Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/scalar/codelets/t2_16.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:19 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -name t2_16 -include dft/scalar/t.h */ | |
29 | |
30 /* | |
31 * This function contains 196 FP additions, 134 FP multiplications, | |
32 * (or, 104 additions, 42 multiplications, 92 fused multiply/add), | |
33 * 90 stack variables, 3 constants, and 64 memory accesses | |
34 */ | |
35 #include "dft/scalar/t.h" | |
36 | |
37 static void t2_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
40 DK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
41 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
42 { | |
43 INT m; | |
44 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(32, rs)) { | |
45 E T2, Tf, TM, TO, T3, T6, T5, Th, Tz, Ti, T7, TZ, TT, Tq, TW; | |
46 E Tb, Tu, TP, TI, TF, TC, T1z, T1O, T1D, T1L, Tm, T1f, T1p, T1j, T1m; | |
47 { | |
48 E TN, TS, T4, Tp, Ta, Tt, Tl, Tg; | |
49 T2 = W[0]; | |
50 Tf = W[2]; | |
51 Tg = T2 * Tf; | |
52 TM = W[6]; | |
53 TN = T2 * TM; | |
54 TO = W[7]; | |
55 TS = T2 * TO; | |
56 T3 = W[4]; | |
57 T4 = T2 * T3; | |
58 Tp = Tf * T3; | |
59 T6 = W[5]; | |
60 Ta = T2 * T6; | |
61 Tt = Tf * T6; | |
62 T5 = W[1]; | |
63 Th = W[3]; | |
64 Tl = T2 * Th; | |
65 Tz = FMA(T5, Th, Tg); | |
66 Ti = FNMS(T5, Th, Tg); | |
67 T7 = FMA(T5, T6, T4); | |
68 TZ = FNMS(Th, T3, Tt); | |
69 TT = FNMS(T5, TM, TS); | |
70 Tq = FNMS(Th, T6, Tp); | |
71 TW = FMA(Th, T6, Tp); | |
72 Tb = FNMS(T5, T3, Ta); | |
73 Tu = FMA(Th, T3, Tt); | |
74 TP = FMA(T5, TO, TN); | |
75 TI = FMA(T5, T3, Ta); | |
76 TF = FNMS(T5, T6, T4); | |
77 { | |
78 E T1y, T1C, T1e, T1i; | |
79 T1y = Tz * T3; | |
80 T1C = Tz * T6; | |
81 TC = FNMS(T5, Tf, Tl); | |
82 T1z = FMA(TC, T6, T1y); | |
83 T1O = FMA(TC, T3, T1C); | |
84 T1D = FNMS(TC, T3, T1C); | |
85 T1L = FNMS(TC, T6, T1y); | |
86 T1e = Ti * T3; | |
87 T1i = Ti * T6; | |
88 Tm = FMA(T5, Tf, Tl); | |
89 T1f = FMA(Tm, T6, T1e); | |
90 T1p = FMA(Tm, T3, T1i); | |
91 T1j = FNMS(Tm, T3, T1i); | |
92 T1m = FNMS(Tm, T6, T1e); | |
93 } | |
94 } | |
95 { | |
96 E Te, T1U, T3A, T3L, T1G, T2D, T2A, T3h, T1R, T2B, T2I, T3i, Tx, T3M, T1Z; | |
97 E T3w, TL, T26, T25, T37, T1d, T2o, T2l, T3c, T1s, T2m, T2t, T3d, T12, T28; | |
98 E T2d, T38; | |
99 { | |
100 E T1, T3z, T8, T9, Tc, T3x, Td, T3y; | |
101 T1 = ri[0]; | |
102 T3z = ii[0]; | |
103 T8 = ri[WS(rs, 8)]; | |
104 T9 = T7 * T8; | |
105 Tc = ii[WS(rs, 8)]; | |
106 T3x = T7 * Tc; | |
107 Td = FMA(Tb, Tc, T9); | |
108 Te = T1 + Td; | |
109 T1U = T1 - Td; | |
110 T3y = FNMS(Tb, T8, T3x); | |
111 T3A = T3y + T3z; | |
112 T3L = T3z - T3y; | |
113 } | |
114 { | |
115 E T1u, T1v, T1w, T2w, T1A, T1B, T1E, T2y; | |
116 T1u = ri[WS(rs, 15)]; | |
117 T1v = TM * T1u; | |
118 T1w = ii[WS(rs, 15)]; | |
119 T2w = TM * T1w; | |
120 T1A = ri[WS(rs, 7)]; | |
121 T1B = T1z * T1A; | |
122 T1E = ii[WS(rs, 7)]; | |
123 T2y = T1z * T1E; | |
124 { | |
125 E T1x, T1F, T2x, T2z; | |
126 T1x = FMA(TO, T1w, T1v); | |
127 T1F = FMA(T1D, T1E, T1B); | |
128 T1G = T1x + T1F; | |
129 T2D = T1x - T1F; | |
130 T2x = FNMS(TO, T1u, T2w); | |
131 T2z = FNMS(T1D, T1A, T2y); | |
132 T2A = T2x - T2z; | |
133 T3h = T2x + T2z; | |
134 } | |
135 } | |
136 { | |
137 E T1H, T1I, T1J, T2E, T1M, T1N, T1P, T2G; | |
138 T1H = ri[WS(rs, 3)]; | |
139 T1I = Tf * T1H; | |
140 T1J = ii[WS(rs, 3)]; | |
141 T2E = Tf * T1J; | |
142 T1M = ri[WS(rs, 11)]; | |
143 T1N = T1L * T1M; | |
144 T1P = ii[WS(rs, 11)]; | |
145 T2G = T1L * T1P; | |
146 { | |
147 E T1K, T1Q, T2F, T2H; | |
148 T1K = FMA(Th, T1J, T1I); | |
149 T1Q = FMA(T1O, T1P, T1N); | |
150 T1R = T1K + T1Q; | |
151 T2B = T1K - T1Q; | |
152 T2F = FNMS(Th, T1H, T2E); | |
153 T2H = FNMS(T1O, T1M, T2G); | |
154 T2I = T2F - T2H; | |
155 T3i = T2F + T2H; | |
156 } | |
157 } | |
158 { | |
159 E Tj, Tk, Tn, T1V, Tr, Ts, Tv, T1X; | |
160 Tj = ri[WS(rs, 4)]; | |
161 Tk = Ti * Tj; | |
162 Tn = ii[WS(rs, 4)]; | |
163 T1V = Ti * Tn; | |
164 Tr = ri[WS(rs, 12)]; | |
165 Ts = Tq * Tr; | |
166 Tv = ii[WS(rs, 12)]; | |
167 T1X = Tq * Tv; | |
168 { | |
169 E To, Tw, T1W, T1Y; | |
170 To = FMA(Tm, Tn, Tk); | |
171 Tw = FMA(Tu, Tv, Ts); | |
172 Tx = To + Tw; | |
173 T3M = To - Tw; | |
174 T1W = FNMS(Tm, Tj, T1V); | |
175 T1Y = FNMS(Tu, Tr, T1X); | |
176 T1Z = T1W - T1Y; | |
177 T3w = T1W + T1Y; | |
178 } | |
179 } | |
180 { | |
181 E TA, TB, TD, T21, TG, TH, TJ, T23; | |
182 TA = ri[WS(rs, 2)]; | |
183 TB = Tz * TA; | |
184 TD = ii[WS(rs, 2)]; | |
185 T21 = Tz * TD; | |
186 TG = ri[WS(rs, 10)]; | |
187 TH = TF * TG; | |
188 TJ = ii[WS(rs, 10)]; | |
189 T23 = TF * TJ; | |
190 { | |
191 E TE, TK, T22, T24; | |
192 TE = FMA(TC, TD, TB); | |
193 TK = FMA(TI, TJ, TH); | |
194 TL = TE + TK; | |
195 T26 = TE - TK; | |
196 T22 = FNMS(TC, TA, T21); | |
197 T24 = FNMS(TI, TG, T23); | |
198 T25 = T22 - T24; | |
199 T37 = T22 + T24; | |
200 } | |
201 } | |
202 { | |
203 E T15, T16, T17, T2h, T19, T1a, T1b, T2j; | |
204 T15 = ri[WS(rs, 1)]; | |
205 T16 = T2 * T15; | |
206 T17 = ii[WS(rs, 1)]; | |
207 T2h = T2 * T17; | |
208 T19 = ri[WS(rs, 9)]; | |
209 T1a = T3 * T19; | |
210 T1b = ii[WS(rs, 9)]; | |
211 T2j = T3 * T1b; | |
212 { | |
213 E T18, T1c, T2i, T2k; | |
214 T18 = FMA(T5, T17, T16); | |
215 T1c = FMA(T6, T1b, T1a); | |
216 T1d = T18 + T1c; | |
217 T2o = T18 - T1c; | |
218 T2i = FNMS(T5, T15, T2h); | |
219 T2k = FNMS(T6, T19, T2j); | |
220 T2l = T2i - T2k; | |
221 T3c = T2i + T2k; | |
222 } | |
223 } | |
224 { | |
225 E T1g, T1h, T1k, T2p, T1n, T1o, T1q, T2r; | |
226 T1g = ri[WS(rs, 5)]; | |
227 T1h = T1f * T1g; | |
228 T1k = ii[WS(rs, 5)]; | |
229 T2p = T1f * T1k; | |
230 T1n = ri[WS(rs, 13)]; | |
231 T1o = T1m * T1n; | |
232 T1q = ii[WS(rs, 13)]; | |
233 T2r = T1m * T1q; | |
234 { | |
235 E T1l, T1r, T2q, T2s; | |
236 T1l = FMA(T1j, T1k, T1h); | |
237 T1r = FMA(T1p, T1q, T1o); | |
238 T1s = T1l + T1r; | |
239 T2m = T1l - T1r; | |
240 T2q = FNMS(T1j, T1g, T2p); | |
241 T2s = FNMS(T1p, T1n, T2r); | |
242 T2t = T2q - T2s; | |
243 T3d = T2q + T2s; | |
244 } | |
245 } | |
246 { | |
247 E TQ, TR, TU, T29, TX, TY, T10, T2b; | |
248 TQ = ri[WS(rs, 14)]; | |
249 TR = TP * TQ; | |
250 TU = ii[WS(rs, 14)]; | |
251 T29 = TP * TU; | |
252 TX = ri[WS(rs, 6)]; | |
253 TY = TW * TX; | |
254 T10 = ii[WS(rs, 6)]; | |
255 T2b = TW * T10; | |
256 { | |
257 E TV, T11, T2a, T2c; | |
258 TV = FMA(TT, TU, TR); | |
259 T11 = FMA(TZ, T10, TY); | |
260 T12 = TV + T11; | |
261 T28 = TV - T11; | |
262 T2a = FNMS(TT, TQ, T29); | |
263 T2c = FNMS(TZ, TX, T2b); | |
264 T2d = T2a - T2c; | |
265 T38 = T2a + T2c; | |
266 } | |
267 } | |
268 { | |
269 E T14, T3q, T3C, T3E, T1T, T3D, T3t, T3u; | |
270 { | |
271 E Ty, T13, T3v, T3B; | |
272 Ty = Te + Tx; | |
273 T13 = TL + T12; | |
274 T14 = Ty + T13; | |
275 T3q = Ty - T13; | |
276 T3v = T37 + T38; | |
277 T3B = T3w + T3A; | |
278 T3C = T3v + T3B; | |
279 T3E = T3B - T3v; | |
280 } | |
281 { | |
282 E T1t, T1S, T3r, T3s; | |
283 T1t = T1d + T1s; | |
284 T1S = T1G + T1R; | |
285 T1T = T1t + T1S; | |
286 T3D = T1S - T1t; | |
287 T3r = T3c + T3d; | |
288 T3s = T3h + T3i; | |
289 T3t = T3r - T3s; | |
290 T3u = T3r + T3s; | |
291 } | |
292 ri[WS(rs, 8)] = T14 - T1T; | |
293 ii[WS(rs, 8)] = T3C - T3u; | |
294 ri[0] = T14 + T1T; | |
295 ii[0] = T3u + T3C; | |
296 ri[WS(rs, 12)] = T3q - T3t; | |
297 ii[WS(rs, 12)] = T3E - T3D; | |
298 ri[WS(rs, 4)] = T3q + T3t; | |
299 ii[WS(rs, 4)] = T3D + T3E; | |
300 } | |
301 { | |
302 E T3a, T3m, T3H, T3J, T3f, T3n, T3k, T3o; | |
303 { | |
304 E T36, T39, T3F, T3G; | |
305 T36 = Te - Tx; | |
306 T39 = T37 - T38; | |
307 T3a = T36 + T39; | |
308 T3m = T36 - T39; | |
309 T3F = T12 - TL; | |
310 T3G = T3A - T3w; | |
311 T3H = T3F + T3G; | |
312 T3J = T3G - T3F; | |
313 } | |
314 { | |
315 E T3b, T3e, T3g, T3j; | |
316 T3b = T1d - T1s; | |
317 T3e = T3c - T3d; | |
318 T3f = T3b + T3e; | |
319 T3n = T3e - T3b; | |
320 T3g = T1G - T1R; | |
321 T3j = T3h - T3i; | |
322 T3k = T3g - T3j; | |
323 T3o = T3g + T3j; | |
324 } | |
325 { | |
326 E T3l, T3I, T3p, T3K; | |
327 T3l = T3f + T3k; | |
328 ri[WS(rs, 10)] = FNMS(KP707106781, T3l, T3a); | |
329 ri[WS(rs, 2)] = FMA(KP707106781, T3l, T3a); | |
330 T3I = T3n + T3o; | |
331 ii[WS(rs, 2)] = FMA(KP707106781, T3I, T3H); | |
332 ii[WS(rs, 10)] = FNMS(KP707106781, T3I, T3H); | |
333 T3p = T3n - T3o; | |
334 ri[WS(rs, 14)] = FNMS(KP707106781, T3p, T3m); | |
335 ri[WS(rs, 6)] = FMA(KP707106781, T3p, T3m); | |
336 T3K = T3k - T3f; | |
337 ii[WS(rs, 6)] = FMA(KP707106781, T3K, T3J); | |
338 ii[WS(rs, 14)] = FNMS(KP707106781, T3K, T3J); | |
339 } | |
340 } | |
341 { | |
342 E T20, T3N, T3T, T2Q, T2f, T3O, T30, T34, T2T, T3U, T2v, T2N, T2X, T33, T2K; | |
343 E T2O; | |
344 { | |
345 E T27, T2e, T2n, T2u; | |
346 T20 = T1U - T1Z; | |
347 T3N = T3L - T3M; | |
348 T3T = T3M + T3L; | |
349 T2Q = T1U + T1Z; | |
350 T27 = T25 - T26; | |
351 T2e = T28 + T2d; | |
352 T2f = T27 - T2e; | |
353 T3O = T27 + T2e; | |
354 { | |
355 E T2Y, T2Z, T2R, T2S; | |
356 T2Y = T2D + T2I; | |
357 T2Z = T2A - T2B; | |
358 T30 = FNMS(KP414213562, T2Z, T2Y); | |
359 T34 = FMA(KP414213562, T2Y, T2Z); | |
360 T2R = T26 + T25; | |
361 T2S = T28 - T2d; | |
362 T2T = T2R + T2S; | |
363 T3U = T2S - T2R; | |
364 } | |
365 T2n = T2l + T2m; | |
366 T2u = T2o - T2t; | |
367 T2v = FMA(KP414213562, T2u, T2n); | |
368 T2N = FNMS(KP414213562, T2n, T2u); | |
369 { | |
370 E T2V, T2W, T2C, T2J; | |
371 T2V = T2o + T2t; | |
372 T2W = T2l - T2m; | |
373 T2X = FMA(KP414213562, T2W, T2V); | |
374 T33 = FNMS(KP414213562, T2V, T2W); | |
375 T2C = T2A + T2B; | |
376 T2J = T2D - T2I; | |
377 T2K = FNMS(KP414213562, T2J, T2C); | |
378 T2O = FMA(KP414213562, T2C, T2J); | |
379 } | |
380 } | |
381 { | |
382 E T2g, T2L, T3V, T3W; | |
383 T2g = FMA(KP707106781, T2f, T20); | |
384 T2L = T2v - T2K; | |
385 ri[WS(rs, 11)] = FNMS(KP923879532, T2L, T2g); | |
386 ri[WS(rs, 3)] = FMA(KP923879532, T2L, T2g); | |
387 T3V = FMA(KP707106781, T3U, T3T); | |
388 T3W = T2O - T2N; | |
389 ii[WS(rs, 3)] = FMA(KP923879532, T3W, T3V); | |
390 ii[WS(rs, 11)] = FNMS(KP923879532, T3W, T3V); | |
391 } | |
392 { | |
393 E T2M, T2P, T3X, T3Y; | |
394 T2M = FNMS(KP707106781, T2f, T20); | |
395 T2P = T2N + T2O; | |
396 ri[WS(rs, 7)] = FNMS(KP923879532, T2P, T2M); | |
397 ri[WS(rs, 15)] = FMA(KP923879532, T2P, T2M); | |
398 T3X = FNMS(KP707106781, T3U, T3T); | |
399 T3Y = T2v + T2K; | |
400 ii[WS(rs, 7)] = FNMS(KP923879532, T3Y, T3X); | |
401 ii[WS(rs, 15)] = FMA(KP923879532, T3Y, T3X); | |
402 } | |
403 { | |
404 E T2U, T31, T3P, T3Q; | |
405 T2U = FMA(KP707106781, T2T, T2Q); | |
406 T31 = T2X + T30; | |
407 ri[WS(rs, 9)] = FNMS(KP923879532, T31, T2U); | |
408 ri[WS(rs, 1)] = FMA(KP923879532, T31, T2U); | |
409 T3P = FMA(KP707106781, T3O, T3N); | |
410 T3Q = T33 + T34; | |
411 ii[WS(rs, 1)] = FMA(KP923879532, T3Q, T3P); | |
412 ii[WS(rs, 9)] = FNMS(KP923879532, T3Q, T3P); | |
413 } | |
414 { | |
415 E T32, T35, T3R, T3S; | |
416 T32 = FNMS(KP707106781, T2T, T2Q); | |
417 T35 = T33 - T34; | |
418 ri[WS(rs, 13)] = FNMS(KP923879532, T35, T32); | |
419 ri[WS(rs, 5)] = FMA(KP923879532, T35, T32); | |
420 T3R = FNMS(KP707106781, T3O, T3N); | |
421 T3S = T30 - T2X; | |
422 ii[WS(rs, 5)] = FMA(KP923879532, T3S, T3R); | |
423 ii[WS(rs, 13)] = FNMS(KP923879532, T3S, T3R); | |
424 } | |
425 } | |
426 } | |
427 } | |
428 } | |
429 } | |
430 | |
431 static const tw_instr twinstr[] = { | |
432 {TW_CEXP, 0, 1}, | |
433 {TW_CEXP, 0, 3}, | |
434 {TW_CEXP, 0, 9}, | |
435 {TW_CEXP, 0, 15}, | |
436 {TW_NEXT, 1, 0} | |
437 }; | |
438 | |
439 static const ct_desc desc = { 16, "t2_16", twinstr, &GENUS, {104, 42, 92, 0}, 0, 0, 0 }; | |
440 | |
441 void X(codelet_t2_16) (planner *p) { | |
442 X(kdft_dit_register) (p, t2_16, &desc); | |
443 } | |
444 #else | |
445 | |
446 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -name t2_16 -include dft/scalar/t.h */ | |
447 | |
448 /* | |
449 * This function contains 196 FP additions, 108 FP multiplications, | |
450 * (or, 156 additions, 68 multiplications, 40 fused multiply/add), | |
451 * 82 stack variables, 3 constants, and 64 memory accesses | |
452 */ | |
453 #include "dft/scalar/t.h" | |
454 | |
455 static void t2_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
456 { | |
457 DK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
458 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
459 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
460 { | |
461 INT m; | |
462 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(32, rs)) { | |
463 E T2, T5, Tg, Ti, Tk, To, TE, TC, T6, T3, T8, TW, TJ, Tt, TU; | |
464 E Tc, Tx, TH, TN, TO, TP, TR, T1f, T1k, T1b, T1i, T1y, T1H, T1u, T1F; | |
465 { | |
466 E T7, Tv, Ta, Ts, T4, Tw, Tb, Tr; | |
467 { | |
468 E Th, Tn, Tj, Tm; | |
469 T2 = W[0]; | |
470 T5 = W[1]; | |
471 Tg = W[2]; | |
472 Ti = W[3]; | |
473 Th = T2 * Tg; | |
474 Tn = T5 * Tg; | |
475 Tj = T5 * Ti; | |
476 Tm = T2 * Ti; | |
477 Tk = Th - Tj; | |
478 To = Tm + Tn; | |
479 TE = Tm - Tn; | |
480 TC = Th + Tj; | |
481 T6 = W[5]; | |
482 T7 = T5 * T6; | |
483 Tv = Tg * T6; | |
484 Ta = T2 * T6; | |
485 Ts = Ti * T6; | |
486 T3 = W[4]; | |
487 T4 = T2 * T3; | |
488 Tw = Ti * T3; | |
489 Tb = T5 * T3; | |
490 Tr = Tg * T3; | |
491 } | |
492 T8 = T4 + T7; | |
493 TW = Tv - Tw; | |
494 TJ = Ta + Tb; | |
495 Tt = Tr - Ts; | |
496 TU = Tr + Ts; | |
497 Tc = Ta - Tb; | |
498 Tx = Tv + Tw; | |
499 TH = T4 - T7; | |
500 TN = W[6]; | |
501 TO = W[7]; | |
502 TP = FMA(T2, TN, T5 * TO); | |
503 TR = FNMS(T5, TN, T2 * TO); | |
504 { | |
505 E T1d, T1e, T19, T1a; | |
506 T1d = Tk * T6; | |
507 T1e = To * T3; | |
508 T1f = T1d - T1e; | |
509 T1k = T1d + T1e; | |
510 T19 = Tk * T3; | |
511 T1a = To * T6; | |
512 T1b = T19 + T1a; | |
513 T1i = T19 - T1a; | |
514 } | |
515 { | |
516 E T1w, T1x, T1s, T1t; | |
517 T1w = TC * T6; | |
518 T1x = TE * T3; | |
519 T1y = T1w - T1x; | |
520 T1H = T1w + T1x; | |
521 T1s = TC * T3; | |
522 T1t = TE * T6; | |
523 T1u = T1s + T1t; | |
524 T1F = T1s - T1t; | |
525 } | |
526 } | |
527 { | |
528 E Tf, T3r, T1N, T3e, TA, T3s, T1Q, T3b, TM, T2M, T1W, T2w, TZ, T2N, T21; | |
529 E T2x, T1B, T1K, T2V, T2W, T2X, T2Y, T2j, T2D, T2o, T2E, T18, T1n, T2Q, T2R; | |
530 E T2S, T2T, T28, T2A, T2d, T2B; | |
531 { | |
532 E T1, T3d, Te, T3c, T9, Td; | |
533 T1 = ri[0]; | |
534 T3d = ii[0]; | |
535 T9 = ri[WS(rs, 8)]; | |
536 Td = ii[WS(rs, 8)]; | |
537 Te = FMA(T8, T9, Tc * Td); | |
538 T3c = FNMS(Tc, T9, T8 * Td); | |
539 Tf = T1 + Te; | |
540 T3r = T3d - T3c; | |
541 T1N = T1 - Te; | |
542 T3e = T3c + T3d; | |
543 } | |
544 { | |
545 E Tq, T1O, Tz, T1P; | |
546 { | |
547 E Tl, Tp, Tu, Ty; | |
548 Tl = ri[WS(rs, 4)]; | |
549 Tp = ii[WS(rs, 4)]; | |
550 Tq = FMA(Tk, Tl, To * Tp); | |
551 T1O = FNMS(To, Tl, Tk * Tp); | |
552 Tu = ri[WS(rs, 12)]; | |
553 Ty = ii[WS(rs, 12)]; | |
554 Tz = FMA(Tt, Tu, Tx * Ty); | |
555 T1P = FNMS(Tx, Tu, Tt * Ty); | |
556 } | |
557 TA = Tq + Tz; | |
558 T3s = Tq - Tz; | |
559 T1Q = T1O - T1P; | |
560 T3b = T1O + T1P; | |
561 } | |
562 { | |
563 E TG, T1S, TL, T1T, T1U, T1V; | |
564 { | |
565 E TD, TF, TI, TK; | |
566 TD = ri[WS(rs, 2)]; | |
567 TF = ii[WS(rs, 2)]; | |
568 TG = FMA(TC, TD, TE * TF); | |
569 T1S = FNMS(TE, TD, TC * TF); | |
570 TI = ri[WS(rs, 10)]; | |
571 TK = ii[WS(rs, 10)]; | |
572 TL = FMA(TH, TI, TJ * TK); | |
573 T1T = FNMS(TJ, TI, TH * TK); | |
574 } | |
575 TM = TG + TL; | |
576 T2M = T1S + T1T; | |
577 T1U = T1S - T1T; | |
578 T1V = TG - TL; | |
579 T1W = T1U - T1V; | |
580 T2w = T1V + T1U; | |
581 } | |
582 { | |
583 E TT, T1Y, TY, T1Z, T1X, T20; | |
584 { | |
585 E TQ, TS, TV, TX; | |
586 TQ = ri[WS(rs, 14)]; | |
587 TS = ii[WS(rs, 14)]; | |
588 TT = FMA(TP, TQ, TR * TS); | |
589 T1Y = FNMS(TR, TQ, TP * TS); | |
590 TV = ri[WS(rs, 6)]; | |
591 TX = ii[WS(rs, 6)]; | |
592 TY = FMA(TU, TV, TW * TX); | |
593 T1Z = FNMS(TW, TV, TU * TX); | |
594 } | |
595 TZ = TT + TY; | |
596 T2N = T1Y + T1Z; | |
597 T1X = TT - TY; | |
598 T20 = T1Y - T1Z; | |
599 T21 = T1X + T20; | |
600 T2x = T1X - T20; | |
601 } | |
602 { | |
603 E T1r, T2k, T1J, T2h, T1A, T2l, T1E, T2g; | |
604 { | |
605 E T1p, T1q, T1G, T1I; | |
606 T1p = ri[WS(rs, 15)]; | |
607 T1q = ii[WS(rs, 15)]; | |
608 T1r = FMA(TN, T1p, TO * T1q); | |
609 T2k = FNMS(TO, T1p, TN * T1q); | |
610 T1G = ri[WS(rs, 11)]; | |
611 T1I = ii[WS(rs, 11)]; | |
612 T1J = FMA(T1F, T1G, T1H * T1I); | |
613 T2h = FNMS(T1H, T1G, T1F * T1I); | |
614 } | |
615 { | |
616 E T1v, T1z, T1C, T1D; | |
617 T1v = ri[WS(rs, 7)]; | |
618 T1z = ii[WS(rs, 7)]; | |
619 T1A = FMA(T1u, T1v, T1y * T1z); | |
620 T2l = FNMS(T1y, T1v, T1u * T1z); | |
621 T1C = ri[WS(rs, 3)]; | |
622 T1D = ii[WS(rs, 3)]; | |
623 T1E = FMA(Tg, T1C, Ti * T1D); | |
624 T2g = FNMS(Ti, T1C, Tg * T1D); | |
625 } | |
626 T1B = T1r + T1A; | |
627 T1K = T1E + T1J; | |
628 T2V = T1B - T1K; | |
629 T2W = T2k + T2l; | |
630 T2X = T2g + T2h; | |
631 T2Y = T2W - T2X; | |
632 { | |
633 E T2f, T2i, T2m, T2n; | |
634 T2f = T1r - T1A; | |
635 T2i = T2g - T2h; | |
636 T2j = T2f - T2i; | |
637 T2D = T2f + T2i; | |
638 T2m = T2k - T2l; | |
639 T2n = T1E - T1J; | |
640 T2o = T2m + T2n; | |
641 T2E = T2m - T2n; | |
642 } | |
643 } | |
644 { | |
645 E T14, T24, T1m, T2b, T17, T25, T1h, T2a; | |
646 { | |
647 E T12, T13, T1j, T1l; | |
648 T12 = ri[WS(rs, 1)]; | |
649 T13 = ii[WS(rs, 1)]; | |
650 T14 = FMA(T2, T12, T5 * T13); | |
651 T24 = FNMS(T5, T12, T2 * T13); | |
652 T1j = ri[WS(rs, 13)]; | |
653 T1l = ii[WS(rs, 13)]; | |
654 T1m = FMA(T1i, T1j, T1k * T1l); | |
655 T2b = FNMS(T1k, T1j, T1i * T1l); | |
656 } | |
657 { | |
658 E T15, T16, T1c, T1g; | |
659 T15 = ri[WS(rs, 9)]; | |
660 T16 = ii[WS(rs, 9)]; | |
661 T17 = FMA(T3, T15, T6 * T16); | |
662 T25 = FNMS(T6, T15, T3 * T16); | |
663 T1c = ri[WS(rs, 5)]; | |
664 T1g = ii[WS(rs, 5)]; | |
665 T1h = FMA(T1b, T1c, T1f * T1g); | |
666 T2a = FNMS(T1f, T1c, T1b * T1g); | |
667 } | |
668 T18 = T14 + T17; | |
669 T1n = T1h + T1m; | |
670 T2Q = T18 - T1n; | |
671 T2R = T24 + T25; | |
672 T2S = T2a + T2b; | |
673 T2T = T2R - T2S; | |
674 { | |
675 E T26, T27, T29, T2c; | |
676 T26 = T24 - T25; | |
677 T27 = T1h - T1m; | |
678 T28 = T26 + T27; | |
679 T2A = T26 - T27; | |
680 T29 = T14 - T17; | |
681 T2c = T2a - T2b; | |
682 T2d = T29 - T2c; | |
683 T2B = T29 + T2c; | |
684 } | |
685 } | |
686 { | |
687 E T23, T2r, T3A, T3C, T2q, T3B, T2u, T3x; | |
688 { | |
689 E T1R, T22, T3y, T3z; | |
690 T1R = T1N - T1Q; | |
691 T22 = KP707106781 * (T1W - T21); | |
692 T23 = T1R + T22; | |
693 T2r = T1R - T22; | |
694 T3y = KP707106781 * (T2x - T2w); | |
695 T3z = T3s + T3r; | |
696 T3A = T3y + T3z; | |
697 T3C = T3z - T3y; | |
698 } | |
699 { | |
700 E T2e, T2p, T2s, T2t; | |
701 T2e = FMA(KP923879532, T28, KP382683432 * T2d); | |
702 T2p = FNMS(KP923879532, T2o, KP382683432 * T2j); | |
703 T2q = T2e + T2p; | |
704 T3B = T2p - T2e; | |
705 T2s = FNMS(KP923879532, T2d, KP382683432 * T28); | |
706 T2t = FMA(KP382683432, T2o, KP923879532 * T2j); | |
707 T2u = T2s - T2t; | |
708 T3x = T2s + T2t; | |
709 } | |
710 ri[WS(rs, 11)] = T23 - T2q; | |
711 ii[WS(rs, 11)] = T3A - T3x; | |
712 ri[WS(rs, 3)] = T23 + T2q; | |
713 ii[WS(rs, 3)] = T3x + T3A; | |
714 ri[WS(rs, 15)] = T2r - T2u; | |
715 ii[WS(rs, 15)] = T3C - T3B; | |
716 ri[WS(rs, 7)] = T2r + T2u; | |
717 ii[WS(rs, 7)] = T3B + T3C; | |
718 } | |
719 { | |
720 E T2P, T31, T3m, T3o, T30, T3n, T34, T3j; | |
721 { | |
722 E T2L, T2O, T3k, T3l; | |
723 T2L = Tf - TA; | |
724 T2O = T2M - T2N; | |
725 T2P = T2L + T2O; | |
726 T31 = T2L - T2O; | |
727 T3k = TZ - TM; | |
728 T3l = T3e - T3b; | |
729 T3m = T3k + T3l; | |
730 T3o = T3l - T3k; | |
731 } | |
732 { | |
733 E T2U, T2Z, T32, T33; | |
734 T2U = T2Q + T2T; | |
735 T2Z = T2V - T2Y; | |
736 T30 = KP707106781 * (T2U + T2Z); | |
737 T3n = KP707106781 * (T2Z - T2U); | |
738 T32 = T2T - T2Q; | |
739 T33 = T2V + T2Y; | |
740 T34 = KP707106781 * (T32 - T33); | |
741 T3j = KP707106781 * (T32 + T33); | |
742 } | |
743 ri[WS(rs, 10)] = T2P - T30; | |
744 ii[WS(rs, 10)] = T3m - T3j; | |
745 ri[WS(rs, 2)] = T2P + T30; | |
746 ii[WS(rs, 2)] = T3j + T3m; | |
747 ri[WS(rs, 14)] = T31 - T34; | |
748 ii[WS(rs, 14)] = T3o - T3n; | |
749 ri[WS(rs, 6)] = T31 + T34; | |
750 ii[WS(rs, 6)] = T3n + T3o; | |
751 } | |
752 { | |
753 E T2z, T2H, T3u, T3w, T2G, T3v, T2K, T3p; | |
754 { | |
755 E T2v, T2y, T3q, T3t; | |
756 T2v = T1N + T1Q; | |
757 T2y = KP707106781 * (T2w + T2x); | |
758 T2z = T2v + T2y; | |
759 T2H = T2v - T2y; | |
760 T3q = KP707106781 * (T1W + T21); | |
761 T3t = T3r - T3s; | |
762 T3u = T3q + T3t; | |
763 T3w = T3t - T3q; | |
764 } | |
765 { | |
766 E T2C, T2F, T2I, T2J; | |
767 T2C = FMA(KP382683432, T2A, KP923879532 * T2B); | |
768 T2F = FNMS(KP382683432, T2E, KP923879532 * T2D); | |
769 T2G = T2C + T2F; | |
770 T3v = T2F - T2C; | |
771 T2I = FNMS(KP382683432, T2B, KP923879532 * T2A); | |
772 T2J = FMA(KP923879532, T2E, KP382683432 * T2D); | |
773 T2K = T2I - T2J; | |
774 T3p = T2I + T2J; | |
775 } | |
776 ri[WS(rs, 9)] = T2z - T2G; | |
777 ii[WS(rs, 9)] = T3u - T3p; | |
778 ri[WS(rs, 1)] = T2z + T2G; | |
779 ii[WS(rs, 1)] = T3p + T3u; | |
780 ri[WS(rs, 13)] = T2H - T2K; | |
781 ii[WS(rs, 13)] = T3w - T3v; | |
782 ri[WS(rs, 5)] = T2H + T2K; | |
783 ii[WS(rs, 5)] = T3v + T3w; | |
784 } | |
785 { | |
786 E T11, T35, T3g, T3i, T1M, T3h, T38, T39; | |
787 { | |
788 E TB, T10, T3a, T3f; | |
789 TB = Tf + TA; | |
790 T10 = TM + TZ; | |
791 T11 = TB + T10; | |
792 T35 = TB - T10; | |
793 T3a = T2M + T2N; | |
794 T3f = T3b + T3e; | |
795 T3g = T3a + T3f; | |
796 T3i = T3f - T3a; | |
797 } | |
798 { | |
799 E T1o, T1L, T36, T37; | |
800 T1o = T18 + T1n; | |
801 T1L = T1B + T1K; | |
802 T1M = T1o + T1L; | |
803 T3h = T1L - T1o; | |
804 T36 = T2R + T2S; | |
805 T37 = T2W + T2X; | |
806 T38 = T36 - T37; | |
807 T39 = T36 + T37; | |
808 } | |
809 ri[WS(rs, 8)] = T11 - T1M; | |
810 ii[WS(rs, 8)] = T3g - T39; | |
811 ri[0] = T11 + T1M; | |
812 ii[0] = T39 + T3g; | |
813 ri[WS(rs, 12)] = T35 - T38; | |
814 ii[WS(rs, 12)] = T3i - T3h; | |
815 ri[WS(rs, 4)] = T35 + T38; | |
816 ii[WS(rs, 4)] = T3h + T3i; | |
817 } | |
818 } | |
819 } | |
820 } | |
821 } | |
822 | |
823 static const tw_instr twinstr[] = { | |
824 {TW_CEXP, 0, 1}, | |
825 {TW_CEXP, 0, 3}, | |
826 {TW_CEXP, 0, 9}, | |
827 {TW_CEXP, 0, 15}, | |
828 {TW_NEXT, 1, 0} | |
829 }; | |
830 | |
831 static const ct_desc desc = { 16, "t2_16", twinstr, &GENUS, {156, 68, 40, 0}, 0, 0, 0 }; | |
832 | |
833 void X(codelet_t2_16) (planner *p) { | |
834 X(kdft_dit_register) (p, t2_16, &desc); | |
835 } | |
836 #endif |