comparison src/fftw-3.3.8/dft/scalar/codelets/t1_32.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:04:15 EDT 2018 */
23
24 #include "dft/codelet-dft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 32 -name t1_32 -include dft/scalar/t.h */
29
30 /*
31 * This function contains 434 FP additions, 260 FP multiplications,
32 * (or, 236 additions, 62 multiplications, 198 fused multiply/add),
33 * 102 stack variables, 7 constants, and 128 memory accesses
34 */
35 #include "dft/scalar/t.h"
36
37 static void t1_32(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
40 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
41 DK(KP198912367, +0.198912367379658006911597622644676228597850501);
42 DK(KP668178637, +0.668178637919298919997757686523080761552472251);
43 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
44 DK(KP414213562, +0.414213562373095048801688724209698078569671875);
45 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
46 {
47 INT m;
48 for (m = mb, W = W + (mb * 62); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 62, MAKE_VOLATILE_STRIDE(64, rs)) {
49 E T8, T8x, T3w, T87, Tl, T8y, T3B, T83, Tz, T6F, T3J, T5T, TM, T6G, T3Q;
50 E T5U, T11, T1e, T6M, T6J, T6K, T6L, T3Z, T5X, T46, T5Y, T1s, T1F, T6O, T6P;
51 E T6Q, T6R, T4e, T60, T4l, T61, T32, T7b, T78, T7N, T54, T6f, T5r, T6c, T29;
52 E T70, T6X, T7I, T4v, T68, T4S, T65, T3t, T79, T7e, T7O, T5b, T5s, T5i, T5t;
53 E T2A, T6Y, T73, T7J, T4C, T4T, T4J, T4U;
54 {
55 E T1, T86, T3, T6, T4, T84, T2, T7, T85, T5;
56 T1 = ri[0];
57 T86 = ii[0];
58 T3 = ri[WS(rs, 16)];
59 T6 = ii[WS(rs, 16)];
60 T2 = W[30];
61 T4 = T2 * T3;
62 T84 = T2 * T6;
63 T5 = W[31];
64 T7 = FMA(T5, T6, T4);
65 T85 = FNMS(T5, T3, T84);
66 T8 = T1 + T7;
67 T8x = T86 - T85;
68 T3w = T1 - T7;
69 T87 = T85 + T86;
70 }
71 {
72 E Ta, Td, Tb, T3x, Tg, Tj, Th, T3z, T9, Tf;
73 Ta = ri[WS(rs, 8)];
74 Td = ii[WS(rs, 8)];
75 T9 = W[14];
76 Tb = T9 * Ta;
77 T3x = T9 * Td;
78 Tg = ri[WS(rs, 24)];
79 Tj = ii[WS(rs, 24)];
80 Tf = W[46];
81 Th = Tf * Tg;
82 T3z = Tf * Tj;
83 {
84 E Te, T3y, Tk, T3A, Tc, Ti;
85 Tc = W[15];
86 Te = FMA(Tc, Td, Tb);
87 T3y = FNMS(Tc, Ta, T3x);
88 Ti = W[47];
89 Tk = FMA(Ti, Tj, Th);
90 T3A = FNMS(Ti, Tg, T3z);
91 Tl = Te + Tk;
92 T8y = Te - Tk;
93 T3B = T3y - T3A;
94 T83 = T3y + T3A;
95 }
96 }
97 {
98 E Ts, T3F, Ty, T3H, T3D, T3I;
99 {
100 E To, Tr, Tp, T3E, Tn, Tq;
101 To = ri[WS(rs, 4)];
102 Tr = ii[WS(rs, 4)];
103 Tn = W[6];
104 Tp = Tn * To;
105 T3E = Tn * Tr;
106 Tq = W[7];
107 Ts = FMA(Tq, Tr, Tp);
108 T3F = FNMS(Tq, To, T3E);
109 }
110 {
111 E Tu, Tx, Tv, T3G, Tt, Tw;
112 Tu = ri[WS(rs, 20)];
113 Tx = ii[WS(rs, 20)];
114 Tt = W[38];
115 Tv = Tt * Tu;
116 T3G = Tt * Tx;
117 Tw = W[39];
118 Ty = FMA(Tw, Tx, Tv);
119 T3H = FNMS(Tw, Tu, T3G);
120 }
121 Tz = Ts + Ty;
122 T6F = T3F + T3H;
123 T3D = Ts - Ty;
124 T3I = T3F - T3H;
125 T3J = T3D + T3I;
126 T5T = T3I - T3D;
127 }
128 {
129 E TF, T3M, TL, T3O, T3K, T3P;
130 {
131 E TB, TE, TC, T3L, TA, TD;
132 TB = ri[WS(rs, 28)];
133 TE = ii[WS(rs, 28)];
134 TA = W[54];
135 TC = TA * TB;
136 T3L = TA * TE;
137 TD = W[55];
138 TF = FMA(TD, TE, TC);
139 T3M = FNMS(TD, TB, T3L);
140 }
141 {
142 E TH, TK, TI, T3N, TG, TJ;
143 TH = ri[WS(rs, 12)];
144 TK = ii[WS(rs, 12)];
145 TG = W[22];
146 TI = TG * TH;
147 T3N = TG * TK;
148 TJ = W[23];
149 TL = FMA(TJ, TK, TI);
150 T3O = FNMS(TJ, TH, T3N);
151 }
152 TM = TF + TL;
153 T6G = T3M + T3O;
154 T3K = TF - TL;
155 T3P = T3M - T3O;
156 T3Q = T3K - T3P;
157 T5U = T3K + T3P;
158 }
159 {
160 E TU, T3U, T1d, T44, T10, T3W, T17, T42;
161 {
162 E TQ, TT, TR, T3T, TP, TS;
163 TQ = ri[WS(rs, 2)];
164 TT = ii[WS(rs, 2)];
165 TP = W[2];
166 TR = TP * TQ;
167 T3T = TP * TT;
168 TS = W[3];
169 TU = FMA(TS, TT, TR);
170 T3U = FNMS(TS, TQ, T3T);
171 }
172 {
173 E T19, T1c, T1a, T43, T18, T1b;
174 T19 = ri[WS(rs, 26)];
175 T1c = ii[WS(rs, 26)];
176 T18 = W[50];
177 T1a = T18 * T19;
178 T43 = T18 * T1c;
179 T1b = W[51];
180 T1d = FMA(T1b, T1c, T1a);
181 T44 = FNMS(T1b, T19, T43);
182 }
183 {
184 E TW, TZ, TX, T3V, TV, TY;
185 TW = ri[WS(rs, 18)];
186 TZ = ii[WS(rs, 18)];
187 TV = W[34];
188 TX = TV * TW;
189 T3V = TV * TZ;
190 TY = W[35];
191 T10 = FMA(TY, TZ, TX);
192 T3W = FNMS(TY, TW, T3V);
193 }
194 {
195 E T13, T16, T14, T41, T12, T15;
196 T13 = ri[WS(rs, 10)];
197 T16 = ii[WS(rs, 10)];
198 T12 = W[18];
199 T14 = T12 * T13;
200 T41 = T12 * T16;
201 T15 = W[19];
202 T17 = FMA(T15, T16, T14);
203 T42 = FNMS(T15, T13, T41);
204 }
205 T11 = TU + T10;
206 T1e = T17 + T1d;
207 T6M = T11 - T1e;
208 T6J = T3U + T3W;
209 T6K = T42 + T44;
210 T6L = T6J - T6K;
211 {
212 E T3X, T3Y, T40, T45;
213 T3X = T3U - T3W;
214 T3Y = T17 - T1d;
215 T3Z = T3X - T3Y;
216 T5X = T3X + T3Y;
217 T40 = TU - T10;
218 T45 = T42 - T44;
219 T46 = T40 + T45;
220 T5Y = T40 - T45;
221 }
222 }
223 {
224 E T1l, T49, T1E, T4j, T1r, T4b, T1y, T4h;
225 {
226 E T1h, T1k, T1i, T48, T1g, T1j;
227 T1h = ri[WS(rs, 30)];
228 T1k = ii[WS(rs, 30)];
229 T1g = W[58];
230 T1i = T1g * T1h;
231 T48 = T1g * T1k;
232 T1j = W[59];
233 T1l = FMA(T1j, T1k, T1i);
234 T49 = FNMS(T1j, T1h, T48);
235 }
236 {
237 E T1A, T1D, T1B, T4i, T1z, T1C;
238 T1A = ri[WS(rs, 22)];
239 T1D = ii[WS(rs, 22)];
240 T1z = W[42];
241 T1B = T1z * T1A;
242 T4i = T1z * T1D;
243 T1C = W[43];
244 T1E = FMA(T1C, T1D, T1B);
245 T4j = FNMS(T1C, T1A, T4i);
246 }
247 {
248 E T1n, T1q, T1o, T4a, T1m, T1p;
249 T1n = ri[WS(rs, 14)];
250 T1q = ii[WS(rs, 14)];
251 T1m = W[26];
252 T1o = T1m * T1n;
253 T4a = T1m * T1q;
254 T1p = W[27];
255 T1r = FMA(T1p, T1q, T1o);
256 T4b = FNMS(T1p, T1n, T4a);
257 }
258 {
259 E T1u, T1x, T1v, T4g, T1t, T1w;
260 T1u = ri[WS(rs, 6)];
261 T1x = ii[WS(rs, 6)];
262 T1t = W[10];
263 T1v = T1t * T1u;
264 T4g = T1t * T1x;
265 T1w = W[11];
266 T1y = FMA(T1w, T1x, T1v);
267 T4h = FNMS(T1w, T1u, T4g);
268 }
269 T1s = T1l + T1r;
270 T1F = T1y + T1E;
271 T6O = T1s - T1F;
272 T6P = T49 + T4b;
273 T6Q = T4h + T4j;
274 T6R = T6P - T6Q;
275 {
276 E T4c, T4d, T4f, T4k;
277 T4c = T49 - T4b;
278 T4d = T1y - T1E;
279 T4e = T4c - T4d;
280 T60 = T4c + T4d;
281 T4f = T1l - T1r;
282 T4k = T4h - T4j;
283 T4l = T4f + T4k;
284 T61 = T4f - T4k;
285 }
286 }
287 {
288 E T2H, T4Z, T30, T5p, T2N, T51, T2U, T5n;
289 {
290 E T2D, T2G, T2E, T4Y, T2C, T2F;
291 T2D = ri[WS(rs, 31)];
292 T2G = ii[WS(rs, 31)];
293 T2C = W[60];
294 T2E = T2C * T2D;
295 T4Y = T2C * T2G;
296 T2F = W[61];
297 T2H = FMA(T2F, T2G, T2E);
298 T4Z = FNMS(T2F, T2D, T4Y);
299 }
300 {
301 E T2W, T2Z, T2X, T5o, T2V, T2Y;
302 T2W = ri[WS(rs, 23)];
303 T2Z = ii[WS(rs, 23)];
304 T2V = W[44];
305 T2X = T2V * T2W;
306 T5o = T2V * T2Z;
307 T2Y = W[45];
308 T30 = FMA(T2Y, T2Z, T2X);
309 T5p = FNMS(T2Y, T2W, T5o);
310 }
311 {
312 E T2J, T2M, T2K, T50, T2I, T2L;
313 T2J = ri[WS(rs, 15)];
314 T2M = ii[WS(rs, 15)];
315 T2I = W[28];
316 T2K = T2I * T2J;
317 T50 = T2I * T2M;
318 T2L = W[29];
319 T2N = FMA(T2L, T2M, T2K);
320 T51 = FNMS(T2L, T2J, T50);
321 }
322 {
323 E T2Q, T2T, T2R, T5m, T2P, T2S;
324 T2Q = ri[WS(rs, 7)];
325 T2T = ii[WS(rs, 7)];
326 T2P = W[12];
327 T2R = T2P * T2Q;
328 T5m = T2P * T2T;
329 T2S = W[13];
330 T2U = FMA(T2S, T2T, T2R);
331 T5n = FNMS(T2S, T2Q, T5m);
332 }
333 {
334 E T2O, T31, T76, T77;
335 T2O = T2H + T2N;
336 T31 = T2U + T30;
337 T32 = T2O + T31;
338 T7b = T2O - T31;
339 T76 = T4Z + T51;
340 T77 = T5n + T5p;
341 T78 = T76 - T77;
342 T7N = T76 + T77;
343 }
344 {
345 E T52, T53, T5l, T5q;
346 T52 = T4Z - T51;
347 T53 = T2U - T30;
348 T54 = T52 - T53;
349 T6f = T52 + T53;
350 T5l = T2H - T2N;
351 T5q = T5n - T5p;
352 T5r = T5l + T5q;
353 T6c = T5l - T5q;
354 }
355 }
356 {
357 E T1O, T4q, T27, T4Q, T1U, T4s, T21, T4O;
358 {
359 E T1K, T1N, T1L, T4p, T1J, T1M;
360 T1K = ri[WS(rs, 1)];
361 T1N = ii[WS(rs, 1)];
362 T1J = W[0];
363 T1L = T1J * T1K;
364 T4p = T1J * T1N;
365 T1M = W[1];
366 T1O = FMA(T1M, T1N, T1L);
367 T4q = FNMS(T1M, T1K, T4p);
368 }
369 {
370 E T23, T26, T24, T4P, T22, T25;
371 T23 = ri[WS(rs, 25)];
372 T26 = ii[WS(rs, 25)];
373 T22 = W[48];
374 T24 = T22 * T23;
375 T4P = T22 * T26;
376 T25 = W[49];
377 T27 = FMA(T25, T26, T24);
378 T4Q = FNMS(T25, T23, T4P);
379 }
380 {
381 E T1Q, T1T, T1R, T4r, T1P, T1S;
382 T1Q = ri[WS(rs, 17)];
383 T1T = ii[WS(rs, 17)];
384 T1P = W[32];
385 T1R = T1P * T1Q;
386 T4r = T1P * T1T;
387 T1S = W[33];
388 T1U = FMA(T1S, T1T, T1R);
389 T4s = FNMS(T1S, T1Q, T4r);
390 }
391 {
392 E T1X, T20, T1Y, T4N, T1W, T1Z;
393 T1X = ri[WS(rs, 9)];
394 T20 = ii[WS(rs, 9)];
395 T1W = W[16];
396 T1Y = T1W * T1X;
397 T4N = T1W * T20;
398 T1Z = W[17];
399 T21 = FMA(T1Z, T20, T1Y);
400 T4O = FNMS(T1Z, T1X, T4N);
401 }
402 {
403 E T1V, T28, T6V, T6W;
404 T1V = T1O + T1U;
405 T28 = T21 + T27;
406 T29 = T1V + T28;
407 T70 = T1V - T28;
408 T6V = T4q + T4s;
409 T6W = T4O + T4Q;
410 T6X = T6V - T6W;
411 T7I = T6V + T6W;
412 }
413 {
414 E T4t, T4u, T4M, T4R;
415 T4t = T4q - T4s;
416 T4u = T21 - T27;
417 T4v = T4t - T4u;
418 T68 = T4t + T4u;
419 T4M = T1O - T1U;
420 T4R = T4O - T4Q;
421 T4S = T4M + T4R;
422 T65 = T4M - T4R;
423 }
424 }
425 {
426 E T38, T56, T3r, T5g, T3e, T58, T3l, T5e;
427 {
428 E T34, T37, T35, T55, T33, T36;
429 T34 = ri[WS(rs, 3)];
430 T37 = ii[WS(rs, 3)];
431 T33 = W[4];
432 T35 = T33 * T34;
433 T55 = T33 * T37;
434 T36 = W[5];
435 T38 = FMA(T36, T37, T35);
436 T56 = FNMS(T36, T34, T55);
437 }
438 {
439 E T3n, T3q, T3o, T5f, T3m, T3p;
440 T3n = ri[WS(rs, 11)];
441 T3q = ii[WS(rs, 11)];
442 T3m = W[20];
443 T3o = T3m * T3n;
444 T5f = T3m * T3q;
445 T3p = W[21];
446 T3r = FMA(T3p, T3q, T3o);
447 T5g = FNMS(T3p, T3n, T5f);
448 }
449 {
450 E T3a, T3d, T3b, T57, T39, T3c;
451 T3a = ri[WS(rs, 19)];
452 T3d = ii[WS(rs, 19)];
453 T39 = W[36];
454 T3b = T39 * T3a;
455 T57 = T39 * T3d;
456 T3c = W[37];
457 T3e = FMA(T3c, T3d, T3b);
458 T58 = FNMS(T3c, T3a, T57);
459 }
460 {
461 E T3h, T3k, T3i, T5d, T3g, T3j;
462 T3h = ri[WS(rs, 27)];
463 T3k = ii[WS(rs, 27)];
464 T3g = W[52];
465 T3i = T3g * T3h;
466 T5d = T3g * T3k;
467 T3j = W[53];
468 T3l = FMA(T3j, T3k, T3i);
469 T5e = FNMS(T3j, T3h, T5d);
470 }
471 {
472 E T3f, T3s, T7c, T7d;
473 T3f = T38 + T3e;
474 T3s = T3l + T3r;
475 T3t = T3f + T3s;
476 T79 = T3s - T3f;
477 T7c = T56 + T58;
478 T7d = T5e + T5g;
479 T7e = T7c - T7d;
480 T7O = T7c + T7d;
481 }
482 {
483 E T59, T5a, T5c, T5h;
484 T59 = T56 - T58;
485 T5a = T38 - T3e;
486 T5b = T59 - T5a;
487 T5s = T5a + T59;
488 T5c = T3l - T3r;
489 T5h = T5e - T5g;
490 T5i = T5c + T5h;
491 T5t = T5c - T5h;
492 }
493 }
494 {
495 E T2f, T4x, T2y, T4H, T2l, T4z, T2s, T4F;
496 {
497 E T2b, T2e, T2c, T4w, T2a, T2d;
498 T2b = ri[WS(rs, 5)];
499 T2e = ii[WS(rs, 5)];
500 T2a = W[8];
501 T2c = T2a * T2b;
502 T4w = T2a * T2e;
503 T2d = W[9];
504 T2f = FMA(T2d, T2e, T2c);
505 T4x = FNMS(T2d, T2b, T4w);
506 }
507 {
508 E T2u, T2x, T2v, T4G, T2t, T2w;
509 T2u = ri[WS(rs, 13)];
510 T2x = ii[WS(rs, 13)];
511 T2t = W[24];
512 T2v = T2t * T2u;
513 T4G = T2t * T2x;
514 T2w = W[25];
515 T2y = FMA(T2w, T2x, T2v);
516 T4H = FNMS(T2w, T2u, T4G);
517 }
518 {
519 E T2h, T2k, T2i, T4y, T2g, T2j;
520 T2h = ri[WS(rs, 21)];
521 T2k = ii[WS(rs, 21)];
522 T2g = W[40];
523 T2i = T2g * T2h;
524 T4y = T2g * T2k;
525 T2j = W[41];
526 T2l = FMA(T2j, T2k, T2i);
527 T4z = FNMS(T2j, T2h, T4y);
528 }
529 {
530 E T2o, T2r, T2p, T4E, T2n, T2q;
531 T2o = ri[WS(rs, 29)];
532 T2r = ii[WS(rs, 29)];
533 T2n = W[56];
534 T2p = T2n * T2o;
535 T4E = T2n * T2r;
536 T2q = W[57];
537 T2s = FMA(T2q, T2r, T2p);
538 T4F = FNMS(T2q, T2o, T4E);
539 }
540 {
541 E T2m, T2z, T71, T72;
542 T2m = T2f + T2l;
543 T2z = T2s + T2y;
544 T2A = T2m + T2z;
545 T6Y = T2z - T2m;
546 T71 = T4x + T4z;
547 T72 = T4F + T4H;
548 T73 = T71 - T72;
549 T7J = T71 + T72;
550 }
551 {
552 E T4A, T4B, T4D, T4I;
553 T4A = T4x - T4z;
554 T4B = T2f - T2l;
555 T4C = T4A - T4B;
556 T4T = T4B + T4A;
557 T4D = T2s - T2y;
558 T4I = T4F - T4H;
559 T4J = T4D + T4I;
560 T4U = T4D - T4I;
561 }
562 }
563 {
564 E TO, T7C, T7Z, T80, T89, T8e, T1H, T8d, T3v, T8b, T7L, T7T, T7Q, T7U, T7F;
565 E T81;
566 {
567 E Tm, TN, T7X, T7Y;
568 Tm = T8 + Tl;
569 TN = Tz + TM;
570 TO = Tm + TN;
571 T7C = Tm - TN;
572 T7X = T7I + T7J;
573 T7Y = T7N + T7O;
574 T7Z = T7X - T7Y;
575 T80 = T7X + T7Y;
576 }
577 {
578 E T82, T88, T1f, T1G;
579 T82 = T6F + T6G;
580 T88 = T83 + T87;
581 T89 = T82 + T88;
582 T8e = T88 - T82;
583 T1f = T11 + T1e;
584 T1G = T1s + T1F;
585 T1H = T1f + T1G;
586 T8d = T1G - T1f;
587 }
588 {
589 E T2B, T3u, T7H, T7K;
590 T2B = T29 + T2A;
591 T3u = T32 + T3t;
592 T3v = T2B + T3u;
593 T8b = T3u - T2B;
594 T7H = T29 - T2A;
595 T7K = T7I - T7J;
596 T7L = T7H + T7K;
597 T7T = T7K - T7H;
598 }
599 {
600 E T7M, T7P, T7D, T7E;
601 T7M = T32 - T3t;
602 T7P = T7N - T7O;
603 T7Q = T7M - T7P;
604 T7U = T7M + T7P;
605 T7D = T6J + T6K;
606 T7E = T6P + T6Q;
607 T7F = T7D - T7E;
608 T81 = T7D + T7E;
609 }
610 {
611 E T1I, T8a, T7W, T8c;
612 T1I = TO + T1H;
613 ri[WS(rs, 16)] = T1I - T3v;
614 ri[0] = T1I + T3v;
615 T8a = T81 + T89;
616 ii[0] = T80 + T8a;
617 ii[WS(rs, 16)] = T8a - T80;
618 T7W = TO - T1H;
619 ri[WS(rs, 24)] = T7W - T7Z;
620 ri[WS(rs, 8)] = T7W + T7Z;
621 T8c = T89 - T81;
622 ii[WS(rs, 8)] = T8b + T8c;
623 ii[WS(rs, 24)] = T8c - T8b;
624 }
625 {
626 E T7G, T7R, T8f, T8g;
627 T7G = T7C + T7F;
628 T7R = T7L + T7Q;
629 ri[WS(rs, 20)] = FNMS(KP707106781, T7R, T7G);
630 ri[WS(rs, 4)] = FMA(KP707106781, T7R, T7G);
631 T8f = T8d + T8e;
632 T8g = T7T + T7U;
633 ii[WS(rs, 4)] = FMA(KP707106781, T8g, T8f);
634 ii[WS(rs, 20)] = FNMS(KP707106781, T8g, T8f);
635 }
636 {
637 E T7S, T7V, T8h, T8i;
638 T7S = T7C - T7F;
639 T7V = T7T - T7U;
640 ri[WS(rs, 28)] = FNMS(KP707106781, T7V, T7S);
641 ri[WS(rs, 12)] = FMA(KP707106781, T7V, T7S);
642 T8h = T8e - T8d;
643 T8i = T7Q - T7L;
644 ii[WS(rs, 12)] = FMA(KP707106781, T8i, T8h);
645 ii[WS(rs, 28)] = FNMS(KP707106781, T8i, T8h);
646 }
647 }
648 {
649 E T6I, T7m, T7w, T7A, T8l, T8r, T6T, T8m, T75, T7j, T7p, T8s, T7t, T7z, T7g;
650 E T7k;
651 {
652 E T6E, T6H, T7u, T7v;
653 T6E = T8 - Tl;
654 T6H = T6F - T6G;
655 T6I = T6E - T6H;
656 T7m = T6E + T6H;
657 T7u = T7b + T7e;
658 T7v = T78 + T79;
659 T7w = FNMS(KP414213562, T7v, T7u);
660 T7A = FMA(KP414213562, T7u, T7v);
661 }
662 {
663 E T8j, T8k, T6N, T6S;
664 T8j = TM - Tz;
665 T8k = T87 - T83;
666 T8l = T8j + T8k;
667 T8r = T8k - T8j;
668 T6N = T6L - T6M;
669 T6S = T6O + T6R;
670 T6T = T6N - T6S;
671 T8m = T6N + T6S;
672 }
673 {
674 E T6Z, T74, T7n, T7o;
675 T6Z = T6X - T6Y;
676 T74 = T70 - T73;
677 T75 = FMA(KP414213562, T74, T6Z);
678 T7j = FNMS(KP414213562, T6Z, T74);
679 T7n = T6M + T6L;
680 T7o = T6O - T6R;
681 T7p = T7n + T7o;
682 T8s = T7o - T7n;
683 }
684 {
685 E T7r, T7s, T7a, T7f;
686 T7r = T70 + T73;
687 T7s = T6X + T6Y;
688 T7t = FMA(KP414213562, T7s, T7r);
689 T7z = FNMS(KP414213562, T7r, T7s);
690 T7a = T78 - T79;
691 T7f = T7b - T7e;
692 T7g = FNMS(KP414213562, T7f, T7a);
693 T7k = FMA(KP414213562, T7a, T7f);
694 }
695 {
696 E T6U, T7h, T8t, T8u;
697 T6U = FMA(KP707106781, T6T, T6I);
698 T7h = T75 - T7g;
699 ri[WS(rs, 22)] = FNMS(KP923879532, T7h, T6U);
700 ri[WS(rs, 6)] = FMA(KP923879532, T7h, T6U);
701 T8t = FMA(KP707106781, T8s, T8r);
702 T8u = T7k - T7j;
703 ii[WS(rs, 6)] = FMA(KP923879532, T8u, T8t);
704 ii[WS(rs, 22)] = FNMS(KP923879532, T8u, T8t);
705 }
706 {
707 E T7i, T7l, T8v, T8w;
708 T7i = FNMS(KP707106781, T6T, T6I);
709 T7l = T7j + T7k;
710 ri[WS(rs, 14)] = FNMS(KP923879532, T7l, T7i);
711 ri[WS(rs, 30)] = FMA(KP923879532, T7l, T7i);
712 T8v = FNMS(KP707106781, T8s, T8r);
713 T8w = T75 + T7g;
714 ii[WS(rs, 14)] = FNMS(KP923879532, T8w, T8v);
715 ii[WS(rs, 30)] = FMA(KP923879532, T8w, T8v);
716 }
717 {
718 E T7q, T7x, T8n, T8o;
719 T7q = FMA(KP707106781, T7p, T7m);
720 T7x = T7t + T7w;
721 ri[WS(rs, 18)] = FNMS(KP923879532, T7x, T7q);
722 ri[WS(rs, 2)] = FMA(KP923879532, T7x, T7q);
723 T8n = FMA(KP707106781, T8m, T8l);
724 T8o = T7z + T7A;
725 ii[WS(rs, 2)] = FMA(KP923879532, T8o, T8n);
726 ii[WS(rs, 18)] = FNMS(KP923879532, T8o, T8n);
727 }
728 {
729 E T7y, T7B, T8p, T8q;
730 T7y = FNMS(KP707106781, T7p, T7m);
731 T7B = T7z - T7A;
732 ri[WS(rs, 26)] = FNMS(KP923879532, T7B, T7y);
733 ri[WS(rs, 10)] = FMA(KP923879532, T7B, T7y);
734 T8p = FNMS(KP707106781, T8m, T8l);
735 T8q = T7w - T7t;
736 ii[WS(rs, 10)] = FMA(KP923879532, T8q, T8p);
737 ii[WS(rs, 26)] = FNMS(KP923879532, T8q, T8p);
738 }
739 }
740 {
741 E T3S, T5C, T4n, T8C, T8B, T8H, T5F, T8I, T5w, T5Q, T5A, T5M, T4X, T5P, T5z;
742 E T5J;
743 {
744 E T3C, T3R, T5D, T5E;
745 T3C = T3w + T3B;
746 T3R = T3J + T3Q;
747 T3S = FNMS(KP707106781, T3R, T3C);
748 T5C = FMA(KP707106781, T3R, T3C);
749 {
750 E T47, T4m, T8z, T8A;
751 T47 = FNMS(KP414213562, T46, T3Z);
752 T4m = FMA(KP414213562, T4l, T4e);
753 T4n = T47 - T4m;
754 T8C = T47 + T4m;
755 T8z = T8x - T8y;
756 T8A = T5T + T5U;
757 T8B = FMA(KP707106781, T8A, T8z);
758 T8H = FNMS(KP707106781, T8A, T8z);
759 }
760 T5D = FMA(KP414213562, T3Z, T46);
761 T5E = FNMS(KP414213562, T4e, T4l);
762 T5F = T5D + T5E;
763 T8I = T5E - T5D;
764 {
765 E T5k, T5L, T5v, T5K, T5j, T5u;
766 T5j = T5b + T5i;
767 T5k = FNMS(KP707106781, T5j, T54);
768 T5L = FMA(KP707106781, T5j, T54);
769 T5u = T5s + T5t;
770 T5v = FNMS(KP707106781, T5u, T5r);
771 T5K = FMA(KP707106781, T5u, T5r);
772 T5w = FNMS(KP668178637, T5v, T5k);
773 T5Q = FMA(KP198912367, T5K, T5L);
774 T5A = FMA(KP668178637, T5k, T5v);
775 T5M = FNMS(KP198912367, T5L, T5K);
776 }
777 {
778 E T4L, T5I, T4W, T5H, T4K, T4V;
779 T4K = T4C + T4J;
780 T4L = FNMS(KP707106781, T4K, T4v);
781 T5I = FMA(KP707106781, T4K, T4v);
782 T4V = T4T + T4U;
783 T4W = FNMS(KP707106781, T4V, T4S);
784 T5H = FMA(KP707106781, T4V, T4S);
785 T4X = FMA(KP668178637, T4W, T4L);
786 T5P = FNMS(KP198912367, T5H, T5I);
787 T5z = FNMS(KP668178637, T4L, T4W);
788 T5J = FMA(KP198912367, T5I, T5H);
789 }
790 }
791 {
792 E T4o, T5x, T8J, T8K;
793 T4o = FMA(KP923879532, T4n, T3S);
794 T5x = T4X - T5w;
795 ri[WS(rs, 21)] = FNMS(KP831469612, T5x, T4o);
796 ri[WS(rs, 5)] = FMA(KP831469612, T5x, T4o);
797 T8J = FMA(KP923879532, T8I, T8H);
798 T8K = T5A - T5z;
799 ii[WS(rs, 5)] = FMA(KP831469612, T8K, T8J);
800 ii[WS(rs, 21)] = FNMS(KP831469612, T8K, T8J);
801 }
802 {
803 E T5y, T5B, T8L, T8M;
804 T5y = FNMS(KP923879532, T4n, T3S);
805 T5B = T5z + T5A;
806 ri[WS(rs, 13)] = FNMS(KP831469612, T5B, T5y);
807 ri[WS(rs, 29)] = FMA(KP831469612, T5B, T5y);
808 T8L = FNMS(KP923879532, T8I, T8H);
809 T8M = T4X + T5w;
810 ii[WS(rs, 13)] = FNMS(KP831469612, T8M, T8L);
811 ii[WS(rs, 29)] = FMA(KP831469612, T8M, T8L);
812 }
813 {
814 E T5G, T5N, T8D, T8E;
815 T5G = FMA(KP923879532, T5F, T5C);
816 T5N = T5J + T5M;
817 ri[WS(rs, 17)] = FNMS(KP980785280, T5N, T5G);
818 ri[WS(rs, 1)] = FMA(KP980785280, T5N, T5G);
819 T8D = FMA(KP923879532, T8C, T8B);
820 T8E = T5P + T5Q;
821 ii[WS(rs, 1)] = FMA(KP980785280, T8E, T8D);
822 ii[WS(rs, 17)] = FNMS(KP980785280, T8E, T8D);
823 }
824 {
825 E T5O, T5R, T8F, T8G;
826 T5O = FNMS(KP923879532, T5F, T5C);
827 T5R = T5P - T5Q;
828 ri[WS(rs, 25)] = FNMS(KP980785280, T5R, T5O);
829 ri[WS(rs, 9)] = FMA(KP980785280, T5R, T5O);
830 T8F = FNMS(KP923879532, T8C, T8B);
831 T8G = T5M - T5J;
832 ii[WS(rs, 9)] = FMA(KP980785280, T8G, T8F);
833 ii[WS(rs, 25)] = FNMS(KP980785280, T8G, T8F);
834 }
835 }
836 {
837 E T5W, T6o, T63, T8W, T8P, T8V, T6r, T8Q, T6i, T6C, T6m, T6y, T6b, T6B, T6l;
838 E T6v;
839 {
840 E T5S, T5V, T6p, T6q;
841 T5S = T3w - T3B;
842 T5V = T5T - T5U;
843 T5W = FMA(KP707106781, T5V, T5S);
844 T6o = FNMS(KP707106781, T5V, T5S);
845 {
846 E T5Z, T62, T8N, T8O;
847 T5Z = FMA(KP414213562, T5Y, T5X);
848 T62 = FNMS(KP414213562, T61, T60);
849 T63 = T5Z - T62;
850 T8W = T5Z + T62;
851 T8N = T8y + T8x;
852 T8O = T3Q - T3J;
853 T8P = FMA(KP707106781, T8O, T8N);
854 T8V = FNMS(KP707106781, T8O, T8N);
855 }
856 T6p = FNMS(KP414213562, T5X, T5Y);
857 T6q = FMA(KP414213562, T60, T61);
858 T6r = T6p + T6q;
859 T8Q = T6q - T6p;
860 {
861 E T6e, T6x, T6h, T6w, T6d, T6g;
862 T6d = T5i - T5b;
863 T6e = FNMS(KP707106781, T6d, T6c);
864 T6x = FMA(KP707106781, T6d, T6c);
865 T6g = T5s - T5t;
866 T6h = FNMS(KP707106781, T6g, T6f);
867 T6w = FMA(KP707106781, T6g, T6f);
868 T6i = FNMS(KP668178637, T6h, T6e);
869 T6C = FMA(KP198912367, T6w, T6x);
870 T6m = FMA(KP668178637, T6e, T6h);
871 T6y = FNMS(KP198912367, T6x, T6w);
872 }
873 {
874 E T67, T6u, T6a, T6t, T66, T69;
875 T66 = T4J - T4C;
876 T67 = FNMS(KP707106781, T66, T65);
877 T6u = FMA(KP707106781, T66, T65);
878 T69 = T4T - T4U;
879 T6a = FNMS(KP707106781, T69, T68);
880 T6t = FMA(KP707106781, T69, T68);
881 T6b = FMA(KP668178637, T6a, T67);
882 T6B = FNMS(KP198912367, T6t, T6u);
883 T6l = FNMS(KP668178637, T67, T6a);
884 T6v = FMA(KP198912367, T6u, T6t);
885 }
886 }
887 {
888 E T64, T6j, T8R, T8S;
889 T64 = FMA(KP923879532, T63, T5W);
890 T6j = T6b + T6i;
891 ri[WS(rs, 19)] = FNMS(KP831469612, T6j, T64);
892 ri[WS(rs, 3)] = FMA(KP831469612, T6j, T64);
893 T8R = FMA(KP923879532, T8Q, T8P);
894 T8S = T6l + T6m;
895 ii[WS(rs, 3)] = FMA(KP831469612, T8S, T8R);
896 ii[WS(rs, 19)] = FNMS(KP831469612, T8S, T8R);
897 }
898 {
899 E T6k, T6n, T8T, T8U;
900 T6k = FNMS(KP923879532, T63, T5W);
901 T6n = T6l - T6m;
902 ri[WS(rs, 27)] = FNMS(KP831469612, T6n, T6k);
903 ri[WS(rs, 11)] = FMA(KP831469612, T6n, T6k);
904 T8T = FNMS(KP923879532, T8Q, T8P);
905 T8U = T6i - T6b;
906 ii[WS(rs, 11)] = FMA(KP831469612, T8U, T8T);
907 ii[WS(rs, 27)] = FNMS(KP831469612, T8U, T8T);
908 }
909 {
910 E T6s, T6z, T8X, T8Y;
911 T6s = FNMS(KP923879532, T6r, T6o);
912 T6z = T6v - T6y;
913 ri[WS(rs, 23)] = FNMS(KP980785280, T6z, T6s);
914 ri[WS(rs, 7)] = FMA(KP980785280, T6z, T6s);
915 T8X = FNMS(KP923879532, T8W, T8V);
916 T8Y = T6C - T6B;
917 ii[WS(rs, 7)] = FMA(KP980785280, T8Y, T8X);
918 ii[WS(rs, 23)] = FNMS(KP980785280, T8Y, T8X);
919 }
920 {
921 E T6A, T6D, T8Z, T90;
922 T6A = FMA(KP923879532, T6r, T6o);
923 T6D = T6B + T6C;
924 ri[WS(rs, 15)] = FNMS(KP980785280, T6D, T6A);
925 ri[WS(rs, 31)] = FMA(KP980785280, T6D, T6A);
926 T8Z = FMA(KP923879532, T8W, T8V);
927 T90 = T6v + T6y;
928 ii[WS(rs, 15)] = FNMS(KP980785280, T90, T8Z);
929 ii[WS(rs, 31)] = FMA(KP980785280, T90, T8Z);
930 }
931 }
932 }
933 }
934 }
935
936 static const tw_instr twinstr[] = {
937 {TW_FULL, 0, 32},
938 {TW_NEXT, 1, 0}
939 };
940
941 static const ct_desc desc = { 32, "t1_32", twinstr, &GENUS, {236, 62, 198, 0}, 0, 0, 0 };
942
943 void X(codelet_t1_32) (planner *p) {
944 X(kdft_dit_register) (p, t1_32, &desc);
945 }
946 #else
947
948 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 32 -name t1_32 -include dft/scalar/t.h */
949
950 /*
951 * This function contains 434 FP additions, 208 FP multiplications,
952 * (or, 340 additions, 114 multiplications, 94 fused multiply/add),
953 * 96 stack variables, 7 constants, and 128 memory accesses
954 */
955 #include "dft/scalar/t.h"
956
957 static void t1_32(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
958 {
959 DK(KP195090322, +0.195090322016128267848284868477022240927691618);
960 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
961 DK(KP555570233, +0.555570233019602224742830813948532874374937191);
962 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
963 DK(KP382683432, +0.382683432365089771728459984030398866761344562);
964 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
965 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
966 {
967 INT m;
968 for (m = mb, W = W + (mb * 62); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 62, MAKE_VOLATILE_STRIDE(64, rs)) {
969 E Tj, T5F, T7C, T7Q, T35, T4T, T78, T7m, T1Q, T61, T5Y, T6J, T3K, T59, T41;
970 E T56, T2B, T67, T6e, T6O, T4b, T5d, T4s, T5g, TG, T7l, T5I, T73, T3a, T4U;
971 E T3f, T4V, T14, T5N, T5M, T6E, T3m, T4Y, T3r, T4Z, T1r, T5P, T5S, T6F, T3x;
972 E T51, T3C, T52, T2d, T5Z, T64, T6K, T3V, T57, T44, T5a, T2Y, T6f, T6a, T6P;
973 E T4m, T5h, T4v, T5e;
974 {
975 E T1, T76, T6, T75, Tc, T32, Th, T33;
976 T1 = ri[0];
977 T76 = ii[0];
978 {
979 E T3, T5, T2, T4;
980 T3 = ri[WS(rs, 16)];
981 T5 = ii[WS(rs, 16)];
982 T2 = W[30];
983 T4 = W[31];
984 T6 = FMA(T2, T3, T4 * T5);
985 T75 = FNMS(T4, T3, T2 * T5);
986 }
987 {
988 E T9, Tb, T8, Ta;
989 T9 = ri[WS(rs, 8)];
990 Tb = ii[WS(rs, 8)];
991 T8 = W[14];
992 Ta = W[15];
993 Tc = FMA(T8, T9, Ta * Tb);
994 T32 = FNMS(Ta, T9, T8 * Tb);
995 }
996 {
997 E Te, Tg, Td, Tf;
998 Te = ri[WS(rs, 24)];
999 Tg = ii[WS(rs, 24)];
1000 Td = W[46];
1001 Tf = W[47];
1002 Th = FMA(Td, Te, Tf * Tg);
1003 T33 = FNMS(Tf, Te, Td * Tg);
1004 }
1005 {
1006 E T7, Ti, T7A, T7B;
1007 T7 = T1 + T6;
1008 Ti = Tc + Th;
1009 Tj = T7 + Ti;
1010 T5F = T7 - Ti;
1011 T7A = T76 - T75;
1012 T7B = Tc - Th;
1013 T7C = T7A - T7B;
1014 T7Q = T7B + T7A;
1015 }
1016 {
1017 E T31, T34, T74, T77;
1018 T31 = T1 - T6;
1019 T34 = T32 - T33;
1020 T35 = T31 - T34;
1021 T4T = T31 + T34;
1022 T74 = T32 + T33;
1023 T77 = T75 + T76;
1024 T78 = T74 + T77;
1025 T7m = T77 - T74;
1026 }
1027 }
1028 {
1029 E T1y, T3G, T1O, T3Z, T1D, T3H, T1J, T3Y;
1030 {
1031 E T1v, T1x, T1u, T1w;
1032 T1v = ri[WS(rs, 1)];
1033 T1x = ii[WS(rs, 1)];
1034 T1u = W[0];
1035 T1w = W[1];
1036 T1y = FMA(T1u, T1v, T1w * T1x);
1037 T3G = FNMS(T1w, T1v, T1u * T1x);
1038 }
1039 {
1040 E T1L, T1N, T1K, T1M;
1041 T1L = ri[WS(rs, 25)];
1042 T1N = ii[WS(rs, 25)];
1043 T1K = W[48];
1044 T1M = W[49];
1045 T1O = FMA(T1K, T1L, T1M * T1N);
1046 T3Z = FNMS(T1M, T1L, T1K * T1N);
1047 }
1048 {
1049 E T1A, T1C, T1z, T1B;
1050 T1A = ri[WS(rs, 17)];
1051 T1C = ii[WS(rs, 17)];
1052 T1z = W[32];
1053 T1B = W[33];
1054 T1D = FMA(T1z, T1A, T1B * T1C);
1055 T3H = FNMS(T1B, T1A, T1z * T1C);
1056 }
1057 {
1058 E T1G, T1I, T1F, T1H;
1059 T1G = ri[WS(rs, 9)];
1060 T1I = ii[WS(rs, 9)];
1061 T1F = W[16];
1062 T1H = W[17];
1063 T1J = FMA(T1F, T1G, T1H * T1I);
1064 T3Y = FNMS(T1H, T1G, T1F * T1I);
1065 }
1066 {
1067 E T1E, T1P, T5W, T5X;
1068 T1E = T1y + T1D;
1069 T1P = T1J + T1O;
1070 T1Q = T1E + T1P;
1071 T61 = T1E - T1P;
1072 T5W = T3G + T3H;
1073 T5X = T3Y + T3Z;
1074 T5Y = T5W - T5X;
1075 T6J = T5W + T5X;
1076 }
1077 {
1078 E T3I, T3J, T3X, T40;
1079 T3I = T3G - T3H;
1080 T3J = T1J - T1O;
1081 T3K = T3I + T3J;
1082 T59 = T3I - T3J;
1083 T3X = T1y - T1D;
1084 T40 = T3Y - T3Z;
1085 T41 = T3X - T40;
1086 T56 = T3X + T40;
1087 }
1088 }
1089 {
1090 E T2j, T4o, T2z, T49, T2o, T4p, T2u, T48;
1091 {
1092 E T2g, T2i, T2f, T2h;
1093 T2g = ri[WS(rs, 31)];
1094 T2i = ii[WS(rs, 31)];
1095 T2f = W[60];
1096 T2h = W[61];
1097 T2j = FMA(T2f, T2g, T2h * T2i);
1098 T4o = FNMS(T2h, T2g, T2f * T2i);
1099 }
1100 {
1101 E T2w, T2y, T2v, T2x;
1102 T2w = ri[WS(rs, 23)];
1103 T2y = ii[WS(rs, 23)];
1104 T2v = W[44];
1105 T2x = W[45];
1106 T2z = FMA(T2v, T2w, T2x * T2y);
1107 T49 = FNMS(T2x, T2w, T2v * T2y);
1108 }
1109 {
1110 E T2l, T2n, T2k, T2m;
1111 T2l = ri[WS(rs, 15)];
1112 T2n = ii[WS(rs, 15)];
1113 T2k = W[28];
1114 T2m = W[29];
1115 T2o = FMA(T2k, T2l, T2m * T2n);
1116 T4p = FNMS(T2m, T2l, T2k * T2n);
1117 }
1118 {
1119 E T2r, T2t, T2q, T2s;
1120 T2r = ri[WS(rs, 7)];
1121 T2t = ii[WS(rs, 7)];
1122 T2q = W[12];
1123 T2s = W[13];
1124 T2u = FMA(T2q, T2r, T2s * T2t);
1125 T48 = FNMS(T2s, T2r, T2q * T2t);
1126 }
1127 {
1128 E T2p, T2A, T6c, T6d;
1129 T2p = T2j + T2o;
1130 T2A = T2u + T2z;
1131 T2B = T2p + T2A;
1132 T67 = T2p - T2A;
1133 T6c = T4o + T4p;
1134 T6d = T48 + T49;
1135 T6e = T6c - T6d;
1136 T6O = T6c + T6d;
1137 }
1138 {
1139 E T47, T4a, T4q, T4r;
1140 T47 = T2j - T2o;
1141 T4a = T48 - T49;
1142 T4b = T47 - T4a;
1143 T5d = T47 + T4a;
1144 T4q = T4o - T4p;
1145 T4r = T2u - T2z;
1146 T4s = T4q + T4r;
1147 T5g = T4q - T4r;
1148 }
1149 }
1150 {
1151 E To, T36, TE, T3d, Tt, T37, Tz, T3c;
1152 {
1153 E Tl, Tn, Tk, Tm;
1154 Tl = ri[WS(rs, 4)];
1155 Tn = ii[WS(rs, 4)];
1156 Tk = W[6];
1157 Tm = W[7];
1158 To = FMA(Tk, Tl, Tm * Tn);
1159 T36 = FNMS(Tm, Tl, Tk * Tn);
1160 }
1161 {
1162 E TB, TD, TA, TC;
1163 TB = ri[WS(rs, 12)];
1164 TD = ii[WS(rs, 12)];
1165 TA = W[22];
1166 TC = W[23];
1167 TE = FMA(TA, TB, TC * TD);
1168 T3d = FNMS(TC, TB, TA * TD);
1169 }
1170 {
1171 E Tq, Ts, Tp, Tr;
1172 Tq = ri[WS(rs, 20)];
1173 Ts = ii[WS(rs, 20)];
1174 Tp = W[38];
1175 Tr = W[39];
1176 Tt = FMA(Tp, Tq, Tr * Ts);
1177 T37 = FNMS(Tr, Tq, Tp * Ts);
1178 }
1179 {
1180 E Tw, Ty, Tv, Tx;
1181 Tw = ri[WS(rs, 28)];
1182 Ty = ii[WS(rs, 28)];
1183 Tv = W[54];
1184 Tx = W[55];
1185 Tz = FMA(Tv, Tw, Tx * Ty);
1186 T3c = FNMS(Tx, Tw, Tv * Ty);
1187 }
1188 {
1189 E Tu, TF, T5G, T5H;
1190 Tu = To + Tt;
1191 TF = Tz + TE;
1192 TG = Tu + TF;
1193 T7l = TF - Tu;
1194 T5G = T36 + T37;
1195 T5H = T3c + T3d;
1196 T5I = T5G - T5H;
1197 T73 = T5G + T5H;
1198 }
1199 {
1200 E T38, T39, T3b, T3e;
1201 T38 = T36 - T37;
1202 T39 = To - Tt;
1203 T3a = T38 - T39;
1204 T4U = T39 + T38;
1205 T3b = Tz - TE;
1206 T3e = T3c - T3d;
1207 T3f = T3b + T3e;
1208 T4V = T3b - T3e;
1209 }
1210 }
1211 {
1212 E TM, T3i, T12, T3p, TR, T3j, TX, T3o;
1213 {
1214 E TJ, TL, TI, TK;
1215 TJ = ri[WS(rs, 2)];
1216 TL = ii[WS(rs, 2)];
1217 TI = W[2];
1218 TK = W[3];
1219 TM = FMA(TI, TJ, TK * TL);
1220 T3i = FNMS(TK, TJ, TI * TL);
1221 }
1222 {
1223 E TZ, T11, TY, T10;
1224 TZ = ri[WS(rs, 26)];
1225 T11 = ii[WS(rs, 26)];
1226 TY = W[50];
1227 T10 = W[51];
1228 T12 = FMA(TY, TZ, T10 * T11);
1229 T3p = FNMS(T10, TZ, TY * T11);
1230 }
1231 {
1232 E TO, TQ, TN, TP;
1233 TO = ri[WS(rs, 18)];
1234 TQ = ii[WS(rs, 18)];
1235 TN = W[34];
1236 TP = W[35];
1237 TR = FMA(TN, TO, TP * TQ);
1238 T3j = FNMS(TP, TO, TN * TQ);
1239 }
1240 {
1241 E TU, TW, TT, TV;
1242 TU = ri[WS(rs, 10)];
1243 TW = ii[WS(rs, 10)];
1244 TT = W[18];
1245 TV = W[19];
1246 TX = FMA(TT, TU, TV * TW);
1247 T3o = FNMS(TV, TU, TT * TW);
1248 }
1249 {
1250 E TS, T13, T5K, T5L;
1251 TS = TM + TR;
1252 T13 = TX + T12;
1253 T14 = TS + T13;
1254 T5N = TS - T13;
1255 T5K = T3i + T3j;
1256 T5L = T3o + T3p;
1257 T5M = T5K - T5L;
1258 T6E = T5K + T5L;
1259 }
1260 {
1261 E T3k, T3l, T3n, T3q;
1262 T3k = T3i - T3j;
1263 T3l = TX - T12;
1264 T3m = T3k + T3l;
1265 T4Y = T3k - T3l;
1266 T3n = TM - TR;
1267 T3q = T3o - T3p;
1268 T3r = T3n - T3q;
1269 T4Z = T3n + T3q;
1270 }
1271 }
1272 {
1273 E T19, T3t, T1p, T3A, T1e, T3u, T1k, T3z;
1274 {
1275 E T16, T18, T15, T17;
1276 T16 = ri[WS(rs, 30)];
1277 T18 = ii[WS(rs, 30)];
1278 T15 = W[58];
1279 T17 = W[59];
1280 T19 = FMA(T15, T16, T17 * T18);
1281 T3t = FNMS(T17, T16, T15 * T18);
1282 }
1283 {
1284 E T1m, T1o, T1l, T1n;
1285 T1m = ri[WS(rs, 22)];
1286 T1o = ii[WS(rs, 22)];
1287 T1l = W[42];
1288 T1n = W[43];
1289 T1p = FMA(T1l, T1m, T1n * T1o);
1290 T3A = FNMS(T1n, T1m, T1l * T1o);
1291 }
1292 {
1293 E T1b, T1d, T1a, T1c;
1294 T1b = ri[WS(rs, 14)];
1295 T1d = ii[WS(rs, 14)];
1296 T1a = W[26];
1297 T1c = W[27];
1298 T1e = FMA(T1a, T1b, T1c * T1d);
1299 T3u = FNMS(T1c, T1b, T1a * T1d);
1300 }
1301 {
1302 E T1h, T1j, T1g, T1i;
1303 T1h = ri[WS(rs, 6)];
1304 T1j = ii[WS(rs, 6)];
1305 T1g = W[10];
1306 T1i = W[11];
1307 T1k = FMA(T1g, T1h, T1i * T1j);
1308 T3z = FNMS(T1i, T1h, T1g * T1j);
1309 }
1310 {
1311 E T1f, T1q, T5Q, T5R;
1312 T1f = T19 + T1e;
1313 T1q = T1k + T1p;
1314 T1r = T1f + T1q;
1315 T5P = T1f - T1q;
1316 T5Q = T3t + T3u;
1317 T5R = T3z + T3A;
1318 T5S = T5Q - T5R;
1319 T6F = T5Q + T5R;
1320 }
1321 {
1322 E T3v, T3w, T3y, T3B;
1323 T3v = T3t - T3u;
1324 T3w = T1k - T1p;
1325 T3x = T3v + T3w;
1326 T51 = T3v - T3w;
1327 T3y = T19 - T1e;
1328 T3B = T3z - T3A;
1329 T3C = T3y - T3B;
1330 T52 = T3y + T3B;
1331 }
1332 }
1333 {
1334 E T1V, T3R, T20, T3S, T3Q, T3T, T26, T3M, T2b, T3N, T3L, T3O;
1335 {
1336 E T1S, T1U, T1R, T1T;
1337 T1S = ri[WS(rs, 5)];
1338 T1U = ii[WS(rs, 5)];
1339 T1R = W[8];
1340 T1T = W[9];
1341 T1V = FMA(T1R, T1S, T1T * T1U);
1342 T3R = FNMS(T1T, T1S, T1R * T1U);
1343 }
1344 {
1345 E T1X, T1Z, T1W, T1Y;
1346 T1X = ri[WS(rs, 21)];
1347 T1Z = ii[WS(rs, 21)];
1348 T1W = W[40];
1349 T1Y = W[41];
1350 T20 = FMA(T1W, T1X, T1Y * T1Z);
1351 T3S = FNMS(T1Y, T1X, T1W * T1Z);
1352 }
1353 T3Q = T1V - T20;
1354 T3T = T3R - T3S;
1355 {
1356 E T23, T25, T22, T24;
1357 T23 = ri[WS(rs, 29)];
1358 T25 = ii[WS(rs, 29)];
1359 T22 = W[56];
1360 T24 = W[57];
1361 T26 = FMA(T22, T23, T24 * T25);
1362 T3M = FNMS(T24, T23, T22 * T25);
1363 }
1364 {
1365 E T28, T2a, T27, T29;
1366 T28 = ri[WS(rs, 13)];
1367 T2a = ii[WS(rs, 13)];
1368 T27 = W[24];
1369 T29 = W[25];
1370 T2b = FMA(T27, T28, T29 * T2a);
1371 T3N = FNMS(T29, T28, T27 * T2a);
1372 }
1373 T3L = T26 - T2b;
1374 T3O = T3M - T3N;
1375 {
1376 E T21, T2c, T62, T63;
1377 T21 = T1V + T20;
1378 T2c = T26 + T2b;
1379 T2d = T21 + T2c;
1380 T5Z = T2c - T21;
1381 T62 = T3R + T3S;
1382 T63 = T3M + T3N;
1383 T64 = T62 - T63;
1384 T6K = T62 + T63;
1385 }
1386 {
1387 E T3P, T3U, T42, T43;
1388 T3P = T3L - T3O;
1389 T3U = T3Q + T3T;
1390 T3V = KP707106781 * (T3P - T3U);
1391 T57 = KP707106781 * (T3U + T3P);
1392 T42 = T3T - T3Q;
1393 T43 = T3L + T3O;
1394 T44 = KP707106781 * (T42 - T43);
1395 T5a = KP707106781 * (T42 + T43);
1396 }
1397 }
1398 {
1399 E T2G, T4c, T2L, T4d, T4e, T4f, T2R, T4i, T2W, T4j, T4h, T4k;
1400 {
1401 E T2D, T2F, T2C, T2E;
1402 T2D = ri[WS(rs, 3)];
1403 T2F = ii[WS(rs, 3)];
1404 T2C = W[4];
1405 T2E = W[5];
1406 T2G = FMA(T2C, T2D, T2E * T2F);
1407 T4c = FNMS(T2E, T2D, T2C * T2F);
1408 }
1409 {
1410 E T2I, T2K, T2H, T2J;
1411 T2I = ri[WS(rs, 19)];
1412 T2K = ii[WS(rs, 19)];
1413 T2H = W[36];
1414 T2J = W[37];
1415 T2L = FMA(T2H, T2I, T2J * T2K);
1416 T4d = FNMS(T2J, T2I, T2H * T2K);
1417 }
1418 T4e = T4c - T4d;
1419 T4f = T2G - T2L;
1420 {
1421 E T2O, T2Q, T2N, T2P;
1422 T2O = ri[WS(rs, 27)];
1423 T2Q = ii[WS(rs, 27)];
1424 T2N = W[52];
1425 T2P = W[53];
1426 T2R = FMA(T2N, T2O, T2P * T2Q);
1427 T4i = FNMS(T2P, T2O, T2N * T2Q);
1428 }
1429 {
1430 E T2T, T2V, T2S, T2U;
1431 T2T = ri[WS(rs, 11)];
1432 T2V = ii[WS(rs, 11)];
1433 T2S = W[20];
1434 T2U = W[21];
1435 T2W = FMA(T2S, T2T, T2U * T2V);
1436 T4j = FNMS(T2U, T2T, T2S * T2V);
1437 }
1438 T4h = T2R - T2W;
1439 T4k = T4i - T4j;
1440 {
1441 E T2M, T2X, T68, T69;
1442 T2M = T2G + T2L;
1443 T2X = T2R + T2W;
1444 T2Y = T2M + T2X;
1445 T6f = T2X - T2M;
1446 T68 = T4c + T4d;
1447 T69 = T4i + T4j;
1448 T6a = T68 - T69;
1449 T6P = T68 + T69;
1450 }
1451 {
1452 E T4g, T4l, T4t, T4u;
1453 T4g = T4e - T4f;
1454 T4l = T4h + T4k;
1455 T4m = KP707106781 * (T4g - T4l);
1456 T5h = KP707106781 * (T4g + T4l);
1457 T4t = T4h - T4k;
1458 T4u = T4f + T4e;
1459 T4v = KP707106781 * (T4t - T4u);
1460 T5e = KP707106781 * (T4u + T4t);
1461 }
1462 }
1463 {
1464 E T1t, T6X, T7a, T7c, T30, T7b, T70, T71;
1465 {
1466 E TH, T1s, T72, T79;
1467 TH = Tj + TG;
1468 T1s = T14 + T1r;
1469 T1t = TH + T1s;
1470 T6X = TH - T1s;
1471 T72 = T6E + T6F;
1472 T79 = T73 + T78;
1473 T7a = T72 + T79;
1474 T7c = T79 - T72;
1475 }
1476 {
1477 E T2e, T2Z, T6Y, T6Z;
1478 T2e = T1Q + T2d;
1479 T2Z = T2B + T2Y;
1480 T30 = T2e + T2Z;
1481 T7b = T2Z - T2e;
1482 T6Y = T6J + T6K;
1483 T6Z = T6O + T6P;
1484 T70 = T6Y - T6Z;
1485 T71 = T6Y + T6Z;
1486 }
1487 ri[WS(rs, 16)] = T1t - T30;
1488 ii[WS(rs, 16)] = T7a - T71;
1489 ri[0] = T1t + T30;
1490 ii[0] = T71 + T7a;
1491 ri[WS(rs, 24)] = T6X - T70;
1492 ii[WS(rs, 24)] = T7c - T7b;
1493 ri[WS(rs, 8)] = T6X + T70;
1494 ii[WS(rs, 8)] = T7b + T7c;
1495 }
1496 {
1497 E T6H, T6T, T7g, T7i, T6M, T6U, T6R, T6V;
1498 {
1499 E T6D, T6G, T7e, T7f;
1500 T6D = Tj - TG;
1501 T6G = T6E - T6F;
1502 T6H = T6D + T6G;
1503 T6T = T6D - T6G;
1504 T7e = T1r - T14;
1505 T7f = T78 - T73;
1506 T7g = T7e + T7f;
1507 T7i = T7f - T7e;
1508 }
1509 {
1510 E T6I, T6L, T6N, T6Q;
1511 T6I = T1Q - T2d;
1512 T6L = T6J - T6K;
1513 T6M = T6I + T6L;
1514 T6U = T6L - T6I;
1515 T6N = T2B - T2Y;
1516 T6Q = T6O - T6P;
1517 T6R = T6N - T6Q;
1518 T6V = T6N + T6Q;
1519 }
1520 {
1521 E T6S, T7d, T6W, T7h;
1522 T6S = KP707106781 * (T6M + T6R);
1523 ri[WS(rs, 20)] = T6H - T6S;
1524 ri[WS(rs, 4)] = T6H + T6S;
1525 T7d = KP707106781 * (T6U + T6V);
1526 ii[WS(rs, 4)] = T7d + T7g;
1527 ii[WS(rs, 20)] = T7g - T7d;
1528 T6W = KP707106781 * (T6U - T6V);
1529 ri[WS(rs, 28)] = T6T - T6W;
1530 ri[WS(rs, 12)] = T6T + T6W;
1531 T7h = KP707106781 * (T6R - T6M);
1532 ii[WS(rs, 12)] = T7h + T7i;
1533 ii[WS(rs, 28)] = T7i - T7h;
1534 }
1535 }
1536 {
1537 E T5J, T7n, T7t, T6n, T5U, T7k, T6x, T6B, T6q, T7s, T66, T6k, T6u, T6A, T6h;
1538 E T6l;
1539 {
1540 E T5O, T5T, T60, T65;
1541 T5J = T5F - T5I;
1542 T7n = T7l + T7m;
1543 T7t = T7m - T7l;
1544 T6n = T5F + T5I;
1545 T5O = T5M - T5N;
1546 T5T = T5P + T5S;
1547 T5U = KP707106781 * (T5O - T5T);
1548 T7k = KP707106781 * (T5O + T5T);
1549 {
1550 E T6v, T6w, T6o, T6p;
1551 T6v = T67 + T6a;
1552 T6w = T6e + T6f;
1553 T6x = FNMS(KP382683432, T6w, KP923879532 * T6v);
1554 T6B = FMA(KP923879532, T6w, KP382683432 * T6v);
1555 T6o = T5N + T5M;
1556 T6p = T5P - T5S;
1557 T6q = KP707106781 * (T6o + T6p);
1558 T7s = KP707106781 * (T6p - T6o);
1559 }
1560 T60 = T5Y - T5Z;
1561 T65 = T61 - T64;
1562 T66 = FMA(KP923879532, T60, KP382683432 * T65);
1563 T6k = FNMS(KP923879532, T65, KP382683432 * T60);
1564 {
1565 E T6s, T6t, T6b, T6g;
1566 T6s = T5Y + T5Z;
1567 T6t = T61 + T64;
1568 T6u = FMA(KP382683432, T6s, KP923879532 * T6t);
1569 T6A = FNMS(KP382683432, T6t, KP923879532 * T6s);
1570 T6b = T67 - T6a;
1571 T6g = T6e - T6f;
1572 T6h = FNMS(KP923879532, T6g, KP382683432 * T6b);
1573 T6l = FMA(KP382683432, T6g, KP923879532 * T6b);
1574 }
1575 }
1576 {
1577 E T5V, T6i, T7r, T7u;
1578 T5V = T5J + T5U;
1579 T6i = T66 + T6h;
1580 ri[WS(rs, 22)] = T5V - T6i;
1581 ri[WS(rs, 6)] = T5V + T6i;
1582 T7r = T6k + T6l;
1583 T7u = T7s + T7t;
1584 ii[WS(rs, 6)] = T7r + T7u;
1585 ii[WS(rs, 22)] = T7u - T7r;
1586 }
1587 {
1588 E T6j, T6m, T7v, T7w;
1589 T6j = T5J - T5U;
1590 T6m = T6k - T6l;
1591 ri[WS(rs, 30)] = T6j - T6m;
1592 ri[WS(rs, 14)] = T6j + T6m;
1593 T7v = T6h - T66;
1594 T7w = T7t - T7s;
1595 ii[WS(rs, 14)] = T7v + T7w;
1596 ii[WS(rs, 30)] = T7w - T7v;
1597 }
1598 {
1599 E T6r, T6y, T7j, T7o;
1600 T6r = T6n + T6q;
1601 T6y = T6u + T6x;
1602 ri[WS(rs, 18)] = T6r - T6y;
1603 ri[WS(rs, 2)] = T6r + T6y;
1604 T7j = T6A + T6B;
1605 T7o = T7k + T7n;
1606 ii[WS(rs, 2)] = T7j + T7o;
1607 ii[WS(rs, 18)] = T7o - T7j;
1608 }
1609 {
1610 E T6z, T6C, T7p, T7q;
1611 T6z = T6n - T6q;
1612 T6C = T6A - T6B;
1613 ri[WS(rs, 26)] = T6z - T6C;
1614 ri[WS(rs, 10)] = T6z + T6C;
1615 T7p = T6x - T6u;
1616 T7q = T7n - T7k;
1617 ii[WS(rs, 10)] = T7p + T7q;
1618 ii[WS(rs, 26)] = T7q - T7p;
1619 }
1620 }
1621 {
1622 E T3h, T4D, T7R, T7X, T3E, T7O, T4N, T4R, T46, T4A, T4G, T7W, T4K, T4Q, T4x;
1623 E T4B, T3g, T7P;
1624 T3g = KP707106781 * (T3a - T3f);
1625 T3h = T35 - T3g;
1626 T4D = T35 + T3g;
1627 T7P = KP707106781 * (T4V - T4U);
1628 T7R = T7P + T7Q;
1629 T7X = T7Q - T7P;
1630 {
1631 E T3s, T3D, T4L, T4M;
1632 T3s = FNMS(KP923879532, T3r, KP382683432 * T3m);
1633 T3D = FMA(KP382683432, T3x, KP923879532 * T3C);
1634 T3E = T3s - T3D;
1635 T7O = T3s + T3D;
1636 T4L = T4b + T4m;
1637 T4M = T4s + T4v;
1638 T4N = FNMS(KP555570233, T4M, KP831469612 * T4L);
1639 T4R = FMA(KP831469612, T4M, KP555570233 * T4L);
1640 }
1641 {
1642 E T3W, T45, T4E, T4F;
1643 T3W = T3K - T3V;
1644 T45 = T41 - T44;
1645 T46 = FMA(KP980785280, T3W, KP195090322 * T45);
1646 T4A = FNMS(KP980785280, T45, KP195090322 * T3W);
1647 T4E = FMA(KP923879532, T3m, KP382683432 * T3r);
1648 T4F = FNMS(KP923879532, T3x, KP382683432 * T3C);
1649 T4G = T4E + T4F;
1650 T7W = T4F - T4E;
1651 }
1652 {
1653 E T4I, T4J, T4n, T4w;
1654 T4I = T3K + T3V;
1655 T4J = T41 + T44;
1656 T4K = FMA(KP555570233, T4I, KP831469612 * T4J);
1657 T4Q = FNMS(KP555570233, T4J, KP831469612 * T4I);
1658 T4n = T4b - T4m;
1659 T4w = T4s - T4v;
1660 T4x = FNMS(KP980785280, T4w, KP195090322 * T4n);
1661 T4B = FMA(KP195090322, T4w, KP980785280 * T4n);
1662 }
1663 {
1664 E T3F, T4y, T7V, T7Y;
1665 T3F = T3h + T3E;
1666 T4y = T46 + T4x;
1667 ri[WS(rs, 23)] = T3F - T4y;
1668 ri[WS(rs, 7)] = T3F + T4y;
1669 T7V = T4A + T4B;
1670 T7Y = T7W + T7X;
1671 ii[WS(rs, 7)] = T7V + T7Y;
1672 ii[WS(rs, 23)] = T7Y - T7V;
1673 }
1674 {
1675 E T4z, T4C, T7Z, T80;
1676 T4z = T3h - T3E;
1677 T4C = T4A - T4B;
1678 ri[WS(rs, 31)] = T4z - T4C;
1679 ri[WS(rs, 15)] = T4z + T4C;
1680 T7Z = T4x - T46;
1681 T80 = T7X - T7W;
1682 ii[WS(rs, 15)] = T7Z + T80;
1683 ii[WS(rs, 31)] = T80 - T7Z;
1684 }
1685 {
1686 E T4H, T4O, T7N, T7S;
1687 T4H = T4D + T4G;
1688 T4O = T4K + T4N;
1689 ri[WS(rs, 19)] = T4H - T4O;
1690 ri[WS(rs, 3)] = T4H + T4O;
1691 T7N = T4Q + T4R;
1692 T7S = T7O + T7R;
1693 ii[WS(rs, 3)] = T7N + T7S;
1694 ii[WS(rs, 19)] = T7S - T7N;
1695 }
1696 {
1697 E T4P, T4S, T7T, T7U;
1698 T4P = T4D - T4G;
1699 T4S = T4Q - T4R;
1700 ri[WS(rs, 27)] = T4P - T4S;
1701 ri[WS(rs, 11)] = T4P + T4S;
1702 T7T = T4N - T4K;
1703 T7U = T7R - T7O;
1704 ii[WS(rs, 11)] = T7T + T7U;
1705 ii[WS(rs, 27)] = T7U - T7T;
1706 }
1707 }
1708 {
1709 E T4X, T5p, T7D, T7J, T54, T7y, T5z, T5D, T5c, T5m, T5s, T7I, T5w, T5C, T5j;
1710 E T5n, T4W, T7z;
1711 T4W = KP707106781 * (T4U + T4V);
1712 T4X = T4T - T4W;
1713 T5p = T4T + T4W;
1714 T7z = KP707106781 * (T3a + T3f);
1715 T7D = T7z + T7C;
1716 T7J = T7C - T7z;
1717 {
1718 E T50, T53, T5x, T5y;
1719 T50 = FNMS(KP382683432, T4Z, KP923879532 * T4Y);
1720 T53 = FMA(KP923879532, T51, KP382683432 * T52);
1721 T54 = T50 - T53;
1722 T7y = T50 + T53;
1723 T5x = T5d + T5e;
1724 T5y = T5g + T5h;
1725 T5z = FNMS(KP195090322, T5y, KP980785280 * T5x);
1726 T5D = FMA(KP195090322, T5x, KP980785280 * T5y);
1727 }
1728 {
1729 E T58, T5b, T5q, T5r;
1730 T58 = T56 - T57;
1731 T5b = T59 - T5a;
1732 T5c = FMA(KP555570233, T58, KP831469612 * T5b);
1733 T5m = FNMS(KP831469612, T58, KP555570233 * T5b);
1734 T5q = FMA(KP382683432, T4Y, KP923879532 * T4Z);
1735 T5r = FNMS(KP382683432, T51, KP923879532 * T52);
1736 T5s = T5q + T5r;
1737 T7I = T5r - T5q;
1738 }
1739 {
1740 E T5u, T5v, T5f, T5i;
1741 T5u = T56 + T57;
1742 T5v = T59 + T5a;
1743 T5w = FMA(KP980785280, T5u, KP195090322 * T5v);
1744 T5C = FNMS(KP195090322, T5u, KP980785280 * T5v);
1745 T5f = T5d - T5e;
1746 T5i = T5g - T5h;
1747 T5j = FNMS(KP831469612, T5i, KP555570233 * T5f);
1748 T5n = FMA(KP831469612, T5f, KP555570233 * T5i);
1749 }
1750 {
1751 E T55, T5k, T7H, T7K;
1752 T55 = T4X + T54;
1753 T5k = T5c + T5j;
1754 ri[WS(rs, 21)] = T55 - T5k;
1755 ri[WS(rs, 5)] = T55 + T5k;
1756 T7H = T5m + T5n;
1757 T7K = T7I + T7J;
1758 ii[WS(rs, 5)] = T7H + T7K;
1759 ii[WS(rs, 21)] = T7K - T7H;
1760 }
1761 {
1762 E T5l, T5o, T7L, T7M;
1763 T5l = T4X - T54;
1764 T5o = T5m - T5n;
1765 ri[WS(rs, 29)] = T5l - T5o;
1766 ri[WS(rs, 13)] = T5l + T5o;
1767 T7L = T5j - T5c;
1768 T7M = T7J - T7I;
1769 ii[WS(rs, 13)] = T7L + T7M;
1770 ii[WS(rs, 29)] = T7M - T7L;
1771 }
1772 {
1773 E T5t, T5A, T7x, T7E;
1774 T5t = T5p + T5s;
1775 T5A = T5w + T5z;
1776 ri[WS(rs, 17)] = T5t - T5A;
1777 ri[WS(rs, 1)] = T5t + T5A;
1778 T7x = T5C + T5D;
1779 T7E = T7y + T7D;
1780 ii[WS(rs, 1)] = T7x + T7E;
1781 ii[WS(rs, 17)] = T7E - T7x;
1782 }
1783 {
1784 E T5B, T5E, T7F, T7G;
1785 T5B = T5p - T5s;
1786 T5E = T5C - T5D;
1787 ri[WS(rs, 25)] = T5B - T5E;
1788 ri[WS(rs, 9)] = T5B + T5E;
1789 T7F = T5z - T5w;
1790 T7G = T7D - T7y;
1791 ii[WS(rs, 9)] = T7F + T7G;
1792 ii[WS(rs, 25)] = T7G - T7F;
1793 }
1794 }
1795 }
1796 }
1797 }
1798
1799 static const tw_instr twinstr[] = {
1800 {TW_FULL, 0, 32},
1801 {TW_NEXT, 1, 0}
1802 };
1803
1804 static const ct_desc desc = { 32, "t1_32", twinstr, &GENUS, {340, 114, 94, 0}, 0, 0, 0 };
1805
1806 void X(codelet_t1_32) (planner *p) {
1807 X(kdft_dit_register) (p, t1_32, &desc);
1808 }
1809 #endif