comparison src/fftw-3.3.8/dft/scalar/codelets/t1_3.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:04:12 EDT 2018 */
23
24 #include "dft/codelet-dft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 3 -name t1_3 -include dft/scalar/t.h */
29
30 /*
31 * This function contains 16 FP additions, 14 FP multiplications,
32 * (or, 6 additions, 4 multiplications, 10 fused multiply/add),
33 * 15 stack variables, 2 constants, and 12 memory accesses
34 */
35 #include "dft/scalar/t.h"
36
37 static void t1_3(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
40 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
41 {
42 INT m;
43 for (m = mb, W = W + (mb * 4); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 4, MAKE_VOLATILE_STRIDE(6, rs)) {
44 E T1, Tm, T7, Th, Td, Tj;
45 T1 = ri[0];
46 Tm = ii[0];
47 {
48 E T3, T6, T4, Tg, T2, T5;
49 T3 = ri[WS(rs, 1)];
50 T6 = ii[WS(rs, 1)];
51 T2 = W[0];
52 T4 = T2 * T3;
53 Tg = T2 * T6;
54 T5 = W[1];
55 T7 = FMA(T5, T6, T4);
56 Th = FNMS(T5, T3, Tg);
57 }
58 {
59 E T9, Tc, Ta, Ti, T8, Tb;
60 T9 = ri[WS(rs, 2)];
61 Tc = ii[WS(rs, 2)];
62 T8 = W[2];
63 Ta = T8 * T9;
64 Ti = T8 * Tc;
65 Tb = W[3];
66 Td = FMA(Tb, Tc, Ta);
67 Tj = FNMS(Tb, T9, Ti);
68 }
69 {
70 E Tk, Te, Tf, To, Tl, Tn;
71 Tk = Th - Tj;
72 Te = T7 + Td;
73 Tf = FNMS(KP500000000, Te, T1);
74 ri[0] = T1 + Te;
75 ri[WS(rs, 1)] = FMA(KP866025403, Tk, Tf);
76 ri[WS(rs, 2)] = FNMS(KP866025403, Tk, Tf);
77 To = Td - T7;
78 Tl = Th + Tj;
79 Tn = FNMS(KP500000000, Tl, Tm);
80 ii[0] = Tl + Tm;
81 ii[WS(rs, 2)] = FNMS(KP866025403, To, Tn);
82 ii[WS(rs, 1)] = FMA(KP866025403, To, Tn);
83 }
84 }
85 }
86 }
87
88 static const tw_instr twinstr[] = {
89 {TW_FULL, 0, 3},
90 {TW_NEXT, 1, 0}
91 };
92
93 static const ct_desc desc = { 3, "t1_3", twinstr, &GENUS, {6, 4, 10, 0}, 0, 0, 0 };
94
95 void X(codelet_t1_3) (planner *p) {
96 X(kdft_dit_register) (p, t1_3, &desc);
97 }
98 #else
99
100 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 3 -name t1_3 -include dft/scalar/t.h */
101
102 /*
103 * This function contains 16 FP additions, 12 FP multiplications,
104 * (or, 10 additions, 6 multiplications, 6 fused multiply/add),
105 * 15 stack variables, 2 constants, and 12 memory accesses
106 */
107 #include "dft/scalar/t.h"
108
109 static void t1_3(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
110 {
111 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
112 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
113 {
114 INT m;
115 for (m = mb, W = W + (mb * 4); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 4, MAKE_VOLATILE_STRIDE(6, rs)) {
116 E T1, Ti, T6, Te, Tb, Tf, Tc, Th;
117 T1 = ri[0];
118 Ti = ii[0];
119 {
120 E T3, T5, T2, T4;
121 T3 = ri[WS(rs, 1)];
122 T5 = ii[WS(rs, 1)];
123 T2 = W[0];
124 T4 = W[1];
125 T6 = FMA(T2, T3, T4 * T5);
126 Te = FNMS(T4, T3, T2 * T5);
127 }
128 {
129 E T8, Ta, T7, T9;
130 T8 = ri[WS(rs, 2)];
131 Ta = ii[WS(rs, 2)];
132 T7 = W[2];
133 T9 = W[3];
134 Tb = FMA(T7, T8, T9 * Ta);
135 Tf = FNMS(T9, T8, T7 * Ta);
136 }
137 Tc = T6 + Tb;
138 Th = Te + Tf;
139 ri[0] = T1 + Tc;
140 ii[0] = Th + Ti;
141 {
142 E Td, Tg, Tj, Tk;
143 Td = FNMS(KP500000000, Tc, T1);
144 Tg = KP866025403 * (Te - Tf);
145 ri[WS(rs, 2)] = Td - Tg;
146 ri[WS(rs, 1)] = Td + Tg;
147 Tj = KP866025403 * (Tb - T6);
148 Tk = FNMS(KP500000000, Th, Ti);
149 ii[WS(rs, 1)] = Tj + Tk;
150 ii[WS(rs, 2)] = Tk - Tj;
151 }
152 }
153 }
154 }
155
156 static const tw_instr twinstr[] = {
157 {TW_FULL, 0, 3},
158 {TW_NEXT, 1, 0}
159 };
160
161 static const ct_desc desc = { 3, "t1_3", twinstr, &GENUS, {10, 6, 6, 0}, 0, 0, 0 };
162
163 void X(codelet_t1_3) (planner *p) {
164 X(kdft_dit_register) (p, t1_3, &desc);
165 }
166 #endif