Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/scalar/codelets/t1_9.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:13 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 9 -name t1_9 -include dft/scalar/t.h */ | |
29 | |
30 /* | |
31 * This function contains 96 FP additions, 88 FP multiplications, | |
32 * (or, 24 additions, 16 multiplications, 72 fused multiply/add), | |
33 * 55 stack variables, 10 constants, and 36 memory accesses | |
34 */ | |
35 #include "dft/scalar/t.h" | |
36 | |
37 static void t1_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP852868531, +0.852868531952443209628250963940074071936020296); | |
40 DK(KP492403876, +0.492403876506104029683371512294761506835321626); | |
41 DK(KP984807753, +0.984807753012208059366743024589523013670643252); | |
42 DK(KP954188894, +0.954188894138671133499268364187245676532219158); | |
43 DK(KP363970234, +0.363970234266202361351047882776834043890471784); | |
44 DK(KP777861913, +0.777861913430206160028177977318626690410586096); | |
45 DK(KP839099631, +0.839099631177280011763127298123181364687434283); | |
46 DK(KP176326980, +0.176326980708464973471090386868618986121633062); | |
47 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
48 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
49 { | |
50 INT m; | |
51 for (m = mb, W = W + (mb * 16); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) { | |
52 E T1, T1R, Te, T1W, T10, T1Q, T1l, T1r, Ty, T1p, Tl, T1o, T1g, T1q, T1a; | |
53 E T1d, TS, T18, TF, T13, T19, T1c; | |
54 T1 = ri[0]; | |
55 T1R = ii[0]; | |
56 { | |
57 E T3, T6, T4, TW, T9, Tc, Ta, TY, T2, T8; | |
58 T3 = ri[WS(rs, 3)]; | |
59 T6 = ii[WS(rs, 3)]; | |
60 T2 = W[4]; | |
61 T4 = T2 * T3; | |
62 TW = T2 * T6; | |
63 T9 = ri[WS(rs, 6)]; | |
64 Tc = ii[WS(rs, 6)]; | |
65 T8 = W[10]; | |
66 Ta = T8 * T9; | |
67 TY = T8 * Tc; | |
68 { | |
69 E T7, TX, Td, TZ, T5, Tb; | |
70 T5 = W[5]; | |
71 T7 = FMA(T5, T6, T4); | |
72 TX = FNMS(T5, T3, TW); | |
73 Tb = W[11]; | |
74 Td = FMA(Tb, Tc, Ta); | |
75 TZ = FNMS(Tb, T9, TY); | |
76 Te = T7 + Td; | |
77 T1W = Td - T7; | |
78 T10 = TX - TZ; | |
79 T1Q = TX + TZ; | |
80 } | |
81 } | |
82 { | |
83 E Th, Tk, Ti, T1n, Tx, T1i, Tr, T1k, Tg, Tj; | |
84 Th = ri[WS(rs, 1)]; | |
85 Tk = ii[WS(rs, 1)]; | |
86 Tg = W[0]; | |
87 Ti = Tg * Th; | |
88 T1n = Tg * Tk; | |
89 { | |
90 E Tt, Tw, Tu, T1h, Ts, Tv; | |
91 Tt = ri[WS(rs, 7)]; | |
92 Tw = ii[WS(rs, 7)]; | |
93 Ts = W[12]; | |
94 Tu = Ts * Tt; | |
95 T1h = Ts * Tw; | |
96 Tv = W[13]; | |
97 Tx = FMA(Tv, Tw, Tu); | |
98 T1i = FNMS(Tv, Tt, T1h); | |
99 } | |
100 { | |
101 E Tn, Tq, To, T1j, Tm, Tp; | |
102 Tn = ri[WS(rs, 4)]; | |
103 Tq = ii[WS(rs, 4)]; | |
104 Tm = W[6]; | |
105 To = Tm * Tn; | |
106 T1j = Tm * Tq; | |
107 Tp = W[7]; | |
108 Tr = FMA(Tp, Tq, To); | |
109 T1k = FNMS(Tp, Tn, T1j); | |
110 } | |
111 T1l = T1i - T1k; | |
112 T1r = Tr - Tx; | |
113 Ty = Tr + Tx; | |
114 T1p = T1k + T1i; | |
115 Tj = W[1]; | |
116 Tl = FMA(Tj, Tk, Ti); | |
117 T1o = FNMS(Tj, Th, T1n); | |
118 T1g = FNMS(KP500000000, Ty, Tl); | |
119 T1q = FNMS(KP500000000, T1p, T1o); | |
120 } | |
121 { | |
122 E TB, TE, TC, T12, TR, T17, TL, T15, TA, TD; | |
123 TB = ri[WS(rs, 2)]; | |
124 TE = ii[WS(rs, 2)]; | |
125 TA = W[2]; | |
126 TC = TA * TB; | |
127 T12 = TA * TE; | |
128 { | |
129 E TN, TQ, TO, T16, TM, TP; | |
130 TN = ri[WS(rs, 8)]; | |
131 TQ = ii[WS(rs, 8)]; | |
132 TM = W[14]; | |
133 TO = TM * TN; | |
134 T16 = TM * TQ; | |
135 TP = W[15]; | |
136 TR = FMA(TP, TQ, TO); | |
137 T17 = FNMS(TP, TN, T16); | |
138 } | |
139 { | |
140 E TH, TK, TI, T14, TG, TJ; | |
141 TH = ri[WS(rs, 5)]; | |
142 TK = ii[WS(rs, 5)]; | |
143 TG = W[8]; | |
144 TI = TG * TH; | |
145 T14 = TG * TK; | |
146 TJ = W[9]; | |
147 TL = FMA(TJ, TK, TI); | |
148 T15 = FNMS(TJ, TH, T14); | |
149 } | |
150 T1a = TR - TL; | |
151 T1d = T15 - T17; | |
152 TS = TL + TR; | |
153 T18 = T15 + T17; | |
154 TD = W[3]; | |
155 TF = FMA(TD, TE, TC); | |
156 T13 = FNMS(TD, TB, T12); | |
157 T19 = FNMS(KP500000000, T18, T13); | |
158 T1c = FNMS(KP500000000, TS, TF); | |
159 } | |
160 { | |
161 E Tf, T1S, TU, T1U, T1O, T1P, T1L, T1T; | |
162 Tf = T1 + Te; | |
163 T1S = T1Q + T1R; | |
164 { | |
165 E Tz, TT, T1M, T1N; | |
166 Tz = Tl + Ty; | |
167 TT = TF + TS; | |
168 TU = Tz + TT; | |
169 T1U = TT - Tz; | |
170 T1M = T1o + T1p; | |
171 T1N = T13 + T18; | |
172 T1O = T1M - T1N; | |
173 T1P = T1M + T1N; | |
174 } | |
175 ri[0] = Tf + TU; | |
176 ii[0] = T1P + T1S; | |
177 T1L = FNMS(KP500000000, TU, Tf); | |
178 ri[WS(rs, 6)] = FNMS(KP866025403, T1O, T1L); | |
179 ri[WS(rs, 3)] = FMA(KP866025403, T1O, T1L); | |
180 T1T = FNMS(KP500000000, T1P, T1S); | |
181 ii[WS(rs, 3)] = FMA(KP866025403, T1U, T1T); | |
182 ii[WS(rs, 6)] = FNMS(KP866025403, T1U, T1T); | |
183 } | |
184 { | |
185 E T11, T1z, T1X, T21, T1f, T1w, T1t, T1x, T1u, T1Y, T1C, T1I, T1F, T1J, T1G; | |
186 E T22, TV, T1V; | |
187 TV = FNMS(KP500000000, Te, T1); | |
188 T11 = FMA(KP866025403, T10, TV); | |
189 T1z = FNMS(KP866025403, T10, TV); | |
190 T1V = FNMS(KP500000000, T1Q, T1R); | |
191 T1X = FMA(KP866025403, T1W, T1V); | |
192 T21 = FNMS(KP866025403, T1W, T1V); | |
193 { | |
194 E T1b, T1e, T1m, T1s; | |
195 T1b = FMA(KP866025403, T1a, T19); | |
196 T1e = FMA(KP866025403, T1d, T1c); | |
197 T1f = FMA(KP176326980, T1e, T1b); | |
198 T1w = FNMS(KP176326980, T1b, T1e); | |
199 T1m = FNMS(KP866025403, T1l, T1g); | |
200 T1s = FNMS(KP866025403, T1r, T1q); | |
201 T1t = FMA(KP839099631, T1s, T1m); | |
202 T1x = FNMS(KP839099631, T1m, T1s); | |
203 } | |
204 T1u = FMA(KP777861913, T1t, T1f); | |
205 T1Y = FNMS(KP777861913, T1x, T1w); | |
206 { | |
207 E T1A, T1B, T1D, T1E; | |
208 T1A = FMA(KP866025403, T1r, T1q); | |
209 T1B = FMA(KP866025403, T1l, T1g); | |
210 T1C = FMA(KP176326980, T1B, T1A); | |
211 T1I = FNMS(KP176326980, T1A, T1B); | |
212 T1D = FNMS(KP866025403, T1d, T1c); | |
213 T1E = FNMS(KP866025403, T1a, T19); | |
214 T1F = FNMS(KP363970234, T1E, T1D); | |
215 T1J = FMA(KP363970234, T1D, T1E); | |
216 } | |
217 T1G = FNMS(KP954188894, T1F, T1C); | |
218 T22 = FMA(KP954188894, T1J, T1I); | |
219 ri[WS(rs, 1)] = FMA(KP984807753, T1u, T11); | |
220 ii[WS(rs, 1)] = FNMS(KP984807753, T1Y, T1X); | |
221 ri[WS(rs, 2)] = FMA(KP984807753, T1G, T1z); | |
222 ii[WS(rs, 2)] = FNMS(KP984807753, T22, T21); | |
223 { | |
224 E T1v, T1y, T1Z, T20; | |
225 T1v = FNMS(KP492403876, T1u, T11); | |
226 T1y = FMA(KP777861913, T1x, T1w); | |
227 ri[WS(rs, 4)] = FMA(KP852868531, T1y, T1v); | |
228 ri[WS(rs, 7)] = FNMS(KP852868531, T1y, T1v); | |
229 T1Z = FMA(KP492403876, T1Y, T1X); | |
230 T20 = FNMS(KP777861913, T1t, T1f); | |
231 ii[WS(rs, 4)] = FMA(KP852868531, T20, T1Z); | |
232 ii[WS(rs, 7)] = FNMS(KP852868531, T20, T1Z); | |
233 } | |
234 { | |
235 E T1H, T1K, T23, T24; | |
236 T1H = FNMS(KP492403876, T1G, T1z); | |
237 T1K = FNMS(KP954188894, T1J, T1I); | |
238 ri[WS(rs, 5)] = FNMS(KP852868531, T1K, T1H); | |
239 ri[WS(rs, 8)] = FMA(KP852868531, T1K, T1H); | |
240 T23 = FMA(KP492403876, T22, T21); | |
241 T24 = FMA(KP954188894, T1F, T1C); | |
242 ii[WS(rs, 5)] = FNMS(KP852868531, T24, T23); | |
243 ii[WS(rs, 8)] = FMA(KP852868531, T24, T23); | |
244 } | |
245 } | |
246 } | |
247 } | |
248 } | |
249 | |
250 static const tw_instr twinstr[] = { | |
251 {TW_FULL, 0, 9}, | |
252 {TW_NEXT, 1, 0} | |
253 }; | |
254 | |
255 static const ct_desc desc = { 9, "t1_9", twinstr, &GENUS, {24, 16, 72, 0}, 0, 0, 0 }; | |
256 | |
257 void X(codelet_t1_9) (planner *p) { | |
258 X(kdft_dit_register) (p, t1_9, &desc); | |
259 } | |
260 #else | |
261 | |
262 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 9 -name t1_9 -include dft/scalar/t.h */ | |
263 | |
264 /* | |
265 * This function contains 96 FP additions, 72 FP multiplications, | |
266 * (or, 60 additions, 36 multiplications, 36 fused multiply/add), | |
267 * 41 stack variables, 8 constants, and 36 memory accesses | |
268 */ | |
269 #include "dft/scalar/t.h" | |
270 | |
271 static void t1_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
272 { | |
273 DK(KP939692620, +0.939692620785908384054109277324731469936208134); | |
274 DK(KP342020143, +0.342020143325668733044099614682259580763083368); | |
275 DK(KP984807753, +0.984807753012208059366743024589523013670643252); | |
276 DK(KP173648177, +0.173648177666930348851716626769314796000375677); | |
277 DK(KP642787609, +0.642787609686539326322643409907263432907559884); | |
278 DK(KP766044443, +0.766044443118978035202392650555416673935832457); | |
279 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
280 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
281 { | |
282 INT m; | |
283 for (m = mb, W = W + (mb * 16); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) { | |
284 E T1, T1B, TQ, T1G, Tc, TN, T1A, T1H, TL, T1x, T17, T1o, T1c, T1n, Tu; | |
285 E T1w, TW, T1k, T11, T1l; | |
286 { | |
287 E T6, TO, Tb, TP; | |
288 T1 = ri[0]; | |
289 T1B = ii[0]; | |
290 { | |
291 E T3, T5, T2, T4; | |
292 T3 = ri[WS(rs, 3)]; | |
293 T5 = ii[WS(rs, 3)]; | |
294 T2 = W[4]; | |
295 T4 = W[5]; | |
296 T6 = FMA(T2, T3, T4 * T5); | |
297 TO = FNMS(T4, T3, T2 * T5); | |
298 } | |
299 { | |
300 E T8, Ta, T7, T9; | |
301 T8 = ri[WS(rs, 6)]; | |
302 Ta = ii[WS(rs, 6)]; | |
303 T7 = W[10]; | |
304 T9 = W[11]; | |
305 Tb = FMA(T7, T8, T9 * Ta); | |
306 TP = FNMS(T9, T8, T7 * Ta); | |
307 } | |
308 TQ = KP866025403 * (TO - TP); | |
309 T1G = KP866025403 * (Tb - T6); | |
310 Tc = T6 + Tb; | |
311 TN = FNMS(KP500000000, Tc, T1); | |
312 T1A = TO + TP; | |
313 T1H = FNMS(KP500000000, T1A, T1B); | |
314 } | |
315 { | |
316 E Tz, T19, TE, T14, TJ, T15, TK, T1a; | |
317 { | |
318 E Tw, Ty, Tv, Tx; | |
319 Tw = ri[WS(rs, 2)]; | |
320 Ty = ii[WS(rs, 2)]; | |
321 Tv = W[2]; | |
322 Tx = W[3]; | |
323 Tz = FMA(Tv, Tw, Tx * Ty); | |
324 T19 = FNMS(Tx, Tw, Tv * Ty); | |
325 } | |
326 { | |
327 E TB, TD, TA, TC; | |
328 TB = ri[WS(rs, 5)]; | |
329 TD = ii[WS(rs, 5)]; | |
330 TA = W[8]; | |
331 TC = W[9]; | |
332 TE = FMA(TA, TB, TC * TD); | |
333 T14 = FNMS(TC, TB, TA * TD); | |
334 } | |
335 { | |
336 E TG, TI, TF, TH; | |
337 TG = ri[WS(rs, 8)]; | |
338 TI = ii[WS(rs, 8)]; | |
339 TF = W[14]; | |
340 TH = W[15]; | |
341 TJ = FMA(TF, TG, TH * TI); | |
342 T15 = FNMS(TH, TG, TF * TI); | |
343 } | |
344 TK = TE + TJ; | |
345 T1a = T14 + T15; | |
346 TL = Tz + TK; | |
347 T1x = T19 + T1a; | |
348 { | |
349 E T13, T16, T18, T1b; | |
350 T13 = FNMS(KP500000000, TK, Tz); | |
351 T16 = KP866025403 * (T14 - T15); | |
352 T17 = T13 + T16; | |
353 T1o = T13 - T16; | |
354 T18 = KP866025403 * (TJ - TE); | |
355 T1b = FNMS(KP500000000, T1a, T19); | |
356 T1c = T18 + T1b; | |
357 T1n = T1b - T18; | |
358 } | |
359 } | |
360 { | |
361 E Ti, TY, Tn, TT, Ts, TU, Tt, TZ; | |
362 { | |
363 E Tf, Th, Te, Tg; | |
364 Tf = ri[WS(rs, 1)]; | |
365 Th = ii[WS(rs, 1)]; | |
366 Te = W[0]; | |
367 Tg = W[1]; | |
368 Ti = FMA(Te, Tf, Tg * Th); | |
369 TY = FNMS(Tg, Tf, Te * Th); | |
370 } | |
371 { | |
372 E Tk, Tm, Tj, Tl; | |
373 Tk = ri[WS(rs, 4)]; | |
374 Tm = ii[WS(rs, 4)]; | |
375 Tj = W[6]; | |
376 Tl = W[7]; | |
377 Tn = FMA(Tj, Tk, Tl * Tm); | |
378 TT = FNMS(Tl, Tk, Tj * Tm); | |
379 } | |
380 { | |
381 E Tp, Tr, To, Tq; | |
382 Tp = ri[WS(rs, 7)]; | |
383 Tr = ii[WS(rs, 7)]; | |
384 To = W[12]; | |
385 Tq = W[13]; | |
386 Ts = FMA(To, Tp, Tq * Tr); | |
387 TU = FNMS(Tq, Tp, To * Tr); | |
388 } | |
389 Tt = Tn + Ts; | |
390 TZ = TT + TU; | |
391 Tu = Ti + Tt; | |
392 T1w = TY + TZ; | |
393 { | |
394 E TS, TV, TX, T10; | |
395 TS = FNMS(KP500000000, Tt, Ti); | |
396 TV = KP866025403 * (TT - TU); | |
397 TW = TS + TV; | |
398 T1k = TS - TV; | |
399 TX = KP866025403 * (Ts - Tn); | |
400 T10 = FNMS(KP500000000, TZ, TY); | |
401 T11 = TX + T10; | |
402 T1l = T10 - TX; | |
403 } | |
404 } | |
405 { | |
406 E T1y, Td, TM, T1v; | |
407 T1y = KP866025403 * (T1w - T1x); | |
408 Td = T1 + Tc; | |
409 TM = Tu + TL; | |
410 T1v = FNMS(KP500000000, TM, Td); | |
411 ri[0] = Td + TM; | |
412 ri[WS(rs, 3)] = T1v + T1y; | |
413 ri[WS(rs, 6)] = T1v - T1y; | |
414 } | |
415 { | |
416 E T1D, T1z, T1C, T1E; | |
417 T1D = KP866025403 * (TL - Tu); | |
418 T1z = T1w + T1x; | |
419 T1C = T1A + T1B; | |
420 T1E = FNMS(KP500000000, T1z, T1C); | |
421 ii[0] = T1z + T1C; | |
422 ii[WS(rs, 6)] = T1E - T1D; | |
423 ii[WS(rs, 3)] = T1D + T1E; | |
424 } | |
425 { | |
426 E TR, T1I, T1e, T1J, T1i, T1F, T1f, T1K; | |
427 TR = TN + TQ; | |
428 T1I = T1G + T1H; | |
429 { | |
430 E T12, T1d, T1g, T1h; | |
431 T12 = FMA(KP766044443, TW, KP642787609 * T11); | |
432 T1d = FMA(KP173648177, T17, KP984807753 * T1c); | |
433 T1e = T12 + T1d; | |
434 T1J = KP866025403 * (T1d - T12); | |
435 T1g = FNMS(KP642787609, TW, KP766044443 * T11); | |
436 T1h = FNMS(KP984807753, T17, KP173648177 * T1c); | |
437 T1i = KP866025403 * (T1g - T1h); | |
438 T1F = T1g + T1h; | |
439 } | |
440 ri[WS(rs, 1)] = TR + T1e; | |
441 ii[WS(rs, 1)] = T1F + T1I; | |
442 T1f = FNMS(KP500000000, T1e, TR); | |
443 ri[WS(rs, 7)] = T1f - T1i; | |
444 ri[WS(rs, 4)] = T1f + T1i; | |
445 T1K = FNMS(KP500000000, T1F, T1I); | |
446 ii[WS(rs, 4)] = T1J + T1K; | |
447 ii[WS(rs, 7)] = T1K - T1J; | |
448 } | |
449 { | |
450 E T1j, T1M, T1q, T1N, T1u, T1L, T1r, T1O; | |
451 T1j = TN - TQ; | |
452 T1M = T1H - T1G; | |
453 { | |
454 E T1m, T1p, T1s, T1t; | |
455 T1m = FMA(KP173648177, T1k, KP984807753 * T1l); | |
456 T1p = FNMS(KP939692620, T1o, KP342020143 * T1n); | |
457 T1q = T1m + T1p; | |
458 T1N = KP866025403 * (T1p - T1m); | |
459 T1s = FNMS(KP984807753, T1k, KP173648177 * T1l); | |
460 T1t = FMA(KP342020143, T1o, KP939692620 * T1n); | |
461 T1u = KP866025403 * (T1s + T1t); | |
462 T1L = T1s - T1t; | |
463 } | |
464 ri[WS(rs, 2)] = T1j + T1q; | |
465 ii[WS(rs, 2)] = T1L + T1M; | |
466 T1r = FNMS(KP500000000, T1q, T1j); | |
467 ri[WS(rs, 8)] = T1r - T1u; | |
468 ri[WS(rs, 5)] = T1r + T1u; | |
469 T1O = FNMS(KP500000000, T1L, T1M); | |
470 ii[WS(rs, 5)] = T1N + T1O; | |
471 ii[WS(rs, 8)] = T1O - T1N; | |
472 } | |
473 } | |
474 } | |
475 } | |
476 | |
477 static const tw_instr twinstr[] = { | |
478 {TW_FULL, 0, 9}, | |
479 {TW_NEXT, 1, 0} | |
480 }; | |
481 | |
482 static const ct_desc desc = { 9, "t1_9", twinstr, &GENUS, {60, 36, 36, 0}, 0, 0, 0 }; | |
483 | |
484 void X(codelet_t1_9) (planner *p) { | |
485 X(kdft_dit_register) (p, t1_9, &desc); | |
486 } | |
487 #endif |