] = FNMS(KP951056516, T3L, T3g); | |
515 } | |
516 { | |
517 E T5u, T5w, T5l, T5o, T5p, T5q, T5v, T5r; | |
518 { | |
519 E T5s, T5t, T5m, T5n; | |
520 T5s = T34 - T3b; | |
521 T5t = T2P - T2W; | |
522 T5u = FNMS(KP618033988, T5t, T5s); | |
523 T5w = FMA(KP618033988, T5s, T5t); | |
524 T5l = T58 + T57; | |
525 T5m = T3C + T3J; | |
526 T5n = T3n + T3u; | |
527 T5o = T5m + T5n; | |
528 T5p = FNMS(KP250000000, T5o, T5l); | |
529 T5q = T5m - T5n; | |
530 } | |
531 ii[WS(rs, 15)] = T5o + T5l; | |
532 T5v = FMA(KP559016994, T5q, T5p); | |
533 ii[WS(rs, 11)] = FNMS(KP951056516, T5w, T5v); | |
534 ii[WS(rs, 19)] = FMA(KP951056516, T5w, T5v); | |
535 T5r = FNMS(KP559016994, T5q, T5p); | |
536 ii[WS(rs, 3)] = FNMS(KP951056516, T5u, T5r); | |
537 ii[WS(rs, 7)] = FMA(KP951056516, T5u, T5r); | |
538 } | |
539 { | |
540 E T45, T47, T3O, T3V, T3W, T3X, T46, T3Y; | |
541 { | |
542 E T41, T44, T3R, T3U; | |
543 T41 = T3Z - T40; | |
544 T44 = T42 - T43; | |
545 T45 = FMA(KP618033988, T44, T41); | |
546 T47 = FNMS(KP618033988, T41, T44); | |
547 T3O = T2C + T2H; | |
548 T3R = T3P + T3Q; | |
549 T3U = T3S + T3T; | |
550 T3V = T3R + T3U; | |
551 T3W = FNMS(KP250000000, T3V, T3O); | |
552 T3X = T3R - T3U; | |
553 } | |
554 ri[WS(rs, 5)] = T3O + T3V; | |
555 T46 = FNMS(KP559016994, T3X, T3W); | |
556 ri[WS(rs, 13)] = FMA(KP951056516, T47, T46); | |
557 ri[WS(rs, 17)] = FNMS(KP951056516, T47, T46); | |
558 T3Y = FMA(KP559016994, T3X, T3W); | |
559 ri[WS(rs, 1)] = FMA(KP951056516, T45, T3Y); | |
560 ri[WS(rs, 9)] = FNMS(KP951056516, T45, T3Y); | |
561 } | |
562 { | |
563 E T5i, T5k, T59, T5c, T5d, T5e, T5j, T5f; | |
564 { | |
565 E T5g, T5h, T5a, T5b; | |
566 T5g = T3P - T3Q; | |
567 T5h = T3S - T3T; | |
568 T5i = FMA(KP618033988, T5h, T5g); | |
569 T5k = FNMS(KP618033988, T5g, T5h); | |
570 T59 = T57 - T58; | |
571 T5a = T3Z + T40; | |
572 T5b = T42 + T43; | |
573 T5c = T5a + T5b; | |
574 T5d = FNMS(KP250000000, T5c, T59); | |
575 T5e = T5a - T5b; | |
576 } | |
577 ii[WS(rs, 5)] = T5c + T59; | |
578 T5j = FNMS(KP559016994, T5e, T5d); | |
579 ii[WS(rs, 13)] = FNMS(KP951056516, T5k, T5j); | |
580 ii[WS(rs, 17)] = FMA(KP951056516, T5k, T5j); | |
581 T5f = FMA(KP559016994, T5e, T5d); | |
582 ii[WS(rs, 1)] = FNMS(KP951056516, T5i, T5f); | |
583 ii[WS(rs, 9)] = FMA(KP951056516, T5i, T5f); | |
584 } | |
585 } | |
586 } | |
587 } | |
588 } | |
589 | |
590 static const tw_instr twinstr[] = { | |
591 {TW_CEXP, 0, 1}, | |
592 {TW_CEXP, 0, 3}, | |
593 {TW_CEXP, 0, 9}, | |
594 {TW_CEXP, 0, 19}, | |
595 {TW_NEXT, 1, 0} | |
596 }; | |
597 | |
598 static const ct_desc desc = { 20, "t2_20", twinstr, &GENUS, {136, 58, 140, 0}, 0, 0, 0 }; | |
599 | |
600 void X(codelet_t2_20) (planner *p) { | |
601 X(kdft_dit_register) (p, t2_20, &desc); | |
602 } | |
603 #else | |
604 | |
605 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -name t2_20 -include dft/scalar/t.h */ | |
606 | |
607 /* | |
608 * This function contains 276 FP additions, 164 FP multiplications, | |
609 * (or, 204 additions, 92 multiplications, 72 fused multiply/add), | |
610 * 123 stack variables, 4 constants, and 80 memory accesses | |
611 */ | |
612 #include "dft/scalar/t.h" | |
613 | |
614 static void t2_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
615 { | |
616 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
617 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
618 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
619 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
620 { | |
621 INT m; | |
622 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) { | |
623 E T2, T5, Tg, Ti, Tk, To, T1h, T1f, T6, T3, T8, T14, T1Q, Tc, T1O; | |
624 E T1v, T18, T1t, T1n, T24, T1j, T22, Tq, Tu, T1E, T1G, Tx, Ty, Tz, TJ; | |
625 E T1Z, TB, T1X, T1A, TZ, TL, T1y, TX; | |
626 { | |
627 E T7, T16, Ta, T13, T4, T17, Tb, T12; | |
628 { | |
629 E Th, Tn, Tj, Tm; | |
630 T2 = W[0]; | |
631 T5 = W[1]; | |
632 Tg = W[2]; | |
633 Ti = W[3]; | |
634 Th = T2 * Tg; | |
635 Tn = T5 * Tg; | |
636 Tj = T5 * Ti; | |
637 Tm = T2 * Ti; | |
638 Tk = Th - Tj; | |
639 To = Tm + Tn; | |
640 T1h = Tm - Tn; | |
641 T1f = Th + Tj; | |
642 T6 = W[5]; | |
643 T7 = T5 * T6; | |
644 T16 = Tg * T6; | |
645 Ta = T2 * T6; | |
646 T13 = Ti * T6; | |
647 T3 = W[4]; | |
648 T4 = T2 * T3; | |
649 T17 = Ti * T3; | |
650 Tb = T5 * T3; | |
651 T12 = Tg * T3; | |
652 } | |
653 T8 = T4 - T7; | |
654 T14 = T12 + T13; | |
655 T1Q = T16 + T17; | |
656 Tc = Ta + Tb; | |
657 T1O = T12 - T13; | |
658 T1v = Ta - Tb; | |
659 T18 = T16 - T17; | |
660 T1t = T4 + T7; | |
661 { | |
662 E T1l, T1m, T1g, T1i; | |
663 T1l = T1f * T6; | |
664 T1m = T1h * T3; | |
665 T1n = T1l + T1m; | |
666 T24 = T1l - T1m; | |
667 T1g = T1f * T3; | |
668 T1i = T1h * T6; | |
669 T1j = T1g - T1i; | |
670 T22 = T1g + T1i; | |
671 { | |
672 E Tl, Tp, Ts, Tt; | |
673 Tl = Tk * T3; | |
674 Tp = To * T6; | |
675 Tq = Tl + Tp; | |
676 Ts = Tk * T6; | |
677 Tt = To * T3; | |
678 Tu = Ts - Tt; | |
679 T1E = Tl - Tp; | |
680 T1G = Ts + Tt; | |
681 Tx = W[6]; | |
682 Ty = W[7]; | |
683 Tz = FMA(Tk, Tx, To * Ty); | |
684 TJ = FMA(Tq, Tx, Tu * Ty); | |
685 T1Z = FNMS(T1h, Tx, T1f * Ty); | |
686 TB = FNMS(To, Tx, Tk * Ty); | |
687 T1X = FMA(T1f, Tx, T1h * Ty); | |
688 T1A = FNMS(T5, Tx, T2 * Ty); | |
689 TZ = FNMS(Ti, Tx, Tg * Ty); | |
690 TL = FNMS(Tu, Tx, Tq * Ty); | |
691 T1y = FMA(T2, Tx, T5 * Ty); | |
692 TX = FMA(Tg, Tx, Ti * Ty); | |
693 } | |
694 } | |
695 } | |
696 { | |
697 E TF, T2b, T4A, T4J, T2K, T3r, T4a, T4m, T1N, T28, T29, T3C, T3F, T4o, T3X; | |
698 E T3Y, T44, T2f, T2g, T2h, T2n, T2s, T4L, T3g, T3h, T4w, T3n, T3o, T3p, T30; | |
699 E T35, T36, TW, T1r, T1s, T3J, T3M, T4n, T3U, T3V, T43, T2c, T2d, T2e, T2y; | |
700 E T2D, T4K, T3d, T3e, T4v, T3k, T3l, T3m, T2P, T2U, T2V; | |
701 { | |
702 E T1, T48, Te, T47, Tw, T2H, TD, T2I, T9, Td; | |
703 T1 = ri[0]; | |
704 T48 = ii[0]; | |
705 T9 = ri[WS(rs, 10)]; | |
706 Td = ii[WS(rs, 10)]; | |
707 Te = FMA(T8, T9, Tc * Td); | |
708 T47 = FNMS(Tc, T9, T8 * Td); | |
709 { | |
710 E Tr, Tv, TA, TC; | |
711 Tr = ri[WS(rs, 5)]; | |
712 Tv = ii[WS(rs, 5)]; | |
713 Tw = FMA(Tq, Tr, Tu * Tv); | |
714 T2H = FNMS(Tu, Tr, Tq * Tv); | |
715 TA = ri[WS(rs, 15)]; | |
716 TC = ii[WS(rs, 15)]; | |
717 TD = FMA(Tz, TA, TB * TC); | |
718 T2I = FNMS(TB, TA, Tz * TC); | |
719 } | |
720 { | |
721 E Tf, TE, T4y, T4z; | |
722 Tf = T1 + Te; | |
723 TE = Tw + TD; | |
724 TF = Tf - TE; | |
725 T2b = Tf + TE; | |
726 T4y = T48 - T47; | |
727 T4z = Tw - TD; | |
728 T4A = T4y - T4z; | |
729 T4J = T4z + T4y; | |
730 } | |
731 { | |
732 E T2G, T2J, T46, T49; | |
733 T2G = T1 - Te; | |
734 T2J = T2H - T2I; | |
735 T2K = T2G - T2J; | |
736 T3r = T2G + T2J; | |
737 T46 = T2H + T2I; | |
738 T49 = T47 + T48; | |
739 T4a = T46 + T49; | |
740 T4m = T49 - T46; | |
741 } | |
742 } | |
743 { | |
744 E T1D, T3A, T2l, T2W, T27, T3E, T2r, T34, T1M, T3B, T2m, T2Z, T1W, T3D, T2q; | |
745 E T31; | |
746 { | |
747 E T1x, T2j, T1C, T2k; | |
748 { | |
749 E T1u, T1w, T1z, T1B; | |
750 T1u = ri[WS(rs, 8)]; | |
751 T1w = ii[WS(rs, 8)]; | |
752 T1x = FMA(T1t, T1u, T1v * T1w); | |
753 T2j = FNMS(T1v, T1u, T1t * T1w); | |
754 T1z = ri[WS(rs, 18)]; | |
755 T1B = ii[WS(rs, 18)]; | |
756 T1C = FMA(T1y, T1z, T1A * T1B); | |
757 T2k = FNMS(T1A, T1z, T1y * T1B); | |
758 } | |
759 T1D = T1x + T1C; | |
760 T3A = T2j + T2k; | |
761 T2l = T2j - T2k; | |
762 T2W = T1x - T1C; | |
763 } | |
764 { | |
765 E T21, T32, T26, T33; | |
766 { | |
767 E T1Y, T20, T23, T25; | |
768 T1Y = ri[WS(rs, 17)]; | |
769 T20 = ii[WS(rs, 17)]; | |
770 T21 = FMA(T1X, T1Y, T1Z * T20); | |
771 T32 = FNMS(T1Z, T1Y, T1X * T20); | |
772 T23 = ri[WS(rs, 7)]; | |
773 T25 = ii[WS(rs, 7)]; | |
774 T26 = FMA(T22, T23, T24 * T25); | |
775 T33 = FNMS(T24, T23, T22 * T25); | |
776 } | |
777 T27 = T21 + T26; | |
778 T3E = T32 + T33; | |
779 T2r = T21 - T26; | |
780 T34 = T32 - T33; | |
781 } | |
782 { | |
783 E T1I, T2X, T1L, T2Y; | |
784 { | |
785 E T1F, T1H, T1J, T1K; | |
786 T1F = ri[WS(rs, 13)]; | |
787 T1H = ii[WS(rs, 13)]; | |
788 T1I = FMA(T1E, T1F, T1G * T1H); | |
789 T2X = FNMS(T1G, T1F, T1E * T1H); | |
790 T1J = ri[WS(rs, 3)]; | |
791 T1K = ii[WS(rs, 3)]; | |
792 T1L = FMA(Tg, T1J, Ti * T1K); | |
793 T2Y = FNMS(Ti, T1J, Tg * T1K); | |
794 } | |
795 T1M = T1I + T1L; | |
796 T3B = T2X + T2Y; | |
797 T2m = T1I - T1L; | |
798 T2Z = T2X - T2Y; | |
799 } | |
800 { | |
801 E T1S, T2o, T1V, T2p; | |
802 { | |
803 E T1P, T1R, T1T, T1U; | |
804 T1P = ri[WS(rs, 12)]; | |
805 T1R = ii[WS(rs, 12)]; | |
806 T1S = FMA(T1O, T1P, T1Q * T1R); | |
807 T2o = FNMS(T1Q, T1P, T1O * T1R); | |
808 T1T = ri[WS(rs, 2)]; | |
809 T1U = ii[WS(rs, 2)]; | |
810 T1V = FMA(T1f, T1T, T1h * T1U); | |
811 T2p = FNMS(T1h, T1T, T1f * T1U); | |
812 } | |
813 T1W = T1S + T1V; | |
814 T3D = T2o + T2p; | |
815 T2q = T2o - T2p; | |
816 T31 = T1S - T1V; | |
817 } | |
818 T1N = T1D - T1M; | |
819 T28 = T1W - T27; | |
820 T29 = T1N + T28; | |
821 T3C = T3A - T3B; | |
822 T3F = T3D - T3E; | |
823 T4o = T3C + T3F; | |
824 T3X = T3A + T3B; | |
825 T3Y = T3D + T3E; | |
826 T44 = T3X + T3Y; | |
827 T2f = T1D + T1M; | |
828 T2g = T1W + T27; | |
829 T2h = T2f + T2g; | |
830 T2n = T2l + T2m; | |
831 T2s = T2q + T2r; | |
832 T4L = T2n + T2s; | |
833 T3g = T2l - T2m; | |
834 T3h = T2q - T2r; | |
835 T4w = T3g + T3h; | |
836 T3n = T2W + T2Z; | |
837 T3o = T31 + T34; | |
838 T3p = T3n + T3o; | |
839 T30 = T2W - T2Z; | |
840 T35 = T31 - T34; | |
841 T36 = T30 + T35; | |
842 } | |
843 { | |
844 E TO, T3H, T2w, T2L, T1q, T3L, T2C, T2T, TV, T3I, T2x, T2O, T1b, T3K, T2B; | |
845 E T2Q; | |
846 { | |
847 E TI, T2u, TN, T2v; | |
848 { | |
849 E TG, TH, TK, TM; | |
850 TG = ri[WS(rs, 4)]; | |
851 TH = ii[WS(rs, 4)]; | |
852 TI = FMA(Tk, TG, To * TH); | |
853 T2u = FNMS(To, TG, Tk * TH); | |
854 TK = ri[WS(rs, 14)]; | |
855 TM = ii[WS(rs, 14)]; | |
856 TN = FMA(TJ, TK, TL * TM); | |
857 T2v = FNMS(TL, TK, TJ * TM); | |
858 } | |
859 TO = TI + TN; | |
860 T3H = T2u + T2v; | |
861 T2w = T2u - T2v; | |
862 T2L = TI - TN; | |
863 } | |
864 { | |
865 E T1e, T2R, T1p, T2S; | |
866 { | |
867 E T1c, T1d, T1k, T1o; | |
868 T1c = ri[WS(rs, 1)]; | |
869 T1d = ii[WS(rs, 1)]; | |
870 T1e = FMA(T2, T1c, T5 * T1d); | |
871 T2R = FNMS(T5, T1c, T2 * T1d); | |
872 T1k = ri[WS(rs, 11)]; | |
873 T1o = ii[WS(rs, 11)]; | |
874 T1p = FMA(T1j, T1k, T1n * T1o); | |
875 T2S = FNMS(T1n, T1k, T1j * T1o); | |
876 } | |
877 T1q = T1e + T1p; | |
878 T3L = T2R + T2S; | |
879 T2C = T1e - T1p; | |
880 T2T = T2R - T2S; | |
881 } | |
882 { | |
883 E TR, T2M, TU, T2N; | |
884 { | |
885 E TP, TQ, TS, TT; | |
886 TP = ri[WS(rs, 9)]; | |
887 TQ = ii[WS(rs, 9)]; | |
888 TR = FMA(T3, TP, T6 * TQ); | |
889 T2M = FNMS(T6, TP, T3 * TQ); | |
890 TS = ri[WS(rs, 19)]; | |
891 TT = ii[WS(rs, 19)]; | |
892 TU = FMA(Tx, TS, Ty * TT); | |
893 T2N = FNMS(Ty, TS, Tx * TT); | |
894 } | |
895 TV = TR + TU; | |
896 T3I = T2M + T2N; | |
897 T2x = TR - TU; | |
898 T2O = T2M - T2N; | |
899 } | |
900 { | |
901 E T11, T2z, T1a, T2A; | |
902 { | |
903 E TY, T10, T15, T19; | |
904 TY = ri[WS(rs, 16)]; | |
905 T10 = ii[WS(rs, 16)]; | |
906 T11 = FMA(TX, TY, TZ * T10); | |
907 T2z = FNMS(TZ, TY, TX * T10); | |
908 T15 = ri[WS(rs, 6)]; | |
909 T19 = ii[WS(rs, 6)]; | |
910 T1a = FMA(T14, T15, T18 * T19); | |
911 T2A = FNMS(T18, T15, T14 * T19); | |
912 } | |
913 T1b = T11 + T1a; | |
914 T3K = T2z + T2A; | |
915 T2B = T2z - T2A; | |
916 T2Q = T11 - T1a; | |
917 } | |
918 TW = TO - TV; | |
919 T1r = T1b - T1q; | |
920 T1s = TW + T1r; | |
921 T3J = T3H - T3I; | |
922 T3M = T3K - T3L; | |
923 T4n = T3J + T3M; | |
924 T3U = T3H + T3I; | |
925 T3V = T3K + T3L; | |
926 T43 = T3U + T3V; | |
927 T2c = TO + TV; | |
928 T2d = T1b + T1q; | |
929 T2e = T2c + T2d; | |
930 T2y = T2w + T2x; | |
931 T2D = T2B + T2C; | |
932 T4K = T2y + T2D; | |
933 T3d = T2w - T2x; | |
934 T3e = T2B - T2C; | |
935 T4v = T3d + T3e; | |
936 T3k = T2L + T2O; | |
937 T3l = T2Q + T2T; | |
938 T3m = T3k + T3l; | |
939 T2P = T2L - T2O; | |
940 T2U = T2Q - T2T; | |
941 T2V = T2P + T2U; | |
942 } | |
943 { | |
944 E T3y, T2a, T3x, T3O, T3Q, T3G, T3N, T3P, T3z; | |
945 T3y = KP559016994 * (T1s - T29); | |
946 T2a = T1s + T29; | |
947 T3x = FNMS(KP250000000, T2a, TF); | |
948 T3G = T3C - T3F; | |
949 T3N = T3J - T3M; | |
950 T3O = FNMS(KP587785252, T3N, KP951056516 * T3G); | |
951 T3Q = FMA(KP951056516, T3N, KP587785252 * T3G); | |
952 ri[WS(rs, 10)] = TF + T2a; | |
953 T3P = T3y + T3x; | |
954 ri[WS(rs, 14)] = T3P - T3Q; | |
955 ri[WS(rs, 6)] = T3P + T3Q; | |
956 T3z = T3x - T3y; | |
957 ri[WS(rs, 2)] = T3z - T3O; | |
958 ri[WS(rs, 18)] = T3z + T3O; | |
959 } | |
960 { | |
961 E T4r, T4p, T4q, T4l, T4u, T4j, T4k, T4t, T4s; | |
962 T4r = KP559016994 * (T4n - T4o); | |
963 T4p = T4n + T4o; | |
964 T4q = FNMS(KP250000000, T4p, T4m); | |
965 T4j = T1N - T28; | |
966 T4k = TW - T1r; | |
967 T4l = FNMS(KP587785252, T4k, KP951056516 * T4j); | |
968 T4u = FMA(KP951056516, T4k, KP587785252 * T4j); | |
969 ii[WS(rs, 10)] = T4p + T4m; | |
970 T4t = T4r + T4q; | |
971 ii[WS(rs, 6)] = T4t - T4u; | |
972 ii[WS(rs, 14)] = T4u + T4t; | |
973 T4s = T4q - T4r; | |
974 ii[WS(rs, 2)] = T4l + T4s; | |
975 ii[WS(rs, 18)] = T4s - T4l; | |
976 } | |
977 { | |
978 E T3R, T2i, T3S, T40, T42, T3W, T3Z, T41, T3T; | |
979 T3R = KP559016994 * (T2e - T2h); | |
980 T2i = T2e + T2h; | |
981 T3S = FNMS(KP250000000, T2i, T2b); | |
982 T3W = T3U - T3V; | |
983 T3Z = T3X - T3Y; | |
984 T40 = FMA(KP951056516, T3W, KP587785252 * T3Z); | |
985 T42 = FNMS(KP587785252, T3W, KP951056516 * T3Z); | |
986 ri[0] = T2b + T2i; | |
987 T41 = T3S - T3R; | |
988 ri[WS(rs, 12)] = T41 - T42; | |
989 ri[WS(rs, 8)] = T41 + T42; | |
990 T3T = T3R + T3S; | |
991 ri[WS(rs, 4)] = T3T - T40; | |
992 ri[WS(rs, 16)] = T3T + T40; | |
993 } | |
994 { | |
995 E T4e, T45, T4f, T4d, T4i, T4b, T4c, T4h, T4g; | |
996 T4e = KP559016994 * (T43 - T44); | |
997 T45 = T43 + T44; | |
998 T4f = FNMS(KP250000000, T45, T4a); | |
999 T4b = T2c - T2d; | |
1000 T4c = T2f - T2g; | |
1001 T4d = FMA(KP951056516, T4b, KP587785252 * T4c); | |
1002 T4i = FNMS(KP587785252, T4b, KP951056516 * T4c); | |
1003 ii[0] = T45 + T4a; | |
1004 T4h = T4f - T4e; | |
1005 ii[WS(rs, 8)] = T4h - T4i; | |
1006 ii[WS(rs, 12)] = T4i + T4h; | |
1007 T4g = T4e + T4f; | |
1008 ii[WS(rs, 4)] = T4d + T4g; | |
1009 ii[WS(rs, 16)] = T4g - T4d; | |
1010 } | |
1011 { | |
1012 E T39, T37, T38, T2F, T3b, T2t, T2E, T3c, T3a; | |
1013 T39 = KP559016994 * (T2V - T36); | |
1014 T37 = T2V + T36; | |
1015 T38 = FNMS(KP250000000, T37, T2K); | |
1016 T2t = T2n - T2s; | |
1017 T2E = T2y - T2D; | |
1018 T2F = FNMS(KP587785252, T2E, KP951056516 * T2t); | |
1019 T3b = FMA(KP951056516, T2E, KP587785252 * T2t); | |
1020 ri[WS(rs, 15)] = T2K + T37; | |
1021 T3c = T39 + T38; | |
1022 ri[WS(rs, 11)] = T3b + T3c; | |
1023 ri[WS(rs, 19)] = T3c - T3b; | |
1024 T3a = T38 - T39; | |
1025 ri[WS(rs, 3)] = T2F + T3a; | |
1026 ri[WS(rs, 7)] = T3a - T2F; | |
1027 } | |
1028 { | |
1029 E T4O, T4M, T4N, T4S, T4U, T4Q, T4R, T4T, T4P; | |
1030 T4O = KP559016994 * (T4K - T4L); | |
1031 T4M = T4K + T4L; | |
1032 T4N = FNMS(KP250000000, T4M, T4J); | |
1033 T4Q = T30 - T35; | |
1034 T4R = T2P - T2U; | |
1035 T4S = FNMS(KP587785252, T4R, KP951056516 * T4Q); | |
1036 T4U = FMA(KP951056516, T4R, KP587785252 * T4Q); | |
1037 ii[WS(rs, 15)] = T4M + T4J; | |
1038 T4T = T4O + T4N; | |
1039 ii[WS(rs, 11)] = T4T - T4U; | |
1040 ii[WS(rs, 19)] = T4U + T4T; | |
1041 T4P = T4N - T4O; | |
1042 ii[WS(rs, 3)] = T4P - T4S; | |
1043 ii[WS(rs, 7)] = T4S + T4P; | |
1044 } | |
1045 { | |
1046 E T3q, T3s, T3t, T3j, T3v, T3f, T3i, T3w, T3u; | |
1047 T3q = KP559016994 * (T3m - T3p); | |
1048 T3s = T3m + T3p; | |
1049 T3t = FNMS(KP250000000, T3s, T3r); | |
1050 T3f = T3d - T3e; | |
1051 T3i = T3g - T3h; | |
1052 T3j = FMA(KP951056516, T3f, KP587785252 * T3i); | |
1053 T3v = FNMS(KP587785252, T3f, KP951056516 * T3i); | |
1054 ri[WS(rs, 5)] = T3r + T3s; | |
1055 T3w = T3t - T3q; | |
1056 ri[WS(rs, 13)] = T3v + T3w; | |
1057 ri[WS(rs, 17)] = T3w - T3v; | |
1058 T3u = T3q + T3t; | |
1059 ri[WS(rs, 1)] = T3j + T3u; | |
1060 ri[WS(rs, 9)] = T3u - T3j; | |
1061 } | |
1062 { | |
1063 E T4x, T4B, T4C, T4G, T4I, T4E, T4F, T4H, T4D; | |
1064 T4x = KP559016994 * (T4v - T4w); | |
1065 T4B = T4v + T4w; | |
1066 T4C = FNMS(KP250000000, T4B, T4A); | |
1067 T4E = T3k - T3l; | |
1068 T4F = T3n - T3o; | |
1069 T4G = FMA(KP951056516, T4E, KP587785252 * T4F); | |
1070 T4I = FNMS(KP587785252, T4E, KP951056516 * T4F); | |
1071 ii[WS(rs, 5)] = T4B + T4A; | |
1072 T4H = T4C - T4x; | |
1073 ii[WS(rs, 13)] = T4H - T4I; | |
1074 ii[WS(rs, 17)] = T4I + T4H; | |
1075 T4D = T4x + T4C; | |
1076 ii[WS(rs, 1)] = T4D - T4G; | |
1077 ii[WS(rs, 9)] = T4G + T4D; | |
1078 } | |
1079 } | |
1080 } | |
1081 } | |
1082 } | |
1083 | |
1084 static const tw_instr twinstr[] = { | |
1085 {TW_CEXP, 0, 1}, | |
1086 {TW_CEXP, 0, 3}, | |
1087 {TW_CEXP, 0, 9}, | |
1088 {TW_CEXP, 0, 19}, | |
1089 {TW_NEXT, 1, 0} | |
1090 }; | |
1091 | |
1092 static const ct_desc desc = { 20, "t2_20", twinstr, &GENUS, {204, 92, 72, 0}, 0, 0, 0 }; | |
1093 | |
1094 void X(codelet_t2_20) (planner *p) { | |
1095 X(kdft_dit_register) (p, t2_20, &desc); | |
1096 } | |
1097 #endif |