Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/scalar/codelets/t1_5.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:12 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 5 -name t1_5 -include dft/scalar/t.h */ | |
29 | |
30 /* | |
31 * This function contains 40 FP additions, 34 FP multiplications, | |
32 * (or, 14 additions, 8 multiplications, 26 fused multiply/add), | |
33 * 31 stack variables, 4 constants, and 20 memory accesses | |
34 */ | |
35 #include "dft/scalar/t.h" | |
36 | |
37 static void t1_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
42 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
43 { | |
44 INT m; | |
45 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) { | |
46 E T1, TM, T7, Tx, Td, Tz, Te, TJ, Tk, TC, Tq, TE, Tr, TK; | |
47 T1 = ri[0]; | |
48 TM = ii[0]; | |
49 { | |
50 E T3, T6, T4, Tw, T9, Tc, Ta, Ty, T2, T8, T5, Tb; | |
51 T3 = ri[WS(rs, 1)]; | |
52 T6 = ii[WS(rs, 1)]; | |
53 T2 = W[0]; | |
54 T4 = T2 * T3; | |
55 Tw = T2 * T6; | |
56 T9 = ri[WS(rs, 4)]; | |
57 Tc = ii[WS(rs, 4)]; | |
58 T8 = W[6]; | |
59 Ta = T8 * T9; | |
60 Ty = T8 * Tc; | |
61 T5 = W[1]; | |
62 T7 = FMA(T5, T6, T4); | |
63 Tx = FNMS(T5, T3, Tw); | |
64 Tb = W[7]; | |
65 Td = FMA(Tb, Tc, Ta); | |
66 Tz = FNMS(Tb, T9, Ty); | |
67 Te = T7 + Td; | |
68 TJ = Tx + Tz; | |
69 } | |
70 { | |
71 E Tg, Tj, Th, TB, Tm, Tp, Tn, TD, Tf, Tl, Ti, To; | |
72 Tg = ri[WS(rs, 2)]; | |
73 Tj = ii[WS(rs, 2)]; | |
74 Tf = W[2]; | |
75 Th = Tf * Tg; | |
76 TB = Tf * Tj; | |
77 Tm = ri[WS(rs, 3)]; | |
78 Tp = ii[WS(rs, 3)]; | |
79 Tl = W[4]; | |
80 Tn = Tl * Tm; | |
81 TD = Tl * Tp; | |
82 Ti = W[3]; | |
83 Tk = FMA(Ti, Tj, Th); | |
84 TC = FNMS(Ti, Tg, TB); | |
85 To = W[5]; | |
86 Tq = FMA(To, Tp, Tn); | |
87 TE = FNMS(To, Tm, TD); | |
88 Tr = Tk + Tq; | |
89 TK = TC + TE; | |
90 } | |
91 { | |
92 E Tu, Ts, Tt, TG, TI, TA, TF, TH, Tv; | |
93 Tu = Te - Tr; | |
94 Ts = Te + Tr; | |
95 Tt = FNMS(KP250000000, Ts, T1); | |
96 TA = Tx - Tz; | |
97 TF = TC - TE; | |
98 TG = FMA(KP618033988, TF, TA); | |
99 TI = FNMS(KP618033988, TA, TF); | |
100 ri[0] = T1 + Ts; | |
101 TH = FNMS(KP559016994, Tu, Tt); | |
102 ri[WS(rs, 2)] = FNMS(KP951056516, TI, TH); | |
103 ri[WS(rs, 3)] = FMA(KP951056516, TI, TH); | |
104 Tv = FMA(KP559016994, Tu, Tt); | |
105 ri[WS(rs, 4)] = FNMS(KP951056516, TG, Tv); | |
106 ri[WS(rs, 1)] = FMA(KP951056516, TG, Tv); | |
107 } | |
108 { | |
109 E TO, TL, TN, TS, TU, TQ, TR, TT, TP; | |
110 TO = TJ - TK; | |
111 TL = TJ + TK; | |
112 TN = FNMS(KP250000000, TL, TM); | |
113 TQ = T7 - Td; | |
114 TR = Tk - Tq; | |
115 TS = FMA(KP618033988, TR, TQ); | |
116 TU = FNMS(KP618033988, TQ, TR); | |
117 ii[0] = TL + TM; | |
118 TT = FNMS(KP559016994, TO, TN); | |
119 ii[WS(rs, 2)] = FMA(KP951056516, TU, TT); | |
120 ii[WS(rs, 3)] = FNMS(KP951056516, TU, TT); | |
121 TP = FMA(KP559016994, TO, TN); | |
122 ii[WS(rs, 1)] = FNMS(KP951056516, TS, TP); | |
123 ii[WS(rs, 4)] = FMA(KP951056516, TS, TP); | |
124 } | |
125 } | |
126 } | |
127 } | |
128 | |
129 static const tw_instr twinstr[] = { | |
130 {TW_FULL, 0, 5}, | |
131 {TW_NEXT, 1, 0} | |
132 }; | |
133 | |
134 static const ct_desc desc = { 5, "t1_5", twinstr, &GENUS, {14, 8, 26, 0}, 0, 0, 0 }; | |
135 | |
136 void X(codelet_t1_5) (planner *p) { | |
137 X(kdft_dit_register) (p, t1_5, &desc); | |
138 } | |
139 #else | |
140 | |
141 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 5 -name t1_5 -include dft/scalar/t.h */ | |
142 | |
143 /* | |
144 * This function contains 40 FP additions, 28 FP multiplications, | |
145 * (or, 26 additions, 14 multiplications, 14 fused multiply/add), | |
146 * 29 stack variables, 4 constants, and 20 memory accesses | |
147 */ | |
148 #include "dft/scalar/t.h" | |
149 | |
150 static void t1_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
151 { | |
152 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
153 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
154 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
155 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
156 { | |
157 INT m; | |
158 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) { | |
159 E T1, TE, Tu, Tx, TJ, TI, TB, TC, TD, Tc, Tn, To; | |
160 T1 = ri[0]; | |
161 TE = ii[0]; | |
162 { | |
163 E T6, Ts, Tm, Tw, Tb, Tt, Th, Tv; | |
164 { | |
165 E T3, T5, T2, T4; | |
166 T3 = ri[WS(rs, 1)]; | |
167 T5 = ii[WS(rs, 1)]; | |
168 T2 = W[0]; | |
169 T4 = W[1]; | |
170 T6 = FMA(T2, T3, T4 * T5); | |
171 Ts = FNMS(T4, T3, T2 * T5); | |
172 } | |
173 { | |
174 E Tj, Tl, Ti, Tk; | |
175 Tj = ri[WS(rs, 3)]; | |
176 Tl = ii[WS(rs, 3)]; | |
177 Ti = W[4]; | |
178 Tk = W[5]; | |
179 Tm = FMA(Ti, Tj, Tk * Tl); | |
180 Tw = FNMS(Tk, Tj, Ti * Tl); | |
181 } | |
182 { | |
183 E T8, Ta, T7, T9; | |
184 T8 = ri[WS(rs, 4)]; | |
185 Ta = ii[WS(rs, 4)]; | |
186 T7 = W[6]; | |
187 T9 = W[7]; | |
188 Tb = FMA(T7, T8, T9 * Ta); | |
189 Tt = FNMS(T9, T8, T7 * Ta); | |
190 } | |
191 { | |
192 E Te, Tg, Td, Tf; | |
193 Te = ri[WS(rs, 2)]; | |
194 Tg = ii[WS(rs, 2)]; | |
195 Td = W[2]; | |
196 Tf = W[3]; | |
197 Th = FMA(Td, Te, Tf * Tg); | |
198 Tv = FNMS(Tf, Te, Td * Tg); | |
199 } | |
200 Tu = Ts - Tt; | |
201 Tx = Tv - Tw; | |
202 TJ = Th - Tm; | |
203 TI = T6 - Tb; | |
204 TB = Ts + Tt; | |
205 TC = Tv + Tw; | |
206 TD = TB + TC; | |
207 Tc = T6 + Tb; | |
208 Tn = Th + Tm; | |
209 To = Tc + Tn; | |
210 } | |
211 ri[0] = T1 + To; | |
212 ii[0] = TD + TE; | |
213 { | |
214 E Ty, TA, Tr, Tz, Tp, Tq; | |
215 Ty = FMA(KP951056516, Tu, KP587785252 * Tx); | |
216 TA = FNMS(KP587785252, Tu, KP951056516 * Tx); | |
217 Tp = KP559016994 * (Tc - Tn); | |
218 Tq = FNMS(KP250000000, To, T1); | |
219 Tr = Tp + Tq; | |
220 Tz = Tq - Tp; | |
221 ri[WS(rs, 4)] = Tr - Ty; | |
222 ri[WS(rs, 3)] = Tz + TA; | |
223 ri[WS(rs, 1)] = Tr + Ty; | |
224 ri[WS(rs, 2)] = Tz - TA; | |
225 } | |
226 { | |
227 E TK, TL, TH, TM, TF, TG; | |
228 TK = FMA(KP951056516, TI, KP587785252 * TJ); | |
229 TL = FNMS(KP587785252, TI, KP951056516 * TJ); | |
230 TF = KP559016994 * (TB - TC); | |
231 TG = FNMS(KP250000000, TD, TE); | |
232 TH = TF + TG; | |
233 TM = TG - TF; | |
234 ii[WS(rs, 1)] = TH - TK; | |
235 ii[WS(rs, 3)] = TM - TL; | |
236 ii[WS(rs, 4)] = TK + TH; | |
237 ii[WS(rs, 2)] = TL + TM; | |
238 } | |
239 } | |
240 } | |
241 } | |
242 | |
243 static const tw_instr twinstr[] = { | |
244 {TW_FULL, 0, 5}, | |
245 {TW_NEXT, 1, 0} | |
246 }; | |
247 | |
248 static const ct_desc desc = { 5, "t1_5", twinstr, &GENUS, {26, 14, 14, 0}, 0, 0, 0 }; | |
249 | |
250 void X(codelet_t1_5) (planner *p) { | |
251 X(kdft_dit_register) (p, t1_5, &desc); | |
252 } | |
253 #endif |