Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/scalar/codelets/t1_32.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:15 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 32 -name t1_32 -include dft/scalar/t.h */ | |
29 | |
30 /* | |
31 * This function contains 434 FP additions, 260 FP multiplications, | |
32 * (or, 236 additions, 62 multiplications, 198 fused multiply/add), | |
33 * 102 stack variables, 7 constants, and 128 memory accesses | |
34 */ | |
35 #include "dft/scalar/t.h" | |
36 | |
37 static void t1_32(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
40 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
41 DK(KP198912367, +0.198912367379658006911597622644676228597850501); | |
42 DK(KP668178637, +0.668178637919298919997757686523080761552472251); | |
43 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
44 DK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
45 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
46 { | |
47 INT m; | |
48 for (m = mb, W = W + (mb * 62); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 62, MAKE_VOLATILE_STRIDE(64, rs)) { | |
49 E T8, T8x, T3w, T87, Tl, T8y, T3B, T83, Tz, T6F, T3J, T5T, TM, T6G, T3Q; | |
50 E T5U, T11, T1e, T6M, T6J, T6K, T6L, T3Z, T5X, T46, T5Y, T1s, T1F, T6O, T6P; | |
51 E T6Q, T6R, T4e, T60, T4l, T61, T32, T7b, T78, T7N, T54, T6f, T5r, T6c, T29; | |
52 E T70, T6X, T7I, T4v, T68, T4S, T65, T3t, T79, T7e, T7O, T5b, T5s, T5i, T5t; | |
53 E T2A, T6Y, T73, T7J, T4C, T4T, T4J, T4U; | |
54 { | |
55 E T1, T86, T3, T6, T4, T84, T2, T7, T85, T5; | |
56 T1 = ri[0]; | |
57 T86 = ii[0]; | |
58 T3 = ri[WS(rs, 16)]; | |
59 T6 = ii[WS(rs, 16)]; | |
60 T2 = W[30]; | |
61 T4 = T2 * T3; | |
62 T84 = T2 * T6; | |
63 T5 = W[31]; | |
64 T7 = FMA(T5, T6, T4); | |
65 T85 = FNMS(T5, T3, T84); | |
66 T8 = T1 + T7; | |
67 T8x = T86 - T85; | |
68 T3w = T1 - T7; | |
69 T87 = T85 + T86; | |
70 } | |
71 { | |
72 E Ta, Td, Tb, T3x, Tg, Tj, Th, T3z, T9, Tf; | |
73 Ta = ri[WS(rs, 8)]; | |
74 Td = ii[WS(rs, 8)]; | |
75 T9 = W[14]; | |
76 Tb = T9 * Ta; | |
77 T3x = T9 * Td; | |
78 Tg = ri[WS(rs, 24)]; | |
79 Tj = ii[WS(rs, 24)]; | |
80 Tf = W[46]; | |
81 Th = Tf * Tg; | |
82 T3z = Tf * Tj; | |
83 { | |
84 E Te, T3y, Tk, T3A, Tc, Ti; | |
85 Tc = W[15]; | |
86 Te = FMA(Tc, Td, Tb); | |
87 T3y = FNMS(Tc, Ta, T3x); | |
88 Ti = W[47]; | |
89 Tk = FMA(Ti, Tj, Th); | |
90 T3A = FNMS(Ti, Tg, T3z); | |
91 Tl = Te + Tk; | |
92 T8y = Te - Tk; | |
93 T3B = T3y - T3A; | |
94 T83 = T3y + T3A; | |
95 } | |
96 } | |
97 { | |
98 E Ts, T3F, Ty, T3H, T3D, T3I; | |
99 { | |
100 E To, Tr, Tp, T3E, Tn, Tq; | |
101 To = ri[WS(rs, 4)]; | |
102 Tr = ii[WS(rs, 4)]; | |
103 Tn = W[6]; | |
104 Tp = Tn * To; | |
105 T3E = Tn * Tr; | |
106 Tq = W[7]; | |
107 Ts = FMA(Tq, Tr, Tp); | |
108 T3F = FNMS(Tq, To, T3E); | |
109 } | |
110 { | |
111 E Tu, Tx, Tv, T3G, Tt, Tw; | |
112 Tu = ri[WS(rs, 20)]; | |
113 Tx = ii[WS(rs, 20)]; | |
114 Tt = W[38]; | |
115 Tv = Tt * Tu; | |
116 T3G = Tt * Tx; | |
117 Tw = W[39]; | |
118 Ty = FMA(Tw, Tx, Tv); | |
119 T3H = FNMS(Tw, Tu, T3G); | |
120 } | |
121 Tz = Ts + Ty; | |
122 T6F = T3F + T3H; | |
123 T3D = Ts - Ty; | |
124 T3I = T3F - T3H; | |
125 T3J = T3D + T3I; | |
126 T5T = T3I - T3D; | |
127 } | |
128 { | |
129 E TF, T3M, TL, T3O, T3K, T3P; | |
130 { | |
131 E TB, TE, TC, T3L, TA, TD; | |
132 TB = ri[WS(rs, 28)]; | |
133 TE = ii[WS(rs, 28)]; | |
134 TA = W[54]; | |
135 TC = TA * TB; | |
136 T3L = TA * TE; | |
137 TD = W[55]; | |
138 TF = FMA(TD, TE, TC); | |
139 T3M = FNMS(TD, TB, T3L); | |
140 } | |
141 { | |
142 E TH, TK, TI, T3N, TG, TJ; | |
143 TH = ri[WS(rs, 12)]; | |
144 TK = ii[WS(rs, 12)]; | |
145 TG = W[22]; | |
146 TI = TG * TH; | |
147 T3N = TG * TK; | |
148 TJ = W[23]; | |
149 TL = FMA(TJ, TK, TI); | |
150 T3O = FNMS(TJ, TH, T3N); | |
151 } | |
152 TM = TF + TL; | |
153 T6G = T3M + T3O; | |
154 T3K = TF - TL; | |
155 T3P = T3M - T3O; | |
156 T3Q = T3K - T3P; | |
157 T5U = T3K + T3P; | |
158 } | |
159 { | |
160 E TU, T3U, T1d, T44, T10, T3W, T17, T42; | |
161 { | |
162 E TQ, TT, TR, T3T, TP, TS; | |
163 TQ = ri[WS(rs, 2)]; | |
164 TT = ii[WS(rs, 2)]; | |
165 TP = W[2]; | |
166 TR = TP * TQ; | |
167 T3T = TP * TT; | |
168 TS = W[3]; | |
169 TU = FMA(TS, TT, TR); | |
170 T3U = FNMS(TS, TQ, T3T); | |
171 } | |
172 { | |
173 E T19, T1c, T1a, T43, T18, T1b; | |
174 T19 = ri[WS(rs, 26)]; | |
175 T1c = ii[WS(rs, 26)]; | |
176 T18 = W[50]; | |
177 T1a = T18 * T19; | |
178 T43 = T18 * T1c; | |
179 T1b = W[51]; | |
180 T1d = FMA(T1b, T1c, T1a); | |
181 T44 = FNMS(T1b, T19, T43); | |
182 } | |
183 { | |
184 E TW, TZ, TX, T3V, TV, TY; | |
185 TW = ri[WS(rs, 18)]; | |
186 TZ = ii[WS(rs, 18)]; | |
187 TV = W[34]; | |
188 TX = TV * TW; | |
189 T3V = TV * TZ; | |
190 TY = W[35]; | |
191 T10 = FMA(TY, TZ, TX); | |
192 T3W = FNMS(TY, TW, T3V); | |
193 } | |
194 { | |
195 E T13, T16, T14, T41, T12, T15; | |
196 T13 = ri[WS(rs, 10)]; | |
197 T16 = ii[WS(rs, 10)]; | |
198 T12 = W[18]; | |
199 T14 = T12 * T13; | |
200 T41 = T12 * T16; | |
201 T15 = W[19]; | |
202 T17 = FMA(T15, T16, T14); | |
203 T42 = FNMS(T15, T13, T41); | |
204 } | |
205 T11 = TU + T10; | |
206 T1e = T17 + T1d; | |
207 T6M = T11 - T1e; | |
208 T6J = T3U + T3W; | |
209 T6K = T42 + T44; | |
210 T6L = T6J - T6K; | |
211 { | |
212 E T3X, T3Y, T40, T45; | |
213 T3X = T3U - T3W; | |
214 T3Y = T17 - T1d; | |
215 T3Z = T3X - T3Y; | |
216 T5X = T3X + T3Y; | |
217 T40 = TU - T10; | |
218 T45 = T42 - T44; | |
219 T46 = T40 + T45; | |
220 T5Y = T40 - T45; | |
221 } | |
222 } | |
223 { | |
224 E T1l, T49, T1E, T4j, T1r, T4b, T1y, T4h; | |
225 { | |
226 E T1h, T1k, T1i, T48, T1g, T1j; | |
227 T1h = ri[WS(rs, 30)]; | |
228 T1k = ii[WS(rs, 30)]; | |
229 T1g = W[58]; | |
230 T1i = T1g * T1h; | |
231 T48 = T1g * T1k; | |
232 T1j = W[59]; | |
233 T1l = FMA(T1j, T1k, T1i); | |
234 T49 = FNMS(T1j, T1h, T48); | |
235 } | |
236 { | |
237 E T1A, T1D, T1B, T4i, T1z, T1C; | |
238 T1A = ri[WS(rs, 22)]; | |
239 T1D = ii[WS(rs, 22)]; | |
240 T1z = W[42]; | |
241 T1B = T1z * T1A; | |
242 T4i = T1z * T1D; | |
243 T1C = W[43]; | |
244 T1E = FMA(T1C, T1D, T1B); | |
245 T4j = FNMS(T1C, T1A, T4i); | |
246 } | |
247 { | |
248 E T1n, T1q, T1o, T4a, T1m, T1p; | |
249 T1n = ri[WS(rs, 14)]; | |
250 T1q = ii[WS(rs, 14)]; | |
251 T1m = W[26]; | |
252 T1o = T1m * T1n; | |
253 T4a = T1m * T1q; | |
254 T1p = W[27]; | |
255 T1r = FMA(T1p, T1q, T1o); | |
256 T4b = FNMS(T1p, T1n, T4a); | |
257 } | |
258 { | |
259 E T1u, T1x, T1v, T4g, T1t, T1w; | |
260 T1u = ri[WS(rs, 6)]; | |
261 T1x = ii[WS(rs, 6)]; | |
262 T1t = W[10]; | |
263 T1v = T1t * T1u; | |
264 T4g = T1t * T1x; | |
265 T1w = W[11]; | |
266 T1y = FMA(T1w, T1x, T1v); | |
267 T4h = FNMS(T1w, T1u, T4g); | |
268 } | |
269 T1s = T1l + T1r; | |
270 T1F = T1y + T1E; | |
271 T6O = T1s - T1F; | |
272 T6P = T49 + T4b; | |
273 T6Q = T4h + T4j; | |
274 T6R = T6P - T6Q; | |
275 { | |
276 E T4c, T4d, T4f, T4k; | |
277 T4c = T49 - T4b; | |
278 T4d = T1y - T1E; | |
279 T4e = T4c - T4d; | |
280 T60 = T4c + T4d; | |
281 T4f = T1l - T1r; | |
282 T4k = T4h - T4j; | |
283 T4l = T4f + T4k; | |
284 T61 = T4f - T4k; | |
285 } | |
286 } | |
287 { | |
288 E T2H, T4Z, T30, T5p, T2N, T51, T2U, T5n; | |
289 { | |
290 E T2D, T2G, T2E, T4Y, T2C, T2F; | |
291 T2D = ri[WS(rs, 31)]; | |
292 T2G = ii[WS(rs, 31)]; | |
293 T2C = W[60]; | |
294 T2E = T2C * T2D; | |
295 T4Y = T2C * T2G; | |
296 T2F = W[61]; | |
297 T2H = FMA(T2F, T2G, T2E); | |
298 T4Z = FNMS(T2F, T2D, T4Y); | |
299 } | |
300 { | |
301 E T2W, T2Z, T2X, T5o, T2V, T2Y; | |
302 T2W = ri[WS(rs, 23)]; | |
303 T2Z = ii[WS(rs, 23)]; | |
304 T2V = W[44]; | |
305 T2X = T2V * T2W; | |
306 T5o = T2V * T2Z; | |
307 T2Y = W[45]; | |
308 T30 = FMA(T2Y, T2Z, T2X); | |
309 T5p = FNMS(T2Y, T2W, T5o); | |
310 } | |
311 { | |
312 E T2J, T2M, T2K, T50, T2I, T2L; | |
313 T2J = ri[WS(rs, 15)]; | |
314 T2M = ii[WS(rs, 15)]; | |
315 T2I = W[28]; | |
316 T2K = T2I * T2J; | |
317 T50 = T2I * T2M; | |
318 T2L = W[29]; | |
319 T2N = FMA(T2L, T2M, T2K); | |
320 T51 = FNMS(T2L, T2J, T50); | |
321 } | |
322 { | |
323 E T2Q, T2T, T2R, T5m, T2P, T2S; | |
324 T2Q = ri[WS(rs, 7)]; | |
325 T2T = ii[WS(rs, 7)]; | |
326 T2P = W[12]; | |
327 T2R = T2P * T2Q; | |
328 T5m = T2P * T2T; | |
329 T2S = W[13]; | |
330 T2U = FMA(T2S, T2T, T2R); | |
331 T5n = FNMS(T2S, T2Q, T5m); | |
332 } | |
333 { | |
334 E T2O, T31, T76, T77; | |
335 T2O = T2H + T2N; | |
336 T31 = T2U + T30; | |
337 T32 = T2O + T31; | |
338 T7b = T2O - T31; | |
339 T76 = T4Z + T51; | |
340 T77 = T5n + T5p; | |
341 T78 = T76 - T77; | |
342 T7N = T76 + T77; | |
343 } | |
344 { | |
345 E T52, T53, T5l, T5q; | |
346 T52 = T4Z - T51; | |
347 T53 = T2U - T30; | |
348 T54 = T52 - T53; | |
349 T6f = T52 + T53; | |
350 T5l = T2H - T2N; | |
351 T5q = T5n - T5p; | |
352 T5r = T5l + T5q; | |
353 T6c = T5l - T5q; | |
354 } | |
355 } | |
356 { | |
357 E T1O, T4q, T27, T4Q, T1U, T4s, T21, T4O; | |
358 { | |
359 E T1K, T1N, T1L, T4p, T1J, T1M; | |
360 T1K = ri[WS(rs, 1)]; | |
361 T1N = ii[WS(rs, 1)]; | |
362 T1J = W[0]; | |
363 T1L = T1J * T1K; | |
364 T4p = T1J * T1N; | |
365 T1M = W[1]; | |
366 T1O = FMA(T1M, T1N, T1L); | |
367 T4q = FNMS(T1M, T1K, T4p); | |
368 } | |
369 { | |
370 E T23, T26, T24, T4P, T22, T25; | |
371 T23 = ri[WS(rs, 25)]; | |
372 T26 = ii[WS(rs, 25)]; | |
373 T22 = W[48]; | |
374 T24 = T22 * T23; | |
375 T4P = T22 * T26; | |
376 T25 = W[49]; | |
377 T27 = FMA(T25, T26, T24); | |
378 T4Q = FNMS(T25, T23, T4P); | |
379 } | |
380 { | |
381 E T1Q, T1T, T1R, T4r, T1P, T1S; | |
382 T1Q = ri[WS(rs, 17)]; | |
383 T1T = ii[WS(rs, 17)]; | |
384 T1P = W[32]; | |
385 T1R = T1P * T1Q; | |
386 T4r = T1P * T1T; | |
387 T1S = W[33]; | |
388 T1U = FMA(T1S, T1T, T1R); | |
389 T4s = FNMS(T1S, T1Q, T4r); | |
390 } | |
391 { | |
392 E T1X, T20, T1Y, T4N, T1W, T1Z; | |
393 T1X = ri[WS(rs, 9)]; | |
394 T20 = ii[WS(rs, 9)]; | |
395 T1W = W[16]; | |
396 T1Y = T1W * T1X; | |
397 T4N = T1W * T20; | |
398 T1Z = W[17]; | |
399 T21 = FMA(T1Z, T20, T1Y); | |
400 T4O = FNMS(T1Z, T1X, T4N); | |
401 } | |
402 { | |
403 E T1V, T28, T6V, T6W; | |
404 T1V = T1O + T1U; | |
405 T28 = T21 + T27; | |
406 T29 = T1V + T28; | |
407 T70 = T1V - T28; | |
408 T6V = T4q + T4s; | |
409 T6W = T4O + T4Q; | |
410 T6X = T6V - T6W; | |
411 T7I = T6V + T6W; | |
412 } | |
413 { | |
414 E T4t, T4u, T4M, T4R; | |
415 T4t = T4q - T4s; | |
416 T4u = T21 - T27; | |
417 T4v = T4t - T4u; | |
418 T68 = T4t + T4u; | |
419 T4M = T1O - T1U; | |
420 T4R = T4O - T4Q; | |
421 T4S = T4M + T4R; | |
422 T65 = T4M - T4R; | |
423 } | |
424 } | |
425 { | |
426 E T38, T56, T3r, T5g, T3e, T58, T3l, T5e; | |
427 { | |
428 E T34, T37, T35, T55, T33, T36; | |
429 T34 = ri[WS(rs, 3)]; | |
430 T37 = ii[WS(rs, 3)]; | |
431 T33 = W[4]; | |
432 T35 = T33 * T34; | |
433 T55 = T33 * T37; | |
434 T36 = W[5]; | |
435 T38 = FMA(T36, T37, T35); | |
436 T56 = FNMS(T36, T34, T55); | |
437 } | |
438 { | |
439 E T3n, T3q, T3o, T5f, T3m, T3p; | |
440 T3n = ri[WS(rs, 11)]; | |
441 T3q = ii[WS(rs, 11)]; | |
442 T3m = W[20]; | |
443 T3o = T3m * T3n; | |
444 T5f = T3m * T3q; | |
445 T3p = W[21]; | |
446 T3r = FMA(T3p, T3q, T3o); | |
447 T5g = FNMS(T3p, T3n, T5f); | |
448 } | |
449 { | |
450 E T3a, T3d, T3b, T57, T39, T3c; | |
451 T3a = ri[WS(rs, 19)]; | |
452 T3d = ii[WS(rs, 19)]; | |
453 T39 = W[36]; | |
454 T3b = T39 * T3a; | |
455 T57 = T39 * T3d; | |
456 T3c = W[37]; | |
457 T3e = FMA(T3c, T3d, T3b); | |
458 T58 = FNMS(T3c, T3a, T57); | |
459 } | |
460 { | |
461 E T3h, T3k, T3i, T5d, T3g, T3j; | |
462 T3h = ri[WS(rs, 27)]; | |
463 T3k = ii[WS(rs, 27)]; | |
464 T3g = W[52]; | |
465 T3i = T3g * T3h; | |
466 T5d = T3g * T3k; | |
467 T3j = W[53]; | |
468 T3l = FMA(T3j, T3k, T3i); | |
469 T5e = FNMS(T3j, T3h, T5d); | |
470 } | |
471 { | |
472 E T3f, T3s, T7c, T7d; | |
473 T3f = T38 + T3e; | |
474 T3s = T3l + T3r; | |
475 T3t = T3f + T3s; | |
476 T79 = T3s - T3f; | |
477 T7c = T56 + T58; | |
478 T7d = T5e + T5g; | |
479 T7e = T7c - T7d; | |
480 T7O = T7c + T7d; | |
481 } | |
482 { | |
483 E T59, T5a, T5c, T5h; | |
484 T59 = T56 - T58; | |
485 T5a = T38 - T3e; | |
486 T5b = T59 - T5a; | |
487 T5s = T5a + T59; | |
488 T5c = T3l - T3r; | |
489 T5h = T5e - T5g; | |
490 T5i = T5c + T5h; | |
491 T5t = T5c - T5h; | |
492 } | |
493 } | |
494 { | |
495 E T2f, T4x, T2y, T4H, T2l, T4z, T2s, T4F; | |
496 { | |
497 E T2b, T2e, T2c, T4w, T2a, T2d; | |
498 T2b = ri[WS(rs, 5)]; | |
499 T2e = ii[WS(rs, 5)]; | |
500 T2a = W[8]; | |
501 T2c = T2a * T2b; | |
502 T4w = T2a * T2e; | |
503 T2d = W[9]; | |
504 T2f = FMA(T2d, T2e, T2c); | |
505 T4x = FNMS(T2d, T2b, T4w); | |
506 } | |
507 { | |
508 E T2u, T2x, T2v, T4G, T2t, T2w; | |
509 T2u = ri[WS(rs, 13)]; | |
510 T2x = ii[WS(rs, 13)]; | |
511 T2t = W[24]; | |
512 T2v = T2t * T2u; | |
513 T4G = T2t * T2x; | |
514 T2w = W[25]; | |
515 T2y = FMA(T2w, T2x, T2v); | |
516 T4H = FNMS(T2w, T2u, T4G); | |
517 } | |
518 { | |
519 E T2h, T2k, T2i, T4y, T2g, T2j; | |
520 T2h = ri[WS(rs, 21)]; | |
521 T2k = ii[WS(rs, 21)]; | |
522 T2g = W[40]; | |
523 T2i = T2g * T2h; | |
524 T4y = T2g * T2k; | |
525 T2j = W[41]; | |
526 T2l = FMA(T2j, T2k, T2i); | |
527 T4z = FNMS(T2j, T2h, T4y); | |
528 } | |
529 { | |
530 E T2o, T2r, T2p, T4E, T2n, T2q; | |
531 T2o = ri[WS(rs, 29)]; | |
532 T2r = ii[WS(rs, 29)]; | |
533 T2n = W[56]; | |
534 T2p = T2n * T2o; | |
535 T4E = T2n * T2r; | |
536 T2q = W[57]; | |
537 T2s = FMA(T2q, T2r, T2p); | |
538 T4F = FNMS(T2q, T2o, T4E); | |
539 } | |
540 { | |
541 E T2m, T2z, T71, T72; | |
542 T2m = T2f + T2l; | |
543 T2z = T2s + T2y; | |
544 T2A = T2m + T2z; | |
545 T6Y = T2z - T2m; | |
546 T71 = T4x + T4z; | |
547 T72 = T4F + T4H; | |
548 T73 = T71 - T72; | |
549 T7J = T71 + T72; | |
550 } | |
551 { | |
552 E T4A, T4B, T4D, T4I; | |
553 T4A = T4x - T4z; | |
554 T4B = T2f - T2l; | |
555 T4C = T4A - T4B; | |
556 T4T = T4B + T4A; | |
557 T4D = T2s - T2y; | |
558 T4I = T4F - T4H; | |
559 T4J = T4D + T4I; | |
560 T4U = T4D - T4I; | |
561 } | |
562 } | |
563 { | |
564 E TO, T7C, T7Z, T80, T89, T8e, T1H, T8d, T3v, T8b, T7L, T7T, T7Q, T7U, T7F; | |
565 E T81; | |
566 { | |
567 E Tm, TN, T7X, T7Y; | |
568 Tm = T8 + Tl; | |
569 TN = Tz + TM; | |
570 TO = Tm + TN; | |
571 T7C = Tm - TN; | |
572 T7X = T7I + T7J; | |
573 T7Y = T7N + T7O; | |
574 T7Z = T7X - T7Y; | |
575 T80 = T7X + T7Y; | |
576 } | |
577 { | |
578 E T82, T88, T1f, T1G; | |
579 T82 = T6F + T6G; | |
580 T88 = T83 + T87; | |
581 T89 = T82 + T88; | |
582 T8e = T88 - T82; | |
583 T1f = T11 + T1e; | |
584 T1G = T1s + T1F; | |
585 T1H = T1f + T1G; | |
586 T8d = T1G - T1f; | |
587 } | |
588 { | |
589 E T2B, T3u, T7H, T7K; | |
590 T2B = T29 + T2A; | |
591 T3u = T32 + T3t; | |
592 T3v = T2B + T3u; | |
593 T8b = T3u - T2B; | |
594 T7H = T29 - T2A; | |
595 T7K = T7I - T7J; | |
596 T7L = T7H + T7K; | |
597 T7T = T7K - T7H; | |
598 } | |
599 { | |
600 E T7M, T7P, T7D, T7E; | |
601 T7M = T32 - T3t; | |
602 T7P = T7N - T7O; | |
603 T7Q = T7M - T7P; | |
604 T7U = T7M + T7P; | |
605 T7D = T6J + T6K; | |
606 T7E = T6P + T6Q; | |
607 T7F = T7D - T7E; | |
608 T81 = T7D + T7E; | |
609 } | |
610 { | |
611 E T1I, T8a, T7W, T8c; | |
612 T1I = TO + T1H; | |
613 ri[WS(rs, 16)] = T1I - T3v; | |
614 ri[0] = T1I + T3v; | |
615 T8a = T81 + T89; | |
616 ii[0] = T80 + T8a; | |
617 ii[WS(rs, 16)] = T8a - T80; | |
618 T7W = TO - T1H; | |
619 ri[WS(rs, 24)] = T7W - T7Z; | |
620 ri[WS(rs, 8)] = T7W + T7Z; | |
621 T8c = T89 - T81; | |
622 ii[WS(rs, 8)] = T8b + T8c; | |
623 ii[WS(rs, 24)] = T8c - T8b; | |
624 } | |
625 { | |
626 E T7G, T7R, T8f, T8g; | |
627 T7G = T7C + T7F; | |
628 T7R = T7L + T7Q; | |
629 ri[WS(rs, 20)] = FNMS(KP707106781, T7R, T7G); | |
630 ri[WS(rs, 4)] = FMA(KP707106781, T7R, T7G); | |
631 T8f = T8d + T8e; | |
632 T8g = T7T + T7U; | |
633 ii[WS(rs, 4)] = FMA(KP707106781, T8g, T8f); | |
634 ii[WS(rs, 20)] = FNMS(KP707106781, T8g, T8f); | |
635 } | |
636 { | |
637 E T7S, T7V, T8h, T8i; | |
638 T7S = T7C - T7F; | |
639 T7V = T7T - T7U; | |
640 ri[WS(rs, 28)] = FNMS(KP707106781, T7V, T7S); | |
641 ri[WS(rs, 12)] = FMA(KP707106781, T7V, T7S); | |
642 T8h = T8e - T8d; | |
643 T8i = T7Q - T7L; | |
644 ii[WS(rs, 12)] = FMA(KP707106781, T8i, T8h); | |
645 ii[WS(rs, 28)] = FNMS(KP707106781, T8i, T8h); | |
646 } | |
647 } | |
648 { | |
649 E T6I, T7m, T7w, T7A, T8l, T8r, T6T, T8m, T75, T7j, T7p, T8s, T7t, T7z, T7g; | |
650 E T7k; | |
651 { | |
652 E T6E, T6H, T7u, T7v; | |
653 T6E = T8 - Tl; | |
654 T6H = T6F - T6G; | |
655 T6I = T6E - T6H; | |
656 T7m = T6E + T6H; | |
657 T7u = T7b + T7e; | |
658 T7v = T78 + T79; | |
659 T7w = FNMS(KP414213562, T7v, T7u); | |
660 T7A = FMA(KP414213562, T7u, T7v); | |
661 } | |
662 { | |
663 E T8j, T8k, T6N, T6S; | |
664 T8j = TM - Tz; | |
665 T8k = T87 - T83; | |
666 T8l = T8j + T8k; | |
667 T8r = T8k - T8j; | |
668 T6N = T6L - T6M; | |
669 T6S = T6O + T6R; | |
670 T6T = T6N - T6S; | |
671 T8m = T6N + T6S; | |
672 } | |
673 { | |
674 E T6Z, T74, T7n, T7o; | |
675 T6Z = T6X - T6Y; | |
676 T74 = T70 - T73; | |
677 T75 = FMA(KP414213562, T74, T6Z); | |
678 T7j = FNMS(KP414213562, T6Z, T74); | |
679 T7n = T6M + T6L; | |
680 T7o = T6O - T6R; | |
681 T7p = T7n + T7o; | |
682 T8s = T7o - T7n; | |
683 } | |
684 { | |
685 E T7r, T7s, T7a, T7f; | |
686 T7r = T70 + T73; | |
687 T7s = T6X + T6Y; | |
688 T7t = FMA(KP414213562, T7s, T7r); | |
689 T7z = FNMS(KP414213562, T7r, T7s); | |
690 T7a = T78 - T79; | |
691 T7f = T7b - T7e; | |
692 T7g = FNMS(KP414213562, T7f, T7a); | |
693 T7k = FMA(KP414213562, T7a, T7f); | |
694 } | |
695 { | |
696 E T6U, T7h, T8t, T8u; | |
697 T6U = FMA(KP707106781, T6T, T6I); | |
698 T7h = T75 - T7g; | |
699 ri[WS(rs, 22)] = FNMS(KP923879532, T7h, T6U); | |
700 ri[WS(rs, 6)] = FMA(KP923879532, T7h, T6U); | |
701 T8t = FMA(KP707106781, T8s, T8r); | |
702 T8u = T7k - T7j; | |
703 ii[WS(rs, 6)] = FMA(KP923879532, T8u, T8t); | |
704 ii[WS(rs, 22)] = FNMS(KP923879532, T8u, T8t); | |
705 } | |
706 { | |
707 E T7i, T7l, T8v, T8w; | |
708 T7i = FNMS(KP707106781, T6T, T6I); | |
709 T7l = T7j + T7k; | |
710 ri[WS(rs, 14)] = FNMS(KP923879532, T7l, T7i); | |
711 ri[WS(rs, 30)] = FMA(KP923879532, T7l, T7i); | |
712 T8v = FNMS(KP707106781, T8s, T8r); | |
713 T8w = T75 + T7g; | |
714 ii[WS(rs, 14)] = FNMS(KP923879532, T8w, T8v); | |
715 ii[WS(rs, 30)] = FMA(KP923879532, T8w, T8v); | |
716 } | |
717 { | |
718 E T7q, T7x, T8n, T8o; | |
719 T7q = FMA(KP707106781, T7p, T7m); | |
720 T7x = T7t + T7w; | |
721 ri[WS(rs, 18)] = FNMS(KP923879532, T7x, T7q); | |
722 ri[WS(rs, 2)] = FMA(KP923879532, T7x, T7q); | |
723 T8n = FMA(KP707106781, T8m, T8l); | |
724 T8o = T7z + T7A; | |
725 ii[WS(rs, 2)] = FMA(KP923879532, T8o, T8n); | |
726 ii[WS(rs, 18)] = FNMS(KP923879532, T8o, T8n); | |
727 } | |
728 { | |
729 E T7y, T7B, T8p, T8q; | |
730 T7y = FNMS(KP707106781, T7p, T7m); | |
731 T7B = T7z - T7A; | |
732 ri[WS(rs, 26)] = FNMS(KP923879532, T7B, T7y); | |
733 ri[WS(rs, 10)] = FMA(KP923879532, T7B, T7y); | |
734 T8p = FNMS(KP707106781, T8m, T8l); | |
735 T8q = T7w - T7t; | |
736 ii[WS(rs, 10)] = FMA(KP923879532, T8q, T8p); | |
737 ii[WS(rs, 26)] = FNMS(KP923879532, T8q, T8p); | |
738 } | |
739 } | |
740 { | |
741 E T3S, T5C, T4n, T8C, T8B, T8H, T5F, T8I, T5w, T5Q, T5A, T5M, T4X, T5P, T5z; | |
742 E T5J; | |
743 { | |
744 E T3C, T3R, T5D, T5E; | |
745 T3C = T3w + T3B; | |
746 T3R = T3J + T3Q; | |
747 T3S = FNMS(KP707106781, T3R, T3C); | |
748 T5C = FMA(KP707106781, T3R, T3C); | |
749 { | |
750 E T47, T4m, T8z, T8A; | |
751 T47 = FNMS(KP414213562, T46, T3Z); | |
752 T4m = FMA(KP414213562, T4l, T4e); | |
753 T4n = T47 - T4m; | |
754 T8C = T47 + T4m; | |
755 T8z = T8x - T8y; | |
756 T8A = T5T + T5U; | |
757 T8B = FMA(KP707106781, T8A, T8z); | |
758 T8H = FNMS(KP707106781, T8A, T8z); | |
759 } | |
760 T5D = FMA(KP414213562, T3Z, T46); | |
761 T5E = FNMS(KP414213562, T4e, T4l); | |
762 T5F = T5D + T5E; | |
763 T8I = T5E - T5D; | |
764 { | |
765 E T5k, T5L, T5v, T5K, T5j, T5u; | |
766 T5j = T5b + T5i; | |
767 T5k = FNMS(KP707106781, T5j, T54); | |
768 T5L = FMA(KP707106781, T5j, T54); | |
769 T5u = T5s + T5t; | |
770 T5v = FNMS(KP707106781, T5u, T5r); | |
771 T5K = FMA(KP707106781, T5u, T5r); | |
772 T5w = FNMS(KP668178637, T5v, T5k); | |
773 T5Q = FMA(KP198912367, T5K, T5L); | |
774 T5A = FMA(KP668178637, T5k, T5v); | |
775 T5M = FNMS(KP198912367, T5L, T5K); | |
776 } | |
777 { | |
778 E T4L, T5I, T4W, T5H, T4K, T4V; | |
779 T4K = T4C + T4J; | |
780 T4L = FNMS(KP707106781, T4K, T4v); | |
781 T5I = FMA(KP707106781, T4K, T4v); | |
782 T4V = T4T + T4U; | |
783 T4W = FNMS(KP707106781, T4V, T4S); | |
784 T5H = FMA(KP707106781, T4V, T4S); | |
785 T4X = FMA(KP668178637, T4W, T4L); | |
786 T5P = FNMS(KP198912367, T5H, T5I); | |
787 T5z = FNMS(KP668178637, T4L, T4W); | |
788 T5J = FMA(KP198912367, T5I, T5H); | |
789 } | |
790 } | |
791 { | |
792 E T4o, T5x, T8J, T8K; | |
793 T4o = FMA(KP923879532, T4n, T3S); | |
794 T5x = T4X - T5w; | |
795 ri[WS(rs, 21)] = FNMS(KP831469612, T5x, T4o); | |
796 ri[WS(rs, 5)] = FMA(KP831469612, T5x, T4o); | |
797 T8J = FMA(KP923879532, T8I, T8H); | |
798 T8K = T5A - T5z; | |
799 ii[WS(rs, 5)] = FMA(KP831469612, T8K, T8J); | |
800 ii[WS(rs, 21)] = FNMS(KP831469612, T8K, T8J); | |
801 } | |
802 { | |
803 E T5y, T5B, T8L, T8M; | |
804 T5y = FNMS(KP923879532, T4n, T3S); | |
805 T5B = T5z + T5A; | |
806 ri[WS(rs, 13)] = FNMS(KP831469612, T5B, T5y); | |
807 ri[WS(rs, 29)] = FMA(KP831469612, T5B, T5y); | |
808 T8L = FNMS(KP923879532, T8I, T8H); | |
809 T8M = T4X + T5w; | |
810 ii[WS(rs, 13)] = FNMS(KP831469612, T8M, T8L); | |
811 ii[WS(rs, 29)] = FMA(KP831469612, T8M, T8L); | |
812 } | |
813 { | |
814 E T5G, T5N, T8D, T8E; | |
815 T5G = FMA(KP923879532, T5F, T5C); | |
816 T5N = T5J + T5M; | |
817 ri[WS(rs, 17)] = FNMS(KP980785280, T5N, T5G); | |
818 ri[WS(rs, 1)] = FMA(KP980785280, T5N, T5G); | |
819 T8D = FMA(KP923879532, T8C, T8B); | |
820 T8E = T5P + T5Q; | |
821 ii[WS(rs, 1)] = FMA(KP980785280, T8E, T8D); | |
822 ii[WS(rs, 17)] = FNMS(KP980785280, T8E, T8D); | |
823 } | |
824 { | |
825 E T5O, T5R, T8F, T8G; | |
826 T5O = FNMS(KP923879532, T5F, T5C); | |
827 T5R = T5P - T5Q; | |
828 ri[WS(rs, 25)] = FNMS(KP980785280, T5R, T5O); | |
829 ri[WS(rs, 9)] = FMA(KP980785280, T5R, T5O); | |
830 T8F = FNMS(KP923879532, T8C, T8B); | |
831 T8G = T5M - T5J; | |
832 ii[WS(rs, 9)] = FMA(KP980785280, T8G, T8F); | |
833 ii[WS(rs, 25)] = FNMS(KP980785280, T8G, T8F); | |
834 } | |
835 } | |
836 { | |
837 E T5W, T6o, T63, T8W, T8P, T8V, T6r, T8Q, T6i, T6C, T6m, T6y, T6b, T6B, T6l; | |
838 E T6v; | |
839 { | |
840 E T5S, T5V, T6p, T6q; | |
841 T5S = T3w - T3B; | |
842 T5V = T5T - T5U; | |
843 T5W = FMA(KP707106781, T5V, T5S); | |
844 T6o = FNMS(KP707106781, T5V, T5S); | |
845 { | |
846 E T5Z, T62, T8N, T8O; | |
847 T5Z = FMA(KP414213562, T5Y, T5X); | |
848 T62 = FNMS(KP414213562, T61, T60); | |
849 T63 = T5Z - T62; | |
850 T8W = T5Z + T62; | |
851 T8N = T8y + T8x; | |
852 T8O = T3Q - T3J; | |
853 T8P = FMA(KP707106781, T8O, T8N); | |
854 T8V = FNMS(KP707106781, T8O, T8N); | |
855 } | |
856 T6p = FNMS(KP414213562, T5X, T5Y); | |
857 T6q = FMA(KP414213562, T60, T61); | |
858 T6r = T6p + T6q; | |
859 T8Q = T6q - T6p; | |
860 { | |
861 E T6e, T6x, T6h, T6w, T6d, T6g; | |
862 T6d = T5i - T5b; | |
863 T6e = FNMS(KP707106781, T6d, T6c); | |
864 T6x = FMA(KP707106781, T6d, T6c); | |
865 T6g = T5s - T5t; | |
866 T6h = FNMS(KP707106781, T6g, T6f); | |
867 T6w = FMA(KP707106781, T6g, T6f); | |
868 T6i = FNMS(KP668178637, T6h, T6e); | |
869 T6C = FMA(KP198912367, T6w, T6x); | |
870 T6m = FMA(KP668178637, T6e, T6h); | |
871 T6y = FNMS(KP198912367, T6x, T6w); | |
872 } | |
873 { | |
874 E T67, T6u, T6a, T6t, T66, T69; | |
875 T66 = T4J - T4C; | |
876 T67 = FNMS(KP707106781, T66, T65); | |
877 T6u = FMA(KP707106781, T66, T65); | |
878 T69 = T4T - T4U; | |
879 T6a = FNMS(KP707106781, T69, T68); | |
880 T6t = FMA(KP707106781, T69, T68); | |
881 T6b = FMA(KP668178637, T6a, T67); | |
882 T6B = FNMS(KP198912367, T6t, T6u); | |
883 T6l = FNMS(KP668178637, T67, T6a); | |
884 T6v = FMA(KP198912367, T6u, T6t); | |
885 } | |
886 } | |
887 { | |
888 E T64, T6j, T8R, T8S; | |
889 T64 = FMA(KP923879532, T63, T5W); | |
890 T6j = T6b + T6i; | |
891 ri[WS(rs, 19)] = FNMS(KP831469612, T6j, T64); | |
892 ri[WS(rs, 3)] = FMA(KP831469612, T6j, T64); | |
893 T8R = FMA(KP923879532, T8Q, T8P); | |
894 T8S = T6l + T6m; | |
895 ii[WS(rs, 3)] = FMA(KP831469612, T8S, T8R); | |
896 ii[WS(rs, 19)] = FNMS(KP831469612, T8S, T8R); | |
897 } | |
898 { | |
899 E T6k, T6n, T8T, T8U; | |
900 T6k = FNMS(KP923879532, T63, T5W); | |
901 T6n = T6l - T6m; | |
902 ri[WS(rs, 27)] = FNMS(KP831469612, T6n, T6k); | |
903 ri[WS(rs, 11)] = FMA(KP831469612, T6n, T6k); | |
904 T8T = FNMS(KP923879532, T8Q, T8P); | |
905 T8U = T6i - T6b; | |
906 ii[WS(rs, 11)] = FMA(KP831469612, T8U, T8T); | |
907 ii[WS(rs, 27)] = FNMS(KP831469612, T8U, T8T); | |
908 } | |
909 { | |
910 E T6s, T6z, T8X, T8Y; | |
911 T6s = FNMS(KP923879532, T6r, T6o); | |
912 T6z = T6v - T6y; | |
913 ri[WS(rs, 23)] = FNMS(KP980785280, T6z, T6s); | |
914 ri[WS(rs, 7)] = FMA(KP980785280, T6z, T6s); | |
915 T8X = FNMS(KP923879532, T8W, T8V); | |
916 T8Y = T6C - T6B; | |
917 ii[WS(rs, 7)] = FMA(KP980785280, T8Y, T8X); | |
918 ii[WS(rs, 23)] = FNMS(KP980785280, T8Y, T8X); | |
919 } | |
920 { | |
921 E T6A, T6D, T8Z, T90; | |
922 T6A = FMA(KP923879532, T6r, T6o); | |
923 T6D = T6B + T6C; | |
924 ri[WS(rs, 15)] = FNMS(KP980785280, T6D, T6A); | |
925 ri[WS(rs, 31)] = FMA(KP980785280, T6D, T6A); | |
926 T8Z = FMA(KP923879532, T8W, T8V); | |
927 T90 = T6v + T6y; | |
928 ii[WS(rs, 15)] = FNMS(KP980785280, T90, T8Z); | |
929 ii[WS(rs, 31)] = FMA(KP980785280, T90, T8Z); | |
930 } | |
931 } | |
932 } | |
933 } | |
934 } | |
935 | |
936 static const tw_instr twinstr[] = { | |
937 {TW_FULL, 0, 32}, | |
938 {TW_NEXT, 1, 0} | |
939 }; | |
940 | |
941 static const ct_desc desc = { 32, "t1_32", twinstr, &GENUS, {236, 62, 198, 0}, 0, 0, 0 }; | |
942 | |
943 void X(codelet_t1_32) (planner *p) { | |
944 X(kdft_dit_register) (p, t1_32, &desc); | |
945 } | |
946 #else | |
947 | |
948 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 32 -name t1_32 -include dft/scalar/t.h */ | |
949 | |
950 /* | |
951 * This function contains 434 FP additions, 208 FP multiplications, | |
952 * (or, 340 additions, 114 multiplications, 94 fused multiply/add), | |
953 * 96 stack variables, 7 constants, and 128 memory accesses | |
954 */ | |
955 #include "dft/scalar/t.h" | |
956 | |
957 static void t1_32(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
958 { | |
959 DK(KP195090322, +0.195090322016128267848284868477022240927691618); | |
960 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
961 DK(KP555570233, +0.555570233019602224742830813948532874374937191); | |
962 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
963 DK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
964 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
965 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
966 { | |
967 INT m; | |
968 for (m = mb, W = W + (mb * 62); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 62, MAKE_VOLATILE_STRIDE(64, rs)) { | |
969 E Tj, T5F, T7C, T7Q, T35, T4T, T78, T7m, T1Q, T61, T5Y, T6J, T3K, T59, T41; | |
970 E T56, T2B, T67, T6e, T6O, T4b, T5d, T4s, T5g, TG, T7l, T5I, T73, T3a, T4U; | |
971 E T3f, T4V, T14, T5N, T5M, T6E, T3m, T4Y, T3r, T4Z, T1r, T5P, T5S, T6F, T3x; | |
972 E T51, T3C, T52, T2d, T5Z, T64, T6K, T3V, T57, T44, T5a, T2Y, T6f, T6a, T6P; | |
973 E T4m, T5h, T4v, T5e; | |
974 { | |
975 E T1, T76, T6, T75, Tc, T32, Th, T33; | |
976 T1 = ri[0]; | |
977 T76 = ii[0]; | |
978 { | |
979 E T3, T5, T2, T4; | |
980 T3 = ri[WS(rs, 16)]; | |
981 T5 = ii[WS(rs, 16)]; | |
982 T2 = W[30]; | |
983 T4 = W[31]; | |
984 T6 = FMA(T2, T3, T4 * T5); | |
985 T75 = FNMS(T4, T3, T2 * T5); | |
986 } | |
987 { | |
988 E T9, Tb, T8, Ta; | |
989 T9 = ri[WS(rs, 8)]; | |
990 Tb = ii[WS(rs, 8)]; | |
991 T8 = W[14]; | |
992 Ta = W[15]; | |
993 Tc = FMA(T8, T9, Ta * Tb); | |
994 T32 = FNMS(Ta, T9, T8 * Tb); | |
995 } | |
996 { | |
997 E Te, Tg, Td, Tf; | |
998 Te = ri[WS(rs, 24)]; | |
999 Tg = ii[WS(rs, 24)]; | |
1000 Td = W[46]; | |
1001 Tf = W[47]; | |
1002 Th = FMA(Td, Te, Tf * Tg); | |
1003 T33 = FNMS(Tf, Te, Td * Tg); | |
1004 } | |
1005 { | |
1006 E T7, Ti, T7A, T7B; | |
1007 T7 = T1 + T6; | |
1008 Ti = Tc + Th; | |
1009 Tj = T7 + Ti; | |
1010 T5F = T7 - Ti; | |
1011 T7A = T76 - T75; | |
1012 T7B = Tc - Th; | |
1013 T7C = T7A - T7B; | |
1014 T7Q = T7B + T7A; | |
1015 } | |
1016 { | |
1017 E T31, T34, T74, T77; | |
1018 T31 = T1 - T6; | |
1019 T34 = T32 - T33; | |
1020 T35 = T31 - T34; | |
1021 T4T = T31 + T34; | |
1022 T74 = T32 + T33; | |
1023 T77 = T75 + T76; | |
1024 T78 = T74 + T77; | |
1025 T7m = T77 - T74; | |
1026 } | |
1027 } | |
1028 { | |
1029 E T1y, T3G, T1O, T3Z, T1D, T3H, T1J, T3Y; | |
1030 { | |
1031 E T1v, T1x, T1u, T1w; | |
1032 T1v = ri[WS(rs, 1)]; | |
1033 T1x = ii[WS(rs, 1)]; | |
1034 T1u = W[0]; | |
1035 T1w = W[1]; | |
1036 T1y = FMA(T1u, T1v, T1w * T1x); | |
1037 T3G = FNMS(T1w, T1v, T1u * T1x); | |
1038 } | |
1039 { | |
1040 E T1L, T1N, T1K, T1M; | |
1041 T1L = ri[WS(rs, 25)]; | |
1042 T1N = ii[WS(rs, 25)]; | |
1043 T1K = W[48]; | |
1044 T1M = W[49]; | |
1045 T1O = FMA(T1K, T1L, T1M * T1N); | |
1046 T3Z = FNMS(T1M, T1L, T1K * T1N); | |
1047 } | |
1048 { | |
1049 E T1A, T1C, T1z, T1B; | |
1050 T1A = ri[WS(rs, 17)]; | |
1051 T1C = ii[WS(rs, 17)]; | |
1052 T1z = W[32]; | |
1053 T1B = W[33]; | |
1054 T1D = FMA(T1z, T1A, T1B * T1C); | |
1055 T3H = FNMS(T1B, T1A, T1z * T1C); | |
1056 } | |
1057 { | |
1058 E T1G, T1I, T1F, T1H; | |
1059 T1G = ri[WS(rs, 9)]; | |
1060 T1I = ii[WS(rs, 9)]; | |
1061 T1F = W[16]; | |
1062 T1H = W[17]; | |
1063 T1J = FMA(T1F, T1G, T1H * T1I); | |
1064 T3Y = FNMS(T1H, T1G, T1F * T1I); | |
1065 } | |
1066 { | |
1067 E T1E, T1P, T5W, T5X; | |
1068 T1E = T1y + T1D; | |
1069 T1P = T1J + T1O; | |
1070 T1Q = T1E + T1P; | |
1071 T61 = T1E - T1P; | |
1072 T5W = T3G + T3H; | |
1073 T5X = T3Y + T3Z; | |
1074 T5Y = T5W - T5X; | |
1075 T6J = T5W + T5X; | |
1076 } | |
1077 { | |
1078 E T3I, T3J, T3X, T40; | |
1079 T3I = T3G - T3H; | |
1080 T3J = T1J - T1O; | |
1081 T3K = T3I + T3J; | |
1082 T59 = T3I - T3J; | |
1083 T3X = T1y - T1D; | |
1084 T40 = T3Y - T3Z; | |
1085 T41 = T3X - T40; | |
1086 T56 = T3X + T40; | |
1087 } | |
1088 } | |
1089 { | |
1090 E T2j, T4o, T2z, T49, T2o, T4p, T2u, T48; | |
1091 { | |
1092 E T2g, T2i, T2f, T2h; | |
1093 T2g = ri[WS(rs, 31)]; | |
1094 T2i = ii[WS(rs, 31)]; | |
1095 T2f = W[60]; | |
1096 T2h = W[61]; | |
1097 T2j = FMA(T2f, T2g, T2h * T2i); | |
1098 T4o = FNMS(T2h, T2g, T2f * T2i); | |
1099 } | |
1100 { | |
1101 E T2w, T2y, T2v, T2x; | |
1102 T2w = ri[WS(rs, 23)]; | |
1103 T2y = ii[WS(rs, 23)]; | |
1104 T2v = W[44]; | |
1105 T2x = W[45]; | |
1106 T2z = FMA(T2v, T2w, T2x * T2y); | |
1107 T49 = FNMS(T2x, T2w, T2v * T2y); | |
1108 } | |
1109 { | |
1110 E T2l, T2n, T2k, T2m; | |
1111 T2l = ri[WS(rs, 15)]; | |
1112 T2n = ii[WS(rs, 15)]; | |
1113 T2k = W[28]; | |
1114 T2m = W[29]; | |
1115 T2o = FMA(T2k, T2l, T2m * T2n); | |
1116 T4p = FNMS(T2m, T2l, T2k * T2n); | |
1117 } | |
1118 { | |
1119 E T2r, T2t, T2q, T2s; | |
1120 T2r = ri[WS(rs, 7)]; | |
1121 T2t = ii[WS(rs, 7)]; | |
1122 T2q = W[12]; | |
1123 T2s = W[13]; | |
1124 T2u = FMA(T2q, T2r, T2s * T2t); | |
1125 T48 = FNMS(T2s, T2r, T2q * T2t); | |
1126 } | |
1127 { | |
1128 E T2p, T2A, T6c, T6d; | |
1129 T2p = T2j + T2o; | |
1130 T2A = T2u + T2z; | |
1131 T2B = T2p + T2A; | |
1132 T67 = T2p - T2A; | |
1133 T6c = T4o + T4p; | |
1134 T6d = T48 + T49; | |
1135 T6e = T6c - T6d; | |
1136 T6O = T6c + T6d; | |
1137 } | |
1138 { | |
1139 E T47, T4a, T4q, T4r; | |
1140 T47 = T2j - T2o; | |
1141 T4a = T48 - T49; | |
1142 T4b = T47 - T4a; | |
1143 T5d = T47 + T4a; | |
1144 T4q = T4o - T4p; | |
1145 T4r = T2u - T2z; | |
1146 T4s = T4q + T4r; | |
1147 T5g = T4q - T4r; | |
1148 } | |
1149 } | |
1150 { | |
1151 E To, T36, TE, T3d, Tt, T37, Tz, T3c; | |
1152 { | |
1153 E Tl, Tn, Tk, Tm; | |
1154 Tl = ri[WS(rs, 4)]; | |
1155 Tn = ii[WS(rs, 4)]; | |
1156 Tk = W[6]; | |
1157 Tm = W[7]; | |
1158 To = FMA(Tk, Tl, Tm * Tn); | |
1159 T36 = FNMS(Tm, Tl, Tk * Tn); | |
1160 } | |
1161 { | |
1162 E TB, TD, TA, TC; | |
1163 TB = ri[WS(rs, 12)]; | |
1164 TD = ii[WS(rs, 12)]; | |
1165 TA = W[22]; | |
1166 TC = W[23]; | |
1167 TE = FMA(TA, TB, TC * TD); | |
1168 T3d = FNMS(TC, TB, TA * TD); | |
1169 } | |
1170 { | |
1171 E Tq, Ts, Tp, Tr; | |
1172 Tq = ri[WS(rs, 20)]; | |
1173 Ts = ii[WS(rs, 20)]; | |
1174 Tp = W[38]; | |
1175 Tr = W[39]; | |
1176 Tt = FMA(Tp, Tq, Tr * Ts); | |
1177 T37 = FNMS(Tr, Tq, Tp * Ts); | |
1178 } | |
1179 { | |
1180 E Tw, Ty, Tv, Tx; | |
1181 Tw = ri[WS(rs, 28)]; | |
1182 Ty = ii[WS(rs, 28)]; | |
1183 Tv = W[54]; | |
1184 Tx = W[55]; | |
1185 Tz = FMA(Tv, Tw, Tx * Ty); | |
1186 T3c = FNMS(Tx, Tw, Tv * Ty); | |
1187 } | |
1188 { | |
1189 E Tu, TF, T5G, T5H; | |
1190 Tu = To + Tt; | |
1191 TF = Tz + TE; | |
1192 TG = Tu + TF; | |
1193 T7l = TF - Tu; | |
1194 T5G = T36 + T37; | |
1195 T5H = T3c + T3d; | |
1196 T5I = T5G - T5H; | |
1197 T73 = T5G + T5H; | |
1198 } | |
1199 { | |
1200 E T38, T39, T3b, T3e; | |
1201 T38 = T36 - T37; | |
1202 T39 = To - Tt; | |
1203 T3a = T38 - T39; | |
1204 T4U = T39 + T38; | |
1205 T3b = Tz - TE; | |
1206 T3e = T3c - T3d; | |
1207 T3f = T3b + T3e; | |
1208 T4V = T3b - T3e; | |
1209 } | |
1210 } | |
1211 { | |
1212 E TM, T3i, T12, T3p, TR, T3j, TX, T3o; | |
1213 { | |
1214 E TJ, TL, TI, TK; | |
1215 TJ = ri[WS(rs, 2)]; | |
1216 TL = ii[WS(rs, 2)]; | |
1217 TI = W[2]; | |
1218 TK = W[3]; | |
1219 TM = FMA(TI, TJ, TK * TL); | |
1220 T3i = FNMS(TK, TJ, TI * TL); | |
1221 } | |
1222 { | |
1223 E TZ, T11, TY, T10; | |
1224 TZ = ri[WS(rs, 26)]; | |
1225 T11 = ii[WS(rs, 26)]; | |
1226 TY = W[50]; | |
1227 T10 = W[51]; | |
1228 T12 = FMA(TY, TZ, T10 * T11); | |
1229 T3p = FNMS(T10, TZ, TY * T11); | |
1230 } | |
1231 { | |
1232 E TO, TQ, TN, TP; | |
1233 TO = ri[WS(rs, 18)]; | |
1234 TQ = ii[WS(rs, 18)]; | |
1235 TN = W[34]; | |
1236 TP = W[35]; | |
1237 TR = FMA(TN, TO, TP * TQ); | |
1238 T3j = FNMS(TP, TO, TN * TQ); | |
1239 } | |
1240 { | |
1241 E TU, TW, TT, TV; | |
1242 TU = ri[WS(rs, 10)]; | |
1243 TW = ii[WS(rs, 10)]; | |
1244 TT = W[18]; | |
1245 TV = W[19]; | |
1246 TX = FMA(TT, TU, TV * TW); | |
1247 T3o = FNMS(TV, TU, TT * TW); | |
1248 } | |
1249 { | |
1250 E TS, T13, T5K, T5L; | |
1251 TS = TM + TR; | |
1252 T13 = TX + T12; | |
1253 T14 = TS + T13; | |
1254 T5N = TS - T13; | |
1255 T5K = T3i + T3j; | |
1256 T5L = T3o + T3p; | |
1257 T5M = T5K - T5L; | |
1258 T6E = T5K + T5L; | |
1259 } | |
1260 { | |
1261 E T3k, T3l, T3n, T3q; | |
1262 T3k = T3i - T3j; | |
1263 T3l = TX - T12; | |
1264 T3m = T3k + T3l; | |
1265 T4Y = T3k - T3l; | |
1266 T3n = TM - TR; | |
1267 T3q = T3o - T3p; | |
1268 T3r = T3n - T3q; | |
1269 T4Z = T3n + T3q; | |
1270 } | |
1271 } | |
1272 { | |
1273 E T19, T3t, T1p, T3A, T1e, T3u, T1k, T3z; | |
1274 { | |
1275 E T16, T18, T15, T17; | |
1276 T16 = ri[WS(rs, 30)]; | |
1277 T18 = ii[WS(rs, 30)]; | |
1278 T15 = W[58]; | |
1279 T17 = W[59]; | |
1280 T19 = FMA(T15, T16, T17 * T18); | |
1281 T3t = FNMS(T17, T16, T15 * T18); | |
1282 } | |
1283 { | |
1284 E T1m, T1o, T1l, T1n; | |
1285 T1m = ri[WS(rs, 22)]; | |
1286 T1o = ii[WS(rs, 22)]; | |
1287 T1l = W[42]; | |
1288 T1n = W[43]; | |
1289 T1p = FMA(T1l, T1m, T1n * T1o); | |
1290 T3A = FNMS(T1n, T1m, T1l * T1o); | |
1291 } | |
1292 { | |
1293 E T1b, T1d, T1a, T1c; | |
1294 T1b = ri[WS(rs, 14)]; | |
1295 T1d = ii[WS(rs, 14)]; | |
1296 T1a = W[26]; | |
1297 T1c = W[27]; | |
1298 T1e = FMA(T1a, T1b, T1c * T1d); | |
1299 T3u = FNMS(T1c, T1b, T1a * T1d); | |
1300 } | |
1301 { | |
1302 E T1h, T1j, T1g, T1i; | |
1303 T1h = ri[WS(rs, 6)]; | |
1304 T1j = ii[WS(rs, 6)]; | |
1305 T1g = W[10]; | |
1306 T1i = W[11]; | |
1307 T1k = FMA(T1g, T1h, T1i * T1j); | |
1308 T3z = FNMS(T1i, T1h, T1g * T1j); | |
1309 } | |
1310 { | |
1311 E T1f, T1q, T5Q, T5R; | |
1312 T1f = T19 + T1e; | |
1313 T1q = T1k + T1p; | |
1314 T1r = T1f + T1q; | |
1315 T5P = T1f - T1q; | |
1316 T5Q = T3t + T3u; | |
1317 T5R = T3z + T3A; | |
1318 T5S = T5Q - T5R; | |
1319 T6F = T5Q + T5R; | |
1320 } | |
1321 { | |
1322 E T3v, T3w, T3y, T3B; | |
1323 T3v = T3t - T3u; | |
1324 T3w = T1k - T1p; | |
1325 T3x = T3v + T3w; | |
1326 T51 = T3v - T3w; | |
1327 T3y = T19 - T1e; | |
1328 T3B = T3z - T3A; | |
1329 T3C = T3y - T3B; | |
1330 T52 = T3y + T3B; | |
1331 } | |
1332 } | |
1333 { | |
1334 E T1V, T3R, T20, T3S, T3Q, T3T, T26, T3M, T2b, T3N, T3L, T3O; | |
1335 { | |
1336 E T1S, T1U, T1R, T1T; | |
1337 T1S = ri[WS(rs, 5)]; | |
1338 T1U = ii[WS(rs, 5)]; | |
1339 T1R = W[8]; | |
1340 T1T = W[9]; | |
1341 T1V = FMA(T1R, T1S, T1T * T1U); | |
1342 T3R = FNMS(T1T, T1S, T1R * T1U); | |
1343 } | |
1344 { | |
1345 E T1X, T1Z, T1W, T1Y; | |
1346 T1X = ri[WS(rs, 21)]; | |
1347 T1Z = ii[WS(rs, 21)]; | |
1348 T1W = W[40]; | |
1349 T1Y = W[41]; | |
1350 T20 = FMA(T1W, T1X, T1Y * T1Z); | |
1351 T3S = FNMS(T1Y, T1X, T1W * T1Z); | |
1352 } | |
1353 T3Q = T1V - T20; | |
1354 T3T = T3R - T3S; | |
1355 { | |
1356 E T23, T25, T22, T24; | |
1357 T23 = ri[WS(rs, 29)]; | |
1358 T25 = ii[WS(rs, 29)]; | |
1359 T22 = W[56]; | |
1360 T24 = W[57]; | |
1361 T26 = FMA(T22, T23, T24 * T25); | |
1362 T3M = FNMS(T24, T23, T22 * T25); | |
1363 } | |
1364 { | |
1365 E T28, T2a, T27, T29; | |
1366 T28 = ri[WS(rs, 13)]; | |
1367 T2a = ii[WS(rs, 13)]; | |
1368 T27 = W[24]; | |
1369 T29 = W[25]; | |
1370 T2b = FMA(T27, T28, T29 * T2a); | |
1371 T3N = FNMS(T29, T28, T27 * T2a); | |
1372 } | |
1373 T3L = T26 - T2b; | |
1374 T3O = T3M - T3N; | |
1375 { | |
1376 E T21, T2c, T62, T63; | |
1377 T21 = T1V + T20; | |
1378 T2c = T26 + T2b; | |
1379 T2d = T21 + T2c; | |
1380 T5Z = T2c - T21; | |
1381 T62 = T3R + T3S; | |
1382 T63 = T3M + T3N; | |
1383 T64 = T62 - T63; | |
1384 T6K = T62 + T63; | |
1385 } | |
1386 { | |
1387 E T3P, T3U, T42, T43; | |
1388 T3P = T3L - T3O; | |
1389 T3U = T3Q + T3T; | |
1390 T3V = KP707106781 * (T3P - T3U); | |
1391 T57 = KP707106781 * (T3U + T3P); | |
1392 T42 = T3T - T3Q; | |
1393 T43 = T3L + T3O; | |
1394 T44 = KP707106781 * (T42 - T43); | |
1395 T5a = KP707106781 * (T42 + T43); | |
1396 } | |
1397 } | |
1398 { | |
1399 E T2G, T4c, T2L, T4d, T4e, T4f, T2R, T4i, T2W, T4j, T4h, T4k; | |
1400 { | |
1401 E T2D, T2F, T2C, T2E; | |
1402 T2D = ri[WS(rs, 3)]; | |
1403 T2F = ii[WS(rs, 3)]; | |
1404 T2C = W[4]; | |
1405 T2E = W[5]; | |
1406 T2G = FMA(T2C, T2D, T2E * T2F); | |
1407 T4c = FNMS(T2E, T2D, T2C * T2F); | |
1408 } | |
1409 { | |
1410 E T2I, T2K, T2H, T2J; | |
1411 T2I = ri[WS(rs, 19)]; | |
1412 T2K = ii[WS(rs, 19)]; | |
1413 T2H = W[36]; | |
1414 T2J = W[37]; | |
1415 T2L = FMA(T2H, T2I, T2J * T2K); | |
1416 T4d = FNMS(T2J, T2I, T2H * T2K); | |
1417 } | |
1418 T4e = T4c - T4d; | |
1419 T4f = T2G - T2L; | |
1420 { | |
1421 E T2O, T2Q, T2N, T2P; | |
1422 T2O = ri[WS(rs, 27)]; | |
1423 T2Q = ii[WS(rs, 27)]; | |
1424 T2N = W[52]; | |
1425 T2P = W[53]; | |
1426 T2R = FMA(T2N, T2O, T2P * T2Q); | |
1427 T4i = FNMS(T2P, T2O, T2N * T2Q); | |
1428 } | |
1429 { | |
1430 E T2T, T2V, T2S, T2U; | |
1431 T2T = ri[WS(rs, 11)]; | |
1432 T2V = ii[WS(rs, 11)]; | |
1433 T2S = W[20]; | |
1434 T2U = W[21]; | |
1435 T2W = FMA(T2S, T2T, T2U * T2V); | |
1436 T4j = FNMS(T2U, T2T, T2S * T2V); | |
1437 } | |
1438 T4h = T2R - T2W; | |
1439 T4k = T4i - T4j; | |
1440 { | |
1441 E T2M, T2X, T68, T69; | |
1442 T2M = T2G + T2L; | |
1443 T2X = T2R + T2W; | |
1444 T2Y = T2M + T2X; | |
1445 T6f = T2X - T2M; | |
1446 T68 = T4c + T4d; | |
1447 T69 = T4i + T4j; | |
1448 T6a = T68 - T69; | |
1449 T6P = T68 + T69; | |
1450 } | |
1451 { | |
1452 E T4g, T4l, T4t, T4u; | |
1453 T4g = T4e - T4f; | |
1454 T4l = T4h + T4k; | |
1455 T4m = KP707106781 * (T4g - T4l); | |
1456 T5h = KP707106781 * (T4g + T4l); | |
1457 T4t = T4h - T4k; | |
1458 T4u = T4f + T4e; | |
1459 T4v = KP707106781 * (T4t - T4u); | |
1460 T5e = KP707106781 * (T4u + T4t); | |
1461 } | |
1462 } | |
1463 { | |
1464 E T1t, T6X, T7a, T7c, T30, T7b, T70, T71; | |
1465 { | |
1466 E TH, T1s, T72, T79; | |
1467 TH = Tj + TG; | |
1468 T1s = T14 + T1r; | |
1469 T1t = TH + T1s; | |
1470 T6X = TH - T1s; | |
1471 T72 = T6E + T6F; | |
1472 T79 = T73 + T78; | |
1473 T7a = T72 + T79; | |
1474 T7c = T79 - T72; | |
1475 } | |
1476 { | |
1477 E T2e, T2Z, T6Y, T6Z; | |
1478 T2e = T1Q + T2d; | |
1479 T2Z = T2B + T2Y; | |
1480 T30 = T2e + T2Z; | |
1481 T7b = T2Z - T2e; | |
1482 T6Y = T6J + T6K; | |
1483 T6Z = T6O + T6P; | |
1484 T70 = T6Y - T6Z; | |
1485 T71 = T6Y + T6Z; | |
1486 } | |
1487 ri[WS(rs, 16)] = T1t - T30; | |
1488 ii[WS(rs, 16)] = T7a - T71; | |
1489 ri[0] = T1t + T30; | |
1490 ii[0] = T71 + T7a; | |
1491 ri[WS(rs, 24)] = T6X - T70; | |
1492 ii[WS(rs, 24)] = T7c - T7b; | |
1493 ri[WS(rs, 8)] = T6X + T70; | |
1494 ii[WS(rs, 8)] = T7b + T7c; | |
1495 } | |
1496 { | |
1497 E T6H, T6T, T7g, T7i, T6M, T6U, T6R, T6V; | |
1498 { | |
1499 E T6D, T6G, T7e, T7f; | |
1500 T6D = Tj - TG; | |
1501 T6G = T6E - T6F; | |
1502 T6H = T6D + T6G; | |
1503 T6T = T6D - T6G; | |
1504 T7e = T1r - T14; | |
1505 T7f = T78 - T73; | |
1506 T7g = T7e + T7f; | |
1507 T7i = T7f - T7e; | |
1508 } | |
1509 { | |
1510 E T6I, T6L, T6N, T6Q; | |
1511 T6I = T1Q - T2d; | |
1512 T6L = T6J - T6K; | |
1513 T6M = T6I + T6L; | |
1514 T6U = T6L - T6I; | |
1515 T6N = T2B - T2Y; | |
1516 T6Q = T6O - T6P; | |
1517 T6R = T6N - T6Q; | |
1518 T6V = T6N + T6Q; | |
1519 } | |
1520 { | |
1521 E T6S, T7d, T6W, T7h; | |
1522 T6S = KP707106781 * (T6M + T6R); | |
1523 ri[WS(rs, 20)] = T6H - T6S; | |
1524 ri[WS(rs, 4)] = T6H + T6S; | |
1525 T7d = KP707106781 * (T6U + T6V); | |
1526 ii[WS(rs, 4)] = T7d + T7g; | |
1527 ii[WS(rs, 20)] = T7g - T7d; | |
1528 T6W = KP707106781 * (T6U - T6V); | |
1529 ri[WS(rs, 28)] = T6T - T6W; | |
1530 ri[WS(rs, 12)] = T6T + T6W; | |
1531 T7h = KP707106781 * (T6R - T6M); | |
1532 ii[WS(rs, 12)] = T7h + T7i; | |
1533 ii[WS(rs, 28)] = T7i - T7h; | |
1534 } | |
1535 } | |
1536 { | |
1537 E T5J, T7n, T7t, T6n, T5U, T7k, T6x, T6B, T6q, T7s, T66, T6k, T6u, T6A, T6h; | |
1538 E T6l; | |
1539 { | |
1540 E T5O, T5T, T60, T65; | |
1541 T5J = T5F - T5I; | |
1542 T7n = T7l + T7m; | |
1543 T7t = T7m - T7l; | |
1544 T6n = T5F + T5I; | |
1545 T5O = T5M - T5N; | |
1546 T5T = T5P + T5S; | |
1547 T5U = KP707106781 * (T5O - T5T); | |
1548 T7k = KP707106781 * (T5O + T5T); | |
1549 { | |
1550 E T6v, T6w, T6o, T6p; | |
1551 T6v = T67 + T6a; | |
1552 T6w = T6e + T6f; | |
1553 T6x = FNMS(KP382683432, T6w, KP923879532 * T6v); | |
1554 T6B = FMA(KP923879532, T6w, KP382683432 * T6v); | |
1555 T6o = T5N + T5M; | |
1556 T6p = T5P - T5S; | |
1557 T6q = KP707106781 * (T6o + T6p); | |
1558 T7s = KP707106781 * (T6p - T6o); | |
1559 } | |
1560 T60 = T5Y - T5Z; | |
1561 T65 = T61 - T64; | |
1562 T66 = FMA(KP923879532, T60, KP382683432 * T65); | |
1563 T6k = FNMS(KP923879532, T65, KP382683432 * T60); | |
1564 { | |
1565 E T6s, T6t, T6b, T6g; | |
1566 T6s = T5Y + T5Z; | |
1567 T6t = T61 + T64; | |
1568 T6u = FMA(KP382683432, T6s, KP923879532 * T6t); | |
1569 T6A = FNMS(KP382683432, T6t, KP923879532 * T6s); | |
1570 T6b = T67 - T6a; | |
1571 T6g = T6e - T6f; | |
1572 T6h = FNMS(KP923879532, T6g, KP382683432 * T6b); | |
1573 T6l = FMA(KP382683432, T6g, KP923879532 * T6b); | |
1574 } | |
1575 } | |
1576 { | |
1577 E T5V, T6i, T7r, T7u; | |
1578 T5V = T5J + T5U; | |
1579 T6i = T66 + T6h; | |
1580 ri[WS(rs, 22)] = T5V - T6i; | |
1581 ri[WS(rs, 6)] = T5V + T6i; | |
1582 T7r = T6k + T6l; | |
1583 T7u = T7s + T7t; | |
1584 ii[WS(rs, 6)] = T7r + T7u; | |
1585 ii[WS(rs, 22)] = T7u - T7r; | |
1586 } | |
1587 { | |
1588 E T6j, T6m, T7v, T7w; | |
1589 T6j = T5J - T5U; | |
1590 T6m = T6k - T6l; | |
1591 ri[WS(rs, 30)] = T6j - T6m; | |
1592 ri[WS(rs, 14)] = T6j + T6m; | |
1593 T7v = T6h - T66; | |
1594 T7w = T7t - T7s; | |
1595 ii[WS(rs, 14)] = T7v + T7w; | |
1596 ii[WS(rs, 30)] = T7w - T7v; | |
1597 } | |
1598 { | |
1599 E T6r, T6y, T7j, T7o; | |
1600 T6r = T6n + T6q; | |
1601 T6y = T6u + T6x; | |
1602 ri[WS(rs, 18)] = T6r - T6y; | |
1603 ri[WS(rs, 2)] = T6r + T6y; | |
1604 T7j = T6A + T6B; | |
1605 T7o = T7k + T7n; | |
1606 ii[WS(rs, 2)] = T7j + T7o; | |
1607 ii[WS(rs, 18)] = T7o - T7j; | |
1608 } | |
1609 { | |
1610 E T6z, T6C, T7p, T7q; | |
1611 T6z = T6n - T6q; | |
1612 T6C = T6A - T6B; | |
1613 ri[WS(rs, 26)] = T6z - T6C; | |
1614 ri[WS(rs, 10)] = T6z + T6C; | |
1615 T7p = T6x - T6u; | |
1616 T7q = T7n - T7k; | |
1617 ii[WS(rs, 10)] = T7p + T7q; | |
1618 ii[WS(rs, 26)] = T7q - T7p; | |
1619 } | |
1620 } | |
1621 { | |
1622 E T3h, T4D, T7R, T7X, T3E, T7O, T4N, T4R, T46, T4A, T4G, T7W, T4K, T4Q, T4x; | |
1623 E T4B, T3g, T7P; | |
1624 T3g = KP707106781 * (T3a - T3f); | |
1625 T3h = T35 - T3g; | |
1626 T4D = T35 + T3g; | |
1627 T7P = KP707106781 * (T4V - T4U); | |
1628 T7R = T7P + T7Q; | |
1629 T7X = T7Q - T7P; | |
1630 { | |
1631 E T3s, T3D, T4L, T4M; | |
1632 T3s = FNMS(KP923879532, T3r, KP382683432 * T3m); | |
1633 T3D = FMA(KP382683432, T3x, KP923879532 * T3C); | |
1634 T3E = T3s - T3D; | |
1635 T7O = T3s + T3D; | |
1636 T4L = T4b + T4m; | |
1637 T4M = T4s + T4v; | |
1638 T4N = FNMS(KP555570233, T4M, KP831469612 * T4L); | |
1639 T4R = FMA(KP831469612, T4M, KP555570233 * T4L); | |
1640 } | |
1641 { | |
1642 E T3W, T45, T4E, T4F; | |
1643 T3W = T3K - T3V; | |
1644 T45 = T41 - T44; | |
1645 T46 = FMA(KP980785280, T3W, KP195090322 * T45); | |
1646 T4A = FNMS(KP980785280, T45, KP195090322 * T3W); | |
1647 T4E = FMA(KP923879532, T3m, KP382683432 * T3r); | |
1648 T4F = FNMS(KP923879532, T3x, KP382683432 * T3C); | |
1649 T4G = T4E + T4F; | |
1650 T7W = T4F - T4E; | |
1651 } | |
1652 { | |
1653 E T4I, T4J, T4n, T4w; | |
1654 T4I = T3K + T3V; | |
1655 T4J = T41 + T44; | |
1656 T4K = FMA(KP555570233, T4I, KP831469612 * T4J); | |
1657 T4Q = FNMS(KP555570233, T4J, KP831469612 * T4I); | |
1658 T4n = T4b - T4m; | |
1659 T4w = T4s - T4v; | |
1660 T4x = FNMS(KP980785280, T4w, KP195090322 * T4n); | |
1661 T4B = FMA(KP195090322, T4w, KP980785280 * T4n); | |
1662 } | |
1663 { | |
1664 E T3F, T4y, T7V, T7Y; | |
1665 T3F = T3h + T3E; | |
1666 T4y = T46 + T4x; | |
1667 ri[WS(rs, 23)] = T3F - T4y; | |
1668 ri[WS(rs, 7)] = T3F + T4y; | |
1669 T7V = T4A + T4B; | |
1670 T7Y = T7W + T7X; | |
1671 ii[WS(rs, 7)] = T7V + T7Y; | |
1672 ii[WS(rs, 23)] = T7Y - T7V; | |
1673 } | |
1674 { | |
1675 E T4z, T4C, T7Z, T80; | |
1676 T4z = T3h - T3E; | |
1677 T4C = T4A - T4B; | |
1678 ri[WS(rs, 31)] = T4z - T4C; | |
1679 ri[WS(rs, 15)] = T4z + T4C; | |
1680 T7Z = T4x - T46; | |
1681 T80 = T7X - T7W; | |
1682 ii[WS(rs, 15)] = T7Z + T80; | |
1683 ii[WS(rs, 31)] = T80 - T7Z; | |
1684 } | |
1685 { | |
1686 E T4H, T4O, T7N, T7S; | |
1687 T4H = T4D + T4G; | |
1688 T4O = T4K + T4N; | |
1689 ri[WS(rs, 19)] = T4H - T4O; | |
1690 ri[WS(rs, 3)] = T4H + T4O; | |
1691 T7N = T4Q + T4R; | |
1692 T7S = T7O + T7R; | |
1693 ii[WS(rs, 3)] = T7N + T7S; | |
1694 ii[WS(rs, 19)] = T7S - T7N; | |
1695 } | |
1696 { | |
1697 E T4P, T4S, T7T, T7U; | |
1698 T4P = T4D - T4G; | |
1699 T4S = T4Q - T4R; | |
1700 ri[WS(rs, 27)] = T4P - T4S; | |
1701 ri[WS(rs, 11)] = T4P + T4S; | |
1702 T7T = T4N - T4K; | |
1703 T7U = T7R - T7O; | |
1704 ii[WS(rs, 11)] = T7T + T7U; | |
1705 ii[WS(rs, 27)] = T7U - T7T; | |
1706 } | |
1707 } | |
1708 { | |
1709 E T4X, T5p, T7D, T7J, T54, T7y, T5z, T5D, T5c, T5m, T5s, T7I, T5w, T5C, T5j; | |
1710 E T5n, T4W, T7z; | |
1711 T4W = KP707106781 * (T4U + T4V); | |
1712 T4X = T4T - T4W; | |
1713 T5p = T4T + T4W; | |
1714 T7z = KP707106781 * (T3a + T3f); | |
1715 T7D = T7z + T7C; | |
1716 T7J = T7C - T7z; | |
1717 { | |
1718 E T50, T53, T5x, T5y; | |
1719 T50 = FNMS(KP382683432, T4Z, KP923879532 * T4Y); | |
1720 T53 = FMA(KP923879532, T51, KP382683432 * T52); | |
1721 T54 = T50 - T53; | |
1722 T7y = T50 + T53; | |
1723 T5x = T5d + T5e; | |
1724 T5y = T5g + T5h; | |
1725 T5z = FNMS(KP195090322, T5y, KP980785280 * T5x); | |
1726 T5D = FMA(KP195090322, T5x, KP980785280 * T5y); | |
1727 } | |
1728 { | |
1729 E T58, T5b, T5q, T5r; | |
1730 T58 = T56 - T57; | |
1731 T5b = T59 - T5a; | |
1732 T5c = FMA(KP555570233, T58, KP831469612 * T5b); | |
1733 T5m = FNMS(KP831469612, T58, KP555570233 * T5b); | |
1734 T5q = FMA(KP382683432, T4Y, KP923879532 * T4Z); | |
1735 T5r = FNMS(KP382683432, T51, KP923879532 * T52); | |
1736 T5s = T5q + T5r; | |
1737 T7I = T5r - T5q; | |
1738 } | |
1739 { | |
1740 E T5u, T5v, T5f, T5i; | |
1741 T5u = T56 + T57; | |
1742 T5v = T59 + T5a; | |
1743 T5w = FMA(KP980785280, T5u, KP195090322 * T5v); | |
1744 T5C = FNMS(KP195090322, T5u, KP980785280 * T5v); | |
1745 T5f = T5d - T5e; | |
1746 T5i = T5g - T5h; | |
1747 T5j = FNMS(KP831469612, T5i, KP555570233 * T5f); | |
1748 T5n = FMA(KP831469612, T5f, KP555570233 * T5i); | |
1749 } | |
1750 { | |
1751 E T55, T5k, T7H, T7K; | |
1752 T55 = T4X + T54; | |
1753 T5k = T5c + T5j; | |
1754 ri[WS(rs, 21)] = T55 - T5k; | |
1755 ri[WS(rs, 5)] = T55 + T5k; | |
1756 T7H = T5m + T5n; | |
1757 T7K = T7I + T7J; | |
1758 ii[WS(rs, 5)] = T7H + T7K; | |
1759 ii[WS(rs, 21)] = T7K - T7H; | |
1760 } | |
1761 { | |
1762 E T5l, T5o, T7L, T7M; | |
1763 T5l = T4X - T54; | |
1764 T5o = T5m - T5n; | |
1765 ri[WS(rs, 29)] = T5l - T5o; | |
1766 ri[WS(rs, 13)] = T5l + T5o; | |
1767 T7L = T5j - T5c; | |
1768 T7M = T7J - T7I; | |
1769 ii[WS(rs, 13)] = T7L + T7M; | |
1770 ii[WS(rs, 29)] = T7M - T7L; | |
1771 } | |
1772 { | |
1773 E T5t, T5A, T7x, T7E; | |
1774 T5t = T5p + T5s; | |
1775 T5A = T5w + T5z; | |
1776 ri[WS(rs, 17)] = T5t - T5A; | |
1777 ri[WS(rs, 1)] = T5t + T5A; | |
1778 T7x = T5C + T5D; | |
1779 T7E = T7y + T7D; | |
1780 ii[WS(rs, 1)] = T7x + T7E; | |
1781 ii[WS(rs, 17)] = T7E - T7x; | |
1782 } | |
1783 { | |
1784 E T5B, T5E, T7F, T7G; | |
1785 T5B = T5p - T5s; | |
1786 T5E = T5C - T5D; | |
1787 ri[WS(rs, 25)] = T5B - T5E; | |
1788 ri[WS(rs, 9)] = T5B + T5E; | |
1789 T7F = T5z - T5w; | |
1790 T7G = T7D - T7y; | |
1791 ii[WS(rs, 9)] = T7F + T7G; | |
1792 ii[WS(rs, 25)] = T7G - T7F; | |
1793 } | |
1794 } | |
1795 } | |
1796 } | |
1797 } | |
1798 | |
1799 static const tw_instr twinstr[] = { | |
1800 {TW_FULL, 0, 32}, | |
1801 {TW_NEXT, 1, 0} | |
1802 }; | |
1803 | |
1804 static const ct_desc desc = { 32, "t1_32", twinstr, &GENUS, {340, 114, 94, 0}, 0, 0, 0 }; | |
1805 | |
1806 void X(codelet_t1_32) (planner *p) { | |
1807 X(kdft_dit_register) (p, t1_32, &desc); | |
1808 } | |
1809 #endif |