Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/scalar/codelets/t1_7.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:13 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 7 -name t1_7 -include dft/scalar/t.h */ | |
29 | |
30 /* | |
31 * This function contains 72 FP additions, 66 FP multiplications, | |
32 * (or, 18 additions, 12 multiplications, 54 fused multiply/add), | |
33 * 37 stack variables, 6 constants, and 28 memory accesses | |
34 */ | |
35 #include "dft/scalar/t.h" | |
36 | |
37 static void t1_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP974927912, +0.974927912181823607018131682993931217232785801); | |
40 DK(KP900968867, +0.900968867902419126236102319507445051165919162); | |
41 DK(KP801937735, +0.801937735804838252472204639014890102331838324); | |
42 DK(KP554958132, +0.554958132087371191422194871006410481067288862); | |
43 DK(KP692021471, +0.692021471630095869627814897002069140197260599); | |
44 DK(KP356895867, +0.356895867892209443894399510021300583399127187); | |
45 { | |
46 INT m; | |
47 for (m = mb, W = W + (mb * 12); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { | |
48 E T1, T1c, Te, T1h, TR, T19, Tr, T1g, TM, T1a, TE, T1i, TW, T1b; | |
49 T1 = ri[0]; | |
50 T1c = ii[0]; | |
51 { | |
52 E T3, T6, T4, TN, T9, Tc, Ta, TP, T2, T8; | |
53 T3 = ri[WS(rs, 1)]; | |
54 T6 = ii[WS(rs, 1)]; | |
55 T2 = W[0]; | |
56 T4 = T2 * T3; | |
57 TN = T2 * T6; | |
58 T9 = ri[WS(rs, 6)]; | |
59 Tc = ii[WS(rs, 6)]; | |
60 T8 = W[10]; | |
61 Ta = T8 * T9; | |
62 TP = T8 * Tc; | |
63 { | |
64 E T7, TO, Td, TQ, T5, Tb; | |
65 T5 = W[1]; | |
66 T7 = FMA(T5, T6, T4); | |
67 TO = FNMS(T5, T3, TN); | |
68 Tb = W[11]; | |
69 Td = FMA(Tb, Tc, Ta); | |
70 TQ = FNMS(Tb, T9, TP); | |
71 Te = T7 + Td; | |
72 T1h = Td - T7; | |
73 TR = TO - TQ; | |
74 T19 = TO + TQ; | |
75 } | |
76 } | |
77 { | |
78 E Tg, Tj, Th, TI, Tm, Tp, Tn, TK, Tf, Tl; | |
79 Tg = ri[WS(rs, 2)]; | |
80 Tj = ii[WS(rs, 2)]; | |
81 Tf = W[2]; | |
82 Th = Tf * Tg; | |
83 TI = Tf * Tj; | |
84 Tm = ri[WS(rs, 5)]; | |
85 Tp = ii[WS(rs, 5)]; | |
86 Tl = W[8]; | |
87 Tn = Tl * Tm; | |
88 TK = Tl * Tp; | |
89 { | |
90 E Tk, TJ, Tq, TL, Ti, To; | |
91 Ti = W[3]; | |
92 Tk = FMA(Ti, Tj, Th); | |
93 TJ = FNMS(Ti, Tg, TI); | |
94 To = W[9]; | |
95 Tq = FMA(To, Tp, Tn); | |
96 TL = FNMS(To, Tm, TK); | |
97 Tr = Tk + Tq; | |
98 T1g = Tq - Tk; | |
99 TM = TJ - TL; | |
100 T1a = TJ + TL; | |
101 } | |
102 } | |
103 { | |
104 E Tt, Tw, Tu, TS, Tz, TC, TA, TU, Ts, Ty; | |
105 Tt = ri[WS(rs, 3)]; | |
106 Tw = ii[WS(rs, 3)]; | |
107 Ts = W[4]; | |
108 Tu = Ts * Tt; | |
109 TS = Ts * Tw; | |
110 Tz = ri[WS(rs, 4)]; | |
111 TC = ii[WS(rs, 4)]; | |
112 Ty = W[6]; | |
113 TA = Ty * Tz; | |
114 TU = Ty * TC; | |
115 { | |
116 E Tx, TT, TD, TV, Tv, TB; | |
117 Tv = W[5]; | |
118 Tx = FMA(Tv, Tw, Tu); | |
119 TT = FNMS(Tv, Tt, TS); | |
120 TB = W[7]; | |
121 TD = FMA(TB, TC, TA); | |
122 TV = FNMS(TB, Tz, TU); | |
123 TE = Tx + TD; | |
124 T1i = TD - Tx; | |
125 TW = TT - TV; | |
126 T1b = TT + TV; | |
127 } | |
128 } | |
129 ri[0] = T1 + Te + Tr + TE; | |
130 ii[0] = T19 + T1a + T1b + T1c; | |
131 { | |
132 E TG, TY, TF, TX, TH; | |
133 TF = FNMS(KP356895867, Tr, Te); | |
134 TG = FNMS(KP692021471, TF, TE); | |
135 TX = FMA(KP554958132, TW, TR); | |
136 TY = FMA(KP801937735, TX, TM); | |
137 TH = FNMS(KP900968867, TG, T1); | |
138 ri[WS(rs, 6)] = FNMS(KP974927912, TY, TH); | |
139 ri[WS(rs, 1)] = FMA(KP974927912, TY, TH); | |
140 } | |
141 { | |
142 E T1e, T1k, T1d, T1j, T1f; | |
143 T1d = FNMS(KP356895867, T1a, T19); | |
144 T1e = FNMS(KP692021471, T1d, T1b); | |
145 T1j = FMA(KP554958132, T1i, T1h); | |
146 T1k = FMA(KP801937735, T1j, T1g); | |
147 T1f = FNMS(KP900968867, T1e, T1c); | |
148 ii[WS(rs, 1)] = FMA(KP974927912, T1k, T1f); | |
149 ii[WS(rs, 6)] = FNMS(KP974927912, T1k, T1f); | |
150 } | |
151 { | |
152 E T10, T13, TZ, T12, T11; | |
153 TZ = FNMS(KP356895867, Te, TE); | |
154 T10 = FNMS(KP692021471, TZ, Tr); | |
155 T12 = FMA(KP554958132, TM, TW); | |
156 T13 = FNMS(KP801937735, T12, TR); | |
157 T11 = FNMS(KP900968867, T10, T1); | |
158 ri[WS(rs, 5)] = FNMS(KP974927912, T13, T11); | |
159 ri[WS(rs, 2)] = FMA(KP974927912, T13, T11); | |
160 } | |
161 { | |
162 E T1m, T1p, T1l, T1o, T1n; | |
163 T1l = FNMS(KP356895867, T19, T1b); | |
164 T1m = FNMS(KP692021471, T1l, T1a); | |
165 T1o = FMA(KP554958132, T1g, T1i); | |
166 T1p = FNMS(KP801937735, T1o, T1h); | |
167 T1n = FNMS(KP900968867, T1m, T1c); | |
168 ii[WS(rs, 2)] = FMA(KP974927912, T1p, T1n); | |
169 ii[WS(rs, 5)] = FNMS(KP974927912, T1p, T1n); | |
170 } | |
171 { | |
172 E T15, T18, T14, T17, T16; | |
173 T14 = FNMS(KP356895867, TE, Tr); | |
174 T15 = FNMS(KP692021471, T14, Te); | |
175 T17 = FNMS(KP554958132, TR, TM); | |
176 T18 = FNMS(KP801937735, T17, TW); | |
177 T16 = FNMS(KP900968867, T15, T1); | |
178 ri[WS(rs, 4)] = FNMS(KP974927912, T18, T16); | |
179 ri[WS(rs, 3)] = FMA(KP974927912, T18, T16); | |
180 } | |
181 { | |
182 E T1r, T1u, T1q, T1t, T1s; | |
183 T1q = FNMS(KP356895867, T1b, T1a); | |
184 T1r = FNMS(KP692021471, T1q, T19); | |
185 T1t = FNMS(KP554958132, T1h, T1g); | |
186 T1u = FNMS(KP801937735, T1t, T1i); | |
187 T1s = FNMS(KP900968867, T1r, T1c); | |
188 ii[WS(rs, 3)] = FMA(KP974927912, T1u, T1s); | |
189 ii[WS(rs, 4)] = FNMS(KP974927912, T1u, T1s); | |
190 } | |
191 } | |
192 } | |
193 } | |
194 | |
195 static const tw_instr twinstr[] = { | |
196 {TW_FULL, 0, 7}, | |
197 {TW_NEXT, 1, 0} | |
198 }; | |
199 | |
200 static const ct_desc desc = { 7, "t1_7", twinstr, &GENUS, {18, 12, 54, 0}, 0, 0, 0 }; | |
201 | |
202 void X(codelet_t1_7) (planner *p) { | |
203 X(kdft_dit_register) (p, t1_7, &desc); | |
204 } | |
205 #else | |
206 | |
207 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 7 -name t1_7 -include dft/scalar/t.h */ | |
208 | |
209 /* | |
210 * This function contains 72 FP additions, 60 FP multiplications, | |
211 * (or, 36 additions, 24 multiplications, 36 fused multiply/add), | |
212 * 29 stack variables, 6 constants, and 28 memory accesses | |
213 */ | |
214 #include "dft/scalar/t.h" | |
215 | |
216 static void t1_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
217 { | |
218 DK(KP222520933, +0.222520933956314404288902564496794759466355569); | |
219 DK(KP900968867, +0.900968867902419126236102319507445051165919162); | |
220 DK(KP623489801, +0.623489801858733530525004884004239810632274731); | |
221 DK(KP433883739, +0.433883739117558120475768332848358754609990728); | |
222 DK(KP781831482, +0.781831482468029808708444526674057750232334519); | |
223 DK(KP974927912, +0.974927912181823607018131682993931217232785801); | |
224 { | |
225 INT m; | |
226 for (m = mb, W = W + (mb * 12); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { | |
227 E T1, TR, Tc, TS, TC, TO, Tn, TT, TI, TP, Ty, TU, TF, TQ; | |
228 T1 = ri[0]; | |
229 TR = ii[0]; | |
230 { | |
231 E T6, TA, Tb, TB; | |
232 { | |
233 E T3, T5, T2, T4; | |
234 T3 = ri[WS(rs, 1)]; | |
235 T5 = ii[WS(rs, 1)]; | |
236 T2 = W[0]; | |
237 T4 = W[1]; | |
238 T6 = FMA(T2, T3, T4 * T5); | |
239 TA = FNMS(T4, T3, T2 * T5); | |
240 } | |
241 { | |
242 E T8, Ta, T7, T9; | |
243 T8 = ri[WS(rs, 6)]; | |
244 Ta = ii[WS(rs, 6)]; | |
245 T7 = W[10]; | |
246 T9 = W[11]; | |
247 Tb = FMA(T7, T8, T9 * Ta); | |
248 TB = FNMS(T9, T8, T7 * Ta); | |
249 } | |
250 Tc = T6 + Tb; | |
251 TS = Tb - T6; | |
252 TC = TA - TB; | |
253 TO = TA + TB; | |
254 } | |
255 { | |
256 E Th, TG, Tm, TH; | |
257 { | |
258 E Te, Tg, Td, Tf; | |
259 Te = ri[WS(rs, 2)]; | |
260 Tg = ii[WS(rs, 2)]; | |
261 Td = W[2]; | |
262 Tf = W[3]; | |
263 Th = FMA(Td, Te, Tf * Tg); | |
264 TG = FNMS(Tf, Te, Td * Tg); | |
265 } | |
266 { | |
267 E Tj, Tl, Ti, Tk; | |
268 Tj = ri[WS(rs, 5)]; | |
269 Tl = ii[WS(rs, 5)]; | |
270 Ti = W[8]; | |
271 Tk = W[9]; | |
272 Tm = FMA(Ti, Tj, Tk * Tl); | |
273 TH = FNMS(Tk, Tj, Ti * Tl); | |
274 } | |
275 Tn = Th + Tm; | |
276 TT = Tm - Th; | |
277 TI = TG - TH; | |
278 TP = TG + TH; | |
279 } | |
280 { | |
281 E Ts, TD, Tx, TE; | |
282 { | |
283 E Tp, Tr, To, Tq; | |
284 Tp = ri[WS(rs, 3)]; | |
285 Tr = ii[WS(rs, 3)]; | |
286 To = W[4]; | |
287 Tq = W[5]; | |
288 Ts = FMA(To, Tp, Tq * Tr); | |
289 TD = FNMS(Tq, Tp, To * Tr); | |
290 } | |
291 { | |
292 E Tu, Tw, Tt, Tv; | |
293 Tu = ri[WS(rs, 4)]; | |
294 Tw = ii[WS(rs, 4)]; | |
295 Tt = W[6]; | |
296 Tv = W[7]; | |
297 Tx = FMA(Tt, Tu, Tv * Tw); | |
298 TE = FNMS(Tv, Tu, Tt * Tw); | |
299 } | |
300 Ty = Ts + Tx; | |
301 TU = Tx - Ts; | |
302 TF = TD - TE; | |
303 TQ = TD + TE; | |
304 } | |
305 ri[0] = T1 + Tc + Tn + Ty; | |
306 ii[0] = TO + TP + TQ + TR; | |
307 { | |
308 E TJ, Tz, TX, TY; | |
309 TJ = FNMS(KP781831482, TF, KP974927912 * TC) - (KP433883739 * TI); | |
310 Tz = FMA(KP623489801, Ty, T1) + FNMA(KP900968867, Tn, KP222520933 * Tc); | |
311 ri[WS(rs, 5)] = Tz - TJ; | |
312 ri[WS(rs, 2)] = Tz + TJ; | |
313 TX = FNMS(KP781831482, TU, KP974927912 * TS) - (KP433883739 * TT); | |
314 TY = FMA(KP623489801, TQ, TR) + FNMA(KP900968867, TP, KP222520933 * TO); | |
315 ii[WS(rs, 2)] = TX + TY; | |
316 ii[WS(rs, 5)] = TY - TX; | |
317 } | |
318 { | |
319 E TL, TK, TV, TW; | |
320 TL = FMA(KP781831482, TC, KP974927912 * TI) + (KP433883739 * TF); | |
321 TK = FMA(KP623489801, Tc, T1) + FNMA(KP900968867, Ty, KP222520933 * Tn); | |
322 ri[WS(rs, 6)] = TK - TL; | |
323 ri[WS(rs, 1)] = TK + TL; | |
324 TV = FMA(KP781831482, TS, KP974927912 * TT) + (KP433883739 * TU); | |
325 TW = FMA(KP623489801, TO, TR) + FNMA(KP900968867, TQ, KP222520933 * TP); | |
326 ii[WS(rs, 1)] = TV + TW; | |
327 ii[WS(rs, 6)] = TW - TV; | |
328 } | |
329 { | |
330 E TN, TM, TZ, T10; | |
331 TN = FMA(KP433883739, TC, KP974927912 * TF) - (KP781831482 * TI); | |
332 TM = FMA(KP623489801, Tn, T1) + FNMA(KP222520933, Ty, KP900968867 * Tc); | |
333 ri[WS(rs, 4)] = TM - TN; | |
334 ri[WS(rs, 3)] = TM + TN; | |
335 TZ = FMA(KP433883739, TS, KP974927912 * TU) - (KP781831482 * TT); | |
336 T10 = FMA(KP623489801, TP, TR) + FNMA(KP222520933, TQ, KP900968867 * TO); | |
337 ii[WS(rs, 3)] = TZ + T10; | |
338 ii[WS(rs, 4)] = T10 - TZ; | |
339 } | |
340 } | |
341 } | |
342 } | |
343 | |
344 static const tw_instr twinstr[] = { | |
345 {TW_FULL, 0, 7}, | |
346 {TW_NEXT, 1, 0} | |
347 }; | |
348 | |
349 static const ct_desc desc = { 7, "t1_7", twinstr, &GENUS, {36, 24, 36, 0}, 0, 0, 0 }; | |
350 | |
351 void X(codelet_t1_7) (planner *p) { | |
352 X(kdft_dit_register) (p, t1_7, &desc); | |
353 } | |
354 #endif |