Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/scalar/codelets/t1_20.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:15 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 20 -name t1_20 -include dft/scalar/t.h */ | |
29 | |
30 /* | |
31 * This function contains 246 FP additions, 148 FP multiplications, | |
32 * (or, 136 additions, 38 multiplications, 110 fused multiply/add), | |
33 * 61 stack variables, 4 constants, and 80 memory accesses | |
34 */ | |
35 #include "dft/scalar/t.h" | |
36 | |
37 static void t1_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
43 { | |
44 INT m; | |
45 for (m = mb, W = W + (mb * 38); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 38, MAKE_VOLATILE_STRIDE(40, rs)) { | |
46 E T8, T4N, T2i, T4r, Tl, T4O, T2n, T4n, TN, T2b, T40, T4b, T2v, T3v, T3i; | |
47 E T3F, T27, T2f, T3W, T4f, T2R, T3z, T3a, T3J, T1G, T2e, T3T, T4e, T2K, T3y; | |
48 E T33, T3I, T1e, T2c, T43, T4c, T2C, T3w, T3p, T3G; | |
49 { | |
50 E T1, T4q, T3, T6, T4, T4o, T2, T7, T4p, T5; | |
51 T1 = ri[0]; | |
52 T4q = ii[0]; | |
53 T3 = ri[WS(rs, 10)]; | |
54 T6 = ii[WS(rs, 10)]; | |
55 T2 = W[18]; | |
56 T4 = T2 * T3; | |
57 T4o = T2 * T6; | |
58 T5 = W[19]; | |
59 T7 = FMA(T5, T6, T4); | |
60 T4p = FNMS(T5, T3, T4o); | |
61 T8 = T1 + T7; | |
62 T4N = T4q - T4p; | |
63 T2i = T1 - T7; | |
64 T4r = T4p + T4q; | |
65 } | |
66 { | |
67 E Ta, Td, Tb, T2j, Tg, Tj, Th, T2l, T9, Tf; | |
68 Ta = ri[WS(rs, 5)]; | |
69 Td = ii[WS(rs, 5)]; | |
70 T9 = W[8]; | |
71 Tb = T9 * Ta; | |
72 T2j = T9 * Td; | |
73 Tg = ri[WS(rs, 15)]; | |
74 Tj = ii[WS(rs, 15)]; | |
75 Tf = W[28]; | |
76 Th = Tf * Tg; | |
77 T2l = Tf * Tj; | |
78 { | |
79 E Te, T2k, Tk, T2m, Tc, Ti; | |
80 Tc = W[9]; | |
81 Te = FMA(Tc, Td, Tb); | |
82 T2k = FNMS(Tc, Ta, T2j); | |
83 Ti = W[29]; | |
84 Tk = FMA(Ti, Tj, Th); | |
85 T2m = FNMS(Ti, Tg, T2l); | |
86 Tl = Te + Tk; | |
87 T4O = Te - Tk; | |
88 T2n = T2k - T2m; | |
89 T4n = T2k + T2m; | |
90 } | |
91 } | |
92 { | |
93 E Ts, T3d, TL, T2t, Ty, T3f, TF, T2r; | |
94 { | |
95 E To, Tr, Tp, T3c, Tn, Tq; | |
96 To = ri[WS(rs, 4)]; | |
97 Tr = ii[WS(rs, 4)]; | |
98 Tn = W[6]; | |
99 Tp = Tn * To; | |
100 T3c = Tn * Tr; | |
101 Tq = W[7]; | |
102 Ts = FMA(Tq, Tr, Tp); | |
103 T3d = FNMS(Tq, To, T3c); | |
104 } | |
105 { | |
106 E TH, TK, TI, T2s, TG, TJ; | |
107 TH = ri[WS(rs, 19)]; | |
108 TK = ii[WS(rs, 19)]; | |
109 TG = W[36]; | |
110 TI = TG * TH; | |
111 T2s = TG * TK; | |
112 TJ = W[37]; | |
113 TL = FMA(TJ, TK, TI); | |
114 T2t = FNMS(TJ, TH, T2s); | |
115 } | |
116 { | |
117 E Tu, Tx, Tv, T3e, Tt, Tw; | |
118 Tu = ri[WS(rs, 14)]; | |
119 Tx = ii[WS(rs, 14)]; | |
120 Tt = W[26]; | |
121 Tv = Tt * Tu; | |
122 T3e = Tt * Tx; | |
123 Tw = W[27]; | |
124 Ty = FMA(Tw, Tx, Tv); | |
125 T3f = FNMS(Tw, Tu, T3e); | |
126 } | |
127 { | |
128 E TB, TE, TC, T2q, TA, TD; | |
129 TB = ri[WS(rs, 9)]; | |
130 TE = ii[WS(rs, 9)]; | |
131 TA = W[16]; | |
132 TC = TA * TB; | |
133 T2q = TA * TE; | |
134 TD = W[17]; | |
135 TF = FMA(TD, TE, TC); | |
136 T2r = FNMS(TD, TB, T2q); | |
137 } | |
138 { | |
139 E Tz, TM, T3Y, T3Z; | |
140 Tz = Ts + Ty; | |
141 TM = TF + TL; | |
142 TN = Tz - TM; | |
143 T2b = Tz + TM; | |
144 T3Y = T3d + T3f; | |
145 T3Z = T2r + T2t; | |
146 T40 = T3Y - T3Z; | |
147 T4b = T3Y + T3Z; | |
148 } | |
149 { | |
150 E T2p, T2u, T3g, T3h; | |
151 T2p = Ts - Ty; | |
152 T2u = T2r - T2t; | |
153 T2v = T2p - T2u; | |
154 T3v = T2p + T2u; | |
155 T3g = T3d - T3f; | |
156 T3h = TF - TL; | |
157 T3i = T3g + T3h; | |
158 T3F = T3g - T3h; | |
159 } | |
160 } | |
161 { | |
162 E T1M, T35, T25, T2P, T1S, T37, T1Z, T2N; | |
163 { | |
164 E T1I, T1L, T1J, T34, T1H, T1K; | |
165 T1I = ri[WS(rs, 12)]; | |
166 T1L = ii[WS(rs, 12)]; | |
167 T1H = W[22]; | |
168 T1J = T1H * T1I; | |
169 T34 = T1H * T1L; | |
170 T1K = W[23]; | |
171 T1M = FMA(T1K, T1L, T1J); | |
172 T35 = FNMS(T1K, T1I, T34); | |
173 } | |
174 { | |
175 E T21, T24, T22, T2O, T20, T23; | |
176 T21 = ri[WS(rs, 7)]; | |
177 T24 = ii[WS(rs, 7)]; | |
178 T20 = W[12]; | |
179 T22 = T20 * T21; | |
180 T2O = T20 * T24; | |
181 T23 = W[13]; | |
182 T25 = FMA(T23, T24, T22); | |
183 T2P = FNMS(T23, T21, T2O); | |
184 } | |
185 { | |
186 E T1O, T1R, T1P, T36, T1N, T1Q; | |
187 T1O = ri[WS(rs, 2)]; | |
188 T1R = ii[WS(rs, 2)]; | |
189 T1N = W[2]; | |
190 T1P = T1N * T1O; | |
191 T36 = T1N * T1R; | |
192 T1Q = W[3]; | |
193 T1S = FMA(T1Q, T1R, T1P); | |
194 T37 = FNMS(T1Q, T1O, T36); | |
195 } | |
196 { | |
197 E T1V, T1Y, T1W, T2M, T1U, T1X; | |
198 T1V = ri[WS(rs, 17)]; | |
199 T1Y = ii[WS(rs, 17)]; | |
200 T1U = W[32]; | |
201 T1W = T1U * T1V; | |
202 T2M = T1U * T1Y; | |
203 T1X = W[33]; | |
204 T1Z = FMA(T1X, T1Y, T1W); | |
205 T2N = FNMS(T1X, T1V, T2M); | |
206 } | |
207 { | |
208 E T1T, T26, T3U, T3V; | |
209 T1T = T1M + T1S; | |
210 T26 = T1Z + T25; | |
211 T27 = T1T - T26; | |
212 T2f = T1T + T26; | |
213 T3U = T35 + T37; | |
214 T3V = T2N + T2P; | |
215 T3W = T3U - T3V; | |
216 T4f = T3U + T3V; | |
217 } | |
218 { | |
219 E T2L, T2Q, T38, T39; | |
220 T2L = T1M - T1S; | |
221 T2Q = T2N - T2P; | |
222 T2R = T2L - T2Q; | |
223 T3z = T2L + T2Q; | |
224 T38 = T35 - T37; | |
225 T39 = T1Z - T25; | |
226 T3a = T38 + T39; | |
227 T3J = T38 - T39; | |
228 } | |
229 } | |
230 { | |
231 E T1l, T2Y, T1E, T2I, T1r, T30, T1y, T2G; | |
232 { | |
233 E T1h, T1k, T1i, T2X, T1g, T1j; | |
234 T1h = ri[WS(rs, 8)]; | |
235 T1k = ii[WS(rs, 8)]; | |
236 T1g = W[14]; | |
237 T1i = T1g * T1h; | |
238 T2X = T1g * T1k; | |
239 T1j = W[15]; | |
240 T1l = FMA(T1j, T1k, T1i); | |
241 T2Y = FNMS(T1j, T1h, T2X); | |
242 } | |
243 { | |
244 E T1A, T1D, T1B, T2H, T1z, T1C; | |
245 T1A = ri[WS(rs, 3)]; | |
246 T1D = ii[WS(rs, 3)]; | |
247 T1z = W[4]; | |
248 T1B = T1z * T1A; | |
249 T2H = T1z * T1D; | |
250 T1C = W[5]; | |
251 T1E = FMA(T1C, T1D, T1B); | |
252 T2I = FNMS(T1C, T1A, T2H); | |
253 } | |
254 { | |
255 E T1n, T1q, T1o, T2Z, T1m, T1p; | |
256 T1n = ri[WS(rs, 18)]; | |
257 T1q = ii[WS(rs, 18)]; | |
258 T1m = W[34]; | |
259 T1o = T1m * T1n; | |
260 T2Z = T1m * T1q; | |
261 T1p = W[35]; | |
262 T1r = FMA(T1p, T1q, T1o); | |
263 T30 = FNMS(T1p, T1n, T2Z); | |
264 } | |
265 { | |
266 E T1u, T1x, T1v, T2F, T1t, T1w; | |
267 T1u = ri[WS(rs, 13)]; | |
268 T1x = ii[WS(rs, 13)]; | |
269 T1t = W[24]; | |
270 T1v = T1t * T1u; | |
271 T2F = T1t * T1x; | |
272 T1w = W[25]; | |
273 T1y = FMA(T1w, T1x, T1v); | |
274 T2G = FNMS(T1w, T1u, T2F); | |
275 } | |
276 { | |
277 E T1s, T1F, T3R, T3S; | |
278 T1s = T1l + T1r; | |
279 T1F = T1y + T1E; | |
280 T1G = T1s - T1F; | |
281 T2e = T1s + T1F; | |
282 T3R = T2Y + T30; | |
283 T3S = T2G + T2I; | |
284 T3T = T3R - T3S; | |
285 T4e = T3R + T3S; | |
286 } | |
287 { | |
288 E T2E, T2J, T31, T32; | |
289 T2E = T1l - T1r; | |
290 T2J = T2G - T2I; | |
291 T2K = T2E - T2J; | |
292 T3y = T2E + T2J; | |
293 T31 = T2Y - T30; | |
294 T32 = T1y - T1E; | |
295 T33 = T31 + T32; | |
296 T3I = T31 - T32; | |
297 } | |
298 } | |
299 { | |
300 E TT, T3k, T1c, T2A, TZ, T3m, T16, T2y; | |
301 { | |
302 E TP, TS, TQ, T3j, TO, TR; | |
303 TP = ri[WS(rs, 16)]; | |
304 TS = ii[WS(rs, 16)]; | |
305 TO = W[30]; | |
306 TQ = TO * TP; | |
307 T3j = TO * TS; | |
308 TR = W[31]; | |
309 TT = FMA(TR, TS, TQ); | |
310 T3k = FNMS(TR, TP, T3j); | |
311 } | |
312 { | |
313 E T18, T1b, T19, T2z, T17, T1a; | |
314 T18 = ri[WS(rs, 11)]; | |
315 T1b = ii[WS(rs, 11)]; | |
316 T17 = W[20]; | |
317 T19 = T17 * T18; | |
318 T2z = T17 * T1b; | |
319 T1a = W[21]; | |
320 T1c = FMA(T1a, T1b, T19); | |
321 T2A = FNMS(T1a, T18, T2z); | |
322 } | |
323 { | |
324 E TV, TY, TW, T3l, TU, TX; | |
325 TV = ri[WS(rs, 6)]; | |
326 TY = ii[WS(rs, 6)]; | |
327 TU = W[10]; | |
328 TW = TU * TV; | |
329 T3l = TU * TY; | |
330 TX = W[11]; | |
331 TZ = FMA(TX, TY, TW); | |
332 T3m = FNMS(TX, TV, T3l); | |
333 } | |
334 { | |
335 E T12, T15, T13, T2x, T11, T14; | |
336 T12 = ri[WS(rs, 1)]; | |
337 T15 = ii[WS(rs, 1)]; | |
338 T11 = W[0]; | |
339 T13 = T11 * T12; | |
340 T2x = T11 * T15; | |
341 T14 = W[1]; | |
342 T16 = FMA(T14, T15, T13); | |
343 T2y = FNMS(T14, T12, T2x); | |
344 } | |
345 { | |
346 E T10, T1d, T41, T42; | |
347 T10 = TT + TZ; | |
348 T1d = T16 + T1c; | |
349 T1e = T10 - T1d; | |
350 T2c = T10 + T1d; | |
351 T41 = T3k + T3m; | |
352 T42 = T2y + T2A; | |
353 T43 = T41 - T42; | |
354 T4c = T41 + T42; | |
355 } | |
356 { | |
357 E T2w, T2B, T3n, T3o; | |
358 T2w = TT - TZ; | |
359 T2B = T2y - T2A; | |
360 T2C = T2w - T2B; | |
361 T3w = T2w + T2B; | |
362 T3n = T3k - T3m; | |
363 T3o = T16 - T1c; | |
364 T3p = T3n + T3o; | |
365 T3G = T3n - T3o; | |
366 } | |
367 } | |
368 { | |
369 E T45, T47, Tm, T29, T3O, T3P, T46, T3Q; | |
370 { | |
371 E T3X, T44, T1f, T28; | |
372 T3X = T3T - T3W; | |
373 T44 = T40 - T43; | |
374 T45 = FNMS(KP618033988, T44, T3X); | |
375 T47 = FMA(KP618033988, T3X, T44); | |
376 Tm = T8 - Tl; | |
377 T1f = TN + T1e; | |
378 T28 = T1G + T27; | |
379 T29 = T1f + T28; | |
380 T3O = FNMS(KP250000000, T29, Tm); | |
381 T3P = T1f - T28; | |
382 } | |
383 ri[WS(rs, 10)] = Tm + T29; | |
384 T46 = FMA(KP559016994, T3P, T3O); | |
385 ri[WS(rs, 14)] = FNMS(KP951056516, T47, T46); | |
386 ri[WS(rs, 6)] = FMA(KP951056516, T47, T46); | |
387 T3Q = FNMS(KP559016994, T3P, T3O); | |
388 ri[WS(rs, 2)] = FNMS(KP951056516, T45, T3Q); | |
389 ri[WS(rs, 18)] = FMA(KP951056516, T45, T3Q); | |
390 } | |
391 { | |
392 E T4K, T4M, T4B, T4E, T4F, T4G, T4L, T4H; | |
393 { | |
394 E T4I, T4J, T4C, T4D; | |
395 T4I = T1G - T27; | |
396 T4J = TN - T1e; | |
397 T4K = FNMS(KP618033988, T4J, T4I); | |
398 T4M = FMA(KP618033988, T4I, T4J); | |
399 T4B = T4r - T4n; | |
400 T4C = T40 + T43; | |
401 T4D = T3T + T3W; | |
402 T4E = T4C + T4D; | |
403 T4F = FNMS(KP250000000, T4E, T4B); | |
404 T4G = T4C - T4D; | |
405 } | |
406 ii[WS(rs, 10)] = T4E + T4B; | |
407 T4L = FMA(KP559016994, T4G, T4F); | |
408 ii[WS(rs, 6)] = FNMS(KP951056516, T4M, T4L); | |
409 ii[WS(rs, 14)] = FMA(KP951056516, T4M, T4L); | |
410 T4H = FNMS(KP559016994, T4G, T4F); | |
411 ii[WS(rs, 2)] = FMA(KP951056516, T4K, T4H); | |
412 ii[WS(rs, 18)] = FNMS(KP951056516, T4K, T4H); | |
413 } | |
414 { | |
415 E T4h, T4j, T2a, T2h, T48, T49, T4i, T4a; | |
416 { | |
417 E T4d, T4g, T2d, T2g; | |
418 T4d = T4b - T4c; | |
419 T4g = T4e - T4f; | |
420 T4h = FMA(KP618033988, T4g, T4d); | |
421 T4j = FNMS(KP618033988, T4d, T4g); | |
422 T2a = T8 + Tl; | |
423 T2d = T2b + T2c; | |
424 T2g = T2e + T2f; | |
425 T2h = T2d + T2g; | |
426 T48 = FNMS(KP250000000, T2h, T2a); | |
427 T49 = T2d - T2g; | |
428 } | |
429 ri[0] = T2a + T2h; | |
430 T4i = FNMS(KP559016994, T49, T48); | |
431 ri[WS(rs, 12)] = FNMS(KP951056516, T4j, T4i); | |
432 ri[WS(rs, 8)] = FMA(KP951056516, T4j, T4i); | |
433 T4a = FMA(KP559016994, T49, T48); | |
434 ri[WS(rs, 4)] = FNMS(KP951056516, T4h, T4a); | |
435 ri[WS(rs, 16)] = FMA(KP951056516, T4h, T4a); | |
436 } | |
437 { | |
438 E T4y, T4A, T4s, T4m, T4t, T4u, T4z, T4v; | |
439 { | |
440 E T4w, T4x, T4k, T4l; | |
441 T4w = T2b - T2c; | |
442 T4x = T2e - T2f; | |
443 T4y = FMA(KP618033988, T4x, T4w); | |
444 T4A = FNMS(KP618033988, T4w, T4x); | |
445 T4s = T4n + T4r; | |
446 T4k = T4b + T4c; | |
447 T4l = T4e + T4f; | |
448 T4m = T4k + T4l; | |
449 T4t = FNMS(KP250000000, T4m, T4s); | |
450 T4u = T4k - T4l; | |
451 } | |
452 ii[0] = T4m + T4s; | |
453 T4z = FNMS(KP559016994, T4u, T4t); | |
454 ii[WS(rs, 8)] = FNMS(KP951056516, T4A, T4z); | |
455 ii[WS(rs, 12)] = FMA(KP951056516, T4A, T4z); | |
456 T4v = FMA(KP559016994, T4u, T4t); | |
457 ii[WS(rs, 4)] = FMA(KP951056516, T4y, T4v); | |
458 ii[WS(rs, 16)] = FNMS(KP951056516, T4y, T4v); | |
459 } | |
460 { | |
461 E T3r, T3t, T2o, T2T, T2U, T2V, T3s, T2W; | |
462 { | |
463 E T3b, T3q, T2D, T2S; | |
464 T3b = T33 - T3a; | |
465 T3q = T3i - T3p; | |
466 T3r = FNMS(KP618033988, T3q, T3b); | |
467 T3t = FMA(KP618033988, T3b, T3q); | |
468 T2o = T2i - T2n; | |
469 T2D = T2v + T2C; | |
470 T2S = T2K + T2R; | |
471 T2T = T2D + T2S; | |
472 T2U = FNMS(KP250000000, T2T, T2o); | |
473 T2V = T2D - T2S; | |
474 } | |
475 ri[WS(rs, 15)] = T2o + T2T; | |
476 T3s = FMA(KP559016994, T2V, T2U); | |
477 ri[WS(rs, 11)] = FMA(KP951056516, T3t, T3s); | |
478 ri[WS(rs, 19)] = FNMS(KP951056516, T3t, T3s); | |
479 T2W = FNMS(KP559016994, T2V, T2U); | |
480 ri[WS(rs, 3)] = FMA(KP951056516, T3r, T2W); | |
481 ri[WS(rs, 7)] = FNMS(KP951056516, T3r, T2W); | |
482 } | |
483 { | |
484 E T5a, T5c, T51, T54, T55, T56, T5b, T57; | |
485 { | |
486 E T58, T59, T52, T53; | |
487 T58 = T2K - T2R; | |
488 T59 = T2v - T2C; | |
489 T5a = FNMS(KP618033988, T59, T58); | |
490 T5c = FMA(KP618033988, T58, T59); | |
491 T51 = T4O + T4N; | |
492 T52 = T3i + T3p; | |
493 T53 = T33 + T3a; | |
494 T54 = T52 + T53; | |
495 T55 = FNMS(KP250000000, T54, T51); | |
496 T56 = T52 - T53; | |
497 } | |
498 ii[WS(rs, 15)] = T54 + T51; | |
499 T5b = FMA(KP559016994, T56, T55); | |
500 ii[WS(rs, 11)] = FNMS(KP951056516, T5c, T5b); | |
501 ii[WS(rs, 19)] = FMA(KP951056516, T5c, T5b); | |
502 T57 = FNMS(KP559016994, T56, T55); | |
503 ii[WS(rs, 3)] = FNMS(KP951056516, T5a, T57); | |
504 ii[WS(rs, 7)] = FMA(KP951056516, T5a, T57); | |
505 } | |
506 { | |
507 E T3L, T3N, T3u, T3B, T3C, T3D, T3M, T3E; | |
508 { | |
509 E T3H, T3K, T3x, T3A; | |
510 T3H = T3F - T3G; | |
511 T3K = T3I - T3J; | |
512 T3L = FMA(KP618033988, T3K, T3H); | |
513 T3N = FNMS(KP618033988, T3H, T3K); | |
514 T3u = T2i + T2n; | |
515 T3x = T3v + T3w; | |
516 T3A = T3y + T3z; | |
517 T3B = T3x + T3A; | |
518 T3C = FNMS(KP250000000, T3B, T3u); | |
519 T3D = T3x - T3A; | |
520 } | |
521 ri[WS(rs, 5)] = T3u + T3B; | |
522 T3M = FNMS(KP559016994, T3D, T3C); | |
523 ri[WS(rs, 13)] = FMA(KP951056516, T3N, T3M); | |
524 ri[WS(rs, 17)] = FNMS(KP951056516, T3N, T3M); | |
525 T3E = FMA(KP559016994, T3D, T3C); | |
526 ri[WS(rs, 1)] = FMA(KP951056516, T3L, T3E); | |
527 ri[WS(rs, 9)] = FNMS(KP951056516, T3L, T3E); | |
528 } | |
529 { | |
530 E T4Y, T50, T4P, T4S, T4T, T4U, T4Z, T4V; | |
531 { | |
532 E T4W, T4X, T4Q, T4R; | |
533 T4W = T3v - T3w; | |
534 T4X = T3y - T3z; | |
535 T4Y = FMA(KP618033988, T4X, T4W); | |
536 T50 = FNMS(KP618033988, T4W, T4X); | |
537 T4P = T4N - T4O; | |
538 T4Q = T3F + T3G; | |
539 T4R = T3I + T3J; | |
540 T4S = T4Q + T4R; | |
541 T4T = FNMS(KP250000000, T4S, T4P); | |
542 T4U = T4Q - T4R; | |
543 } | |
544 ii[WS(rs, 5)] = T4S + T4P; | |
545 T4Z = FNMS(KP559016994, T4U, T4T); | |
546 ii[WS(rs, 13)] = FNMS(KP951056516, T50, T4Z); | |
547 ii[WS(rs, 17)] = FMA(KP951056516, T50, T4Z); | |
548 T4V = FMA(KP559016994, T4U, T4T); | |
549 ii[WS(rs, 1)] = FNMS(KP951056516, T4Y, T4V); | |
550 ii[WS(rs, 9)] = FMA(KP951056516, T4Y, T4V); | |
551 } | |
552 } | |
553 } | |
554 } | |
555 | |
556 static const tw_instr twinstr[] = { | |
557 {TW_FULL, 0, 20}, | |
558 {TW_NEXT, 1, 0} | |
559 }; | |
560 | |
561 static const ct_desc desc = { 20, "t1_20", twinstr, &GENUS, {136, 38, 110, 0}, 0, 0, 0 }; | |
562 | |
563 void X(codelet_t1_20) (planner *p) { | |
564 X(kdft_dit_register) (p, t1_20, &desc); | |
565 } | |
566 #else | |
567 | |
568 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 20 -name t1_20 -include dft/scalar/t.h */ | |
569 | |
570 /* | |
571 * This function contains 246 FP additions, 124 FP multiplications, | |
572 * (or, 184 additions, 62 multiplications, 62 fused multiply/add), | |
573 * 85 stack variables, 4 constants, and 80 memory accesses | |
574 */ | |
575 #include "dft/scalar/t.h" | |
576 | |
577 static void t1_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
578 { | |
579 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
580 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
581 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
582 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
583 { | |
584 INT m; | |
585 for (m = mb, W = W + (mb * 38); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 38, MAKE_VOLATILE_STRIDE(40, rs)) { | |
586 E Tj, T1R, T4g, T4p, T2q, T37, T3Q, T42, T1r, T1O, T1P, T3i, T3l, T44, T3D; | |
587 E T3E, T3K, T1V, T1W, T1X, T23, T28, T4r, T2W, T2X, T4c, T33, T34, T35, T2G; | |
588 E T2L, T2M, TG, T13, T14, T3p, T3s, T43, T3A, T3B, T3J, T1S, T1T, T1U, T2e; | |
589 E T2j, T4q, T2T, T2U, T4b, T30, T31, T32, T2v, T2A, T2B; | |
590 { | |
591 E T1, T3O, T6, T3N, Tc, T2n, Th, T2o; | |
592 T1 = ri[0]; | |
593 T3O = ii[0]; | |
594 { | |
595 E T3, T5, T2, T4; | |
596 T3 = ri[WS(rs, 10)]; | |
597 T5 = ii[WS(rs, 10)]; | |
598 T2 = W[18]; | |
599 T4 = W[19]; | |
600 T6 = FMA(T2, T3, T4 * T5); | |
601 T3N = FNMS(T4, T3, T2 * T5); | |
602 } | |
603 { | |
604 E T9, Tb, T8, Ta; | |
605 T9 = ri[WS(rs, 5)]; | |
606 Tb = ii[WS(rs, 5)]; | |
607 T8 = W[8]; | |
608 Ta = W[9]; | |
609 Tc = FMA(T8, T9, Ta * Tb); | |
610 T2n = FNMS(Ta, T9, T8 * Tb); | |
611 } | |
612 { | |
613 E Te, Tg, Td, Tf; | |
614 Te = ri[WS(rs, 15)]; | |
615 Tg = ii[WS(rs, 15)]; | |
616 Td = W[28]; | |
617 Tf = W[29]; | |
618 Th = FMA(Td, Te, Tf * Tg); | |
619 T2o = FNMS(Tf, Te, Td * Tg); | |
620 } | |
621 { | |
622 E T7, Ti, T4e, T4f; | |
623 T7 = T1 + T6; | |
624 Ti = Tc + Th; | |
625 Tj = T7 - Ti; | |
626 T1R = T7 + Ti; | |
627 T4e = T3O - T3N; | |
628 T4f = Tc - Th; | |
629 T4g = T4e - T4f; | |
630 T4p = T4f + T4e; | |
631 } | |
632 { | |
633 E T2m, T2p, T3M, T3P; | |
634 T2m = T1 - T6; | |
635 T2p = T2n - T2o; | |
636 T2q = T2m - T2p; | |
637 T37 = T2m + T2p; | |
638 T3M = T2n + T2o; | |
639 T3P = T3N + T3O; | |
640 T3Q = T3M + T3P; | |
641 T42 = T3P - T3M; | |
642 } | |
643 } | |
644 { | |
645 E T1f, T3g, T21, T2C, T1N, T3k, T27, T2K, T1q, T3h, T22, T2F, T1C, T3j, T26; | |
646 E T2H; | |
647 { | |
648 E T19, T1Z, T1e, T20; | |
649 { | |
650 E T16, T18, T15, T17; | |
651 T16 = ri[WS(rs, 8)]; | |
652 T18 = ii[WS(rs, 8)]; | |
653 T15 = W[14]; | |
654 T17 = W[15]; | |
655 T19 = FMA(T15, T16, T17 * T18); | |
656 T1Z = FNMS(T17, T16, T15 * T18); | |
657 } | |
658 { | |
659 E T1b, T1d, T1a, T1c; | |
660 T1b = ri[WS(rs, 18)]; | |
661 T1d = ii[WS(rs, 18)]; | |
662 T1a = W[34]; | |
663 T1c = W[35]; | |
664 T1e = FMA(T1a, T1b, T1c * T1d); | |
665 T20 = FNMS(T1c, T1b, T1a * T1d); | |
666 } | |
667 T1f = T19 + T1e; | |
668 T3g = T1Z + T20; | |
669 T21 = T1Z - T20; | |
670 T2C = T19 - T1e; | |
671 } | |
672 { | |
673 E T1H, T2I, T1M, T2J; | |
674 { | |
675 E T1E, T1G, T1D, T1F; | |
676 T1E = ri[WS(rs, 17)]; | |
677 T1G = ii[WS(rs, 17)]; | |
678 T1D = W[32]; | |
679 T1F = W[33]; | |
680 T1H = FMA(T1D, T1E, T1F * T1G); | |
681 T2I = FNMS(T1F, T1E, T1D * T1G); | |
682 } | |
683 { | |
684 E T1J, T1L, T1I, T1K; | |
685 T1J = ri[WS(rs, 7)]; | |
686 T1L = ii[WS(rs, 7)]; | |
687 T1I = W[12]; | |
688 T1K = W[13]; | |
689 T1M = FMA(T1I, T1J, T1K * T1L); | |
690 T2J = FNMS(T1K, T1J, T1I * T1L); | |
691 } | |
692 T1N = T1H + T1M; | |
693 T3k = T2I + T2J; | |
694 T27 = T1H - T1M; | |
695 T2K = T2I - T2J; | |
696 } | |
697 { | |
698 E T1k, T2D, T1p, T2E; | |
699 { | |
700 E T1h, T1j, T1g, T1i; | |
701 T1h = ri[WS(rs, 13)]; | |
702 T1j = ii[WS(rs, 13)]; | |
703 T1g = W[24]; | |
704 T1i = W[25]; | |
705 T1k = FMA(T1g, T1h, T1i * T1j); | |
706 T2D = FNMS(T1i, T1h, T1g * T1j); | |
707 } | |
708 { | |
709 E T1m, T1o, T1l, T1n; | |
710 T1m = ri[WS(rs, 3)]; | |
711 T1o = ii[WS(rs, 3)]; | |
712 T1l = W[4]; | |
713 T1n = W[5]; | |
714 T1p = FMA(T1l, T1m, T1n * T1o); | |
715 T2E = FNMS(T1n, T1m, T1l * T1o); | |
716 } | |
717 T1q = T1k + T1p; | |
718 T3h = T2D + T2E; | |
719 T22 = T1k - T1p; | |
720 T2F = T2D - T2E; | |
721 } | |
722 { | |
723 E T1w, T24, T1B, T25; | |
724 { | |
725 E T1t, T1v, T1s, T1u; | |
726 T1t = ri[WS(rs, 12)]; | |
727 T1v = ii[WS(rs, 12)]; | |
728 T1s = W[22]; | |
729 T1u = W[23]; | |
730 T1w = FMA(T1s, T1t, T1u * T1v); | |
731 T24 = FNMS(T1u, T1t, T1s * T1v); | |
732 } | |
733 { | |
734 E T1y, T1A, T1x, T1z; | |
735 T1y = ri[WS(rs, 2)]; | |
736 T1A = ii[WS(rs, 2)]; | |
737 T1x = W[2]; | |
738 T1z = W[3]; | |
739 T1B = FMA(T1x, T1y, T1z * T1A); | |
740 T25 = FNMS(T1z, T1y, T1x * T1A); | |
741 } | |
742 T1C = T1w + T1B; | |
743 T3j = T24 + T25; | |
744 T26 = T24 - T25; | |
745 T2H = T1w - T1B; | |
746 } | |
747 T1r = T1f - T1q; | |
748 T1O = T1C - T1N; | |
749 T1P = T1r + T1O; | |
750 T3i = T3g - T3h; | |
751 T3l = T3j - T3k; | |
752 T44 = T3i + T3l; | |
753 T3D = T3g + T3h; | |
754 T3E = T3j + T3k; | |
755 T3K = T3D + T3E; | |
756 T1V = T1f + T1q; | |
757 T1W = T1C + T1N; | |
758 T1X = T1V + T1W; | |
759 T23 = T21 + T22; | |
760 T28 = T26 + T27; | |
761 T4r = T23 + T28; | |
762 T2W = T21 - T22; | |
763 T2X = T26 - T27; | |
764 T4c = T2W + T2X; | |
765 T33 = T2C + T2F; | |
766 T34 = T2H + T2K; | |
767 T35 = T33 + T34; | |
768 T2G = T2C - T2F; | |
769 T2L = T2H - T2K; | |
770 T2M = T2G + T2L; | |
771 } | |
772 { | |
773 E Tu, T3n, T2c, T2r, T12, T3r, T2i, T2z, TF, T3o, T2d, T2u, TR, T3q, T2h; | |
774 E T2w; | |
775 { | |
776 E To, T2a, Tt, T2b; | |
777 { | |
778 E Tl, Tn, Tk, Tm; | |
779 Tl = ri[WS(rs, 4)]; | |
780 Tn = ii[WS(rs, 4)]; | |
781 Tk = W[6]; | |
782 Tm = W[7]; | |
783 To = FMA(Tk, Tl, Tm * Tn); | |
784 T2a = FNMS(Tm, Tl, Tk * Tn); | |
785 } | |
786 { | |
787 E Tq, Ts, Tp, Tr; | |
788 Tq = ri[WS(rs, 14)]; | |
789 Ts = ii[WS(rs, 14)]; | |
790 Tp = W[26]; | |
791 Tr = W[27]; | |
792 Tt = FMA(Tp, Tq, Tr * Ts); | |
793 T2b = FNMS(Tr, Tq, Tp * Ts); | |
794 } | |
795 Tu = To + Tt; | |
796 T3n = T2a + T2b; | |
797 T2c = T2a - T2b; | |
798 T2r = To - Tt; | |
799 } | |
800 { | |
801 E TW, T2x, T11, T2y; | |
802 { | |
803 E TT, TV, TS, TU; | |
804 TT = ri[WS(rs, 1)]; | |
805 TV = ii[WS(rs, 1)]; | |
806 TS = W[0]; | |
807 TU = W[1]; | |
808 TW = FMA(TS, TT, TU * TV); | |
809 T2x = FNMS(TU, TT, TS * TV); | |
810 } | |
811 { | |
812 E TY, T10, TX, TZ; | |
813 TY = ri[WS(rs, 11)]; | |
814 T10 = ii[WS(rs, 11)]; | |
815 TX = W[20]; | |
816 TZ = W[21]; | |
817 T11 = FMA(TX, TY, TZ * T10); | |
818 T2y = FNMS(TZ, TY, TX * T10); | |
819 } | |
820 T12 = TW + T11; | |
821 T3r = T2x + T2y; | |
822 T2i = TW - T11; | |
823 T2z = T2x - T2y; | |
824 } | |
825 { | |
826 E Tz, T2s, TE, T2t; | |
827 { | |
828 E Tw, Ty, Tv, Tx; | |
829 Tw = ri[WS(rs, 9)]; | |
830 Ty = ii[WS(rs, 9)]; | |
831 Tv = W[16]; | |
832 Tx = W[17]; | |
833 Tz = FMA(Tv, Tw, Tx * Ty); | |
834 T2s = FNMS(Tx, Tw, Tv * Ty); | |
835 } | |
836 { | |
837 E TB, TD, TA, TC; | |
838 TB = ri[WS(rs, 19)]; | |
839 TD = ii[WS(rs, 19)]; | |
840 TA = W[36]; | |
841 TC = W[37]; | |
842 TE = FMA(TA, TB, TC * TD); | |
843 T2t = FNMS(TC, TB, TA * TD); | |
844 } | |
845 TF = Tz + TE; | |
846 T3o = T2s + T2t; | |
847 T2d = Tz - TE; | |
848 T2u = T2s - T2t; | |
849 } | |
850 { | |
851 E TL, T2f, TQ, T2g; | |
852 { | |
853 E TI, TK, TH, TJ; | |
854 TI = ri[WS(rs, 16)]; | |
855 TK = ii[WS(rs, 16)]; | |
856 TH = W[30]; | |
857 TJ = W[31]; | |
858 TL = FMA(TH, TI, TJ * TK); | |
859 T2f = FNMS(TJ, TI, TH * TK); | |
860 } | |
861 { | |
862 E TN, TP, TM, TO; | |
863 TN = ri[WS(rs, 6)]; | |
864 TP = ii[WS(rs, 6)]; | |
865 TM = W[10]; | |
866 TO = W[11]; | |
867 TQ = FMA(TM, TN, TO * TP); | |
868 T2g = FNMS(TO, TN, TM * TP); | |
869 } | |
870 TR = TL + TQ; | |
871 T3q = T2f + T2g; | |
872 T2h = T2f - T2g; | |
873 T2w = TL - TQ; | |
874 } | |
875 TG = Tu - TF; | |
876 T13 = TR - T12; | |
877 T14 = TG + T13; | |
878 T3p = T3n - T3o; | |
879 T3s = T3q - T3r; | |
880 T43 = T3p + T3s; | |
881 T3A = T3n + T3o; | |
882 T3B = T3q + T3r; | |
883 T3J = T3A + T3B; | |
884 T1S = Tu + TF; | |
885 T1T = TR + T12; | |
886 T1U = T1S + T1T; | |
887 T2e = T2c + T2d; | |
888 T2j = T2h + T2i; | |
889 T4q = T2e + T2j; | |
890 T2T = T2c - T2d; | |
891 T2U = T2h - T2i; | |
892 T4b = T2T + T2U; | |
893 T30 = T2r + T2u; | |
894 T31 = T2w + T2z; | |
895 T32 = T30 + T31; | |
896 T2v = T2r - T2u; | |
897 T2A = T2w - T2z; | |
898 T2B = T2v + T2A; | |
899 } | |
900 { | |
901 E T3e, T1Q, T3d, T3u, T3w, T3m, T3t, T3v, T3f; | |
902 T3e = KP559016994 * (T14 - T1P); | |
903 T1Q = T14 + T1P; | |
904 T3d = FNMS(KP250000000, T1Q, Tj); | |
905 T3m = T3i - T3l; | |
906 T3t = T3p - T3s; | |
907 T3u = FNMS(KP587785252, T3t, KP951056516 * T3m); | |
908 T3w = FMA(KP951056516, T3t, KP587785252 * T3m); | |
909 ri[WS(rs, 10)] = Tj + T1Q; | |
910 T3v = T3e + T3d; | |
911 ri[WS(rs, 14)] = T3v - T3w; | |
912 ri[WS(rs, 6)] = T3v + T3w; | |
913 T3f = T3d - T3e; | |
914 ri[WS(rs, 2)] = T3f - T3u; | |
915 ri[WS(rs, 18)] = T3f + T3u; | |
916 } | |
917 { | |
918 E T47, T45, T46, T41, T4a, T3Z, T40, T49, T48; | |
919 T47 = KP559016994 * (T43 - T44); | |
920 T45 = T43 + T44; | |
921 T46 = FNMS(KP250000000, T45, T42); | |
922 T3Z = T1r - T1O; | |
923 T40 = TG - T13; | |
924 T41 = FNMS(KP587785252, T40, KP951056516 * T3Z); | |
925 T4a = FMA(KP951056516, T40, KP587785252 * T3Z); | |
926 ii[WS(rs, 10)] = T45 + T42; | |
927 T49 = T47 + T46; | |
928 ii[WS(rs, 6)] = T49 - T4a; | |
929 ii[WS(rs, 14)] = T4a + T49; | |
930 T48 = T46 - T47; | |
931 ii[WS(rs, 2)] = T41 + T48; | |
932 ii[WS(rs, 18)] = T48 - T41; | |
933 } | |
934 { | |
935 E T3x, T1Y, T3y, T3G, T3I, T3C, T3F, T3H, T3z; | |
936 T3x = KP559016994 * (T1U - T1X); | |
937 T1Y = T1U + T1X; | |
938 T3y = FNMS(KP250000000, T1Y, T1R); | |
939 T3C = T3A - T3B; | |
940 T3F = T3D - T3E; | |
941 T3G = FMA(KP951056516, T3C, KP587785252 * T3F); | |
942 T3I = FNMS(KP587785252, T3C, KP951056516 * T3F); | |
943 ri[0] = T1R + T1Y; | |
944 T3H = T3y - T3x; | |
945 ri[WS(rs, 12)] = T3H - T3I; | |
946 ri[WS(rs, 8)] = T3H + T3I; | |
947 T3z = T3x + T3y; | |
948 ri[WS(rs, 4)] = T3z - T3G; | |
949 ri[WS(rs, 16)] = T3z + T3G; | |
950 } | |
951 { | |
952 E T3U, T3L, T3V, T3T, T3Y, T3R, T3S, T3X, T3W; | |
953 T3U = KP559016994 * (T3J - T3K); | |
954 T3L = T3J + T3K; | |
955 T3V = FNMS(KP250000000, T3L, T3Q); | |
956 T3R = T1S - T1T; | |
957 T3S = T1V - T1W; | |
958 T3T = FMA(KP951056516, T3R, KP587785252 * T3S); | |
959 T3Y = FNMS(KP587785252, T3R, KP951056516 * T3S); | |
960 ii[0] = T3L + T3Q; | |
961 T3X = T3V - T3U; | |
962 ii[WS(rs, 8)] = T3X - T3Y; | |
963 ii[WS(rs, 12)] = T3Y + T3X; | |
964 T3W = T3U + T3V; | |
965 ii[WS(rs, 4)] = T3T + T3W; | |
966 ii[WS(rs, 16)] = T3W - T3T; | |
967 } | |
968 { | |
969 E T2P, T2N, T2O, T2l, T2R, T29, T2k, T2S, T2Q; | |
970 T2P = KP559016994 * (T2B - T2M); | |
971 T2N = T2B + T2M; | |
972 T2O = FNMS(KP250000000, T2N, T2q); | |
973 T29 = T23 - T28; | |
974 T2k = T2e - T2j; | |
975 T2l = FNMS(KP587785252, T2k, KP951056516 * T29); | |
976 T2R = FMA(KP951056516, T2k, KP587785252 * T29); | |
977 ri[WS(rs, 15)] = T2q + T2N; | |
978 T2S = T2P + T2O; | |
979 ri[WS(rs, 11)] = T2R + T2S; | |
980 ri[WS(rs, 19)] = T2S - T2R; | |
981 T2Q = T2O - T2P; | |
982 ri[WS(rs, 3)] = T2l + T2Q; | |
983 ri[WS(rs, 7)] = T2Q - T2l; | |
984 } | |
985 { | |
986 E T4u, T4s, T4t, T4y, T4A, T4w, T4x, T4z, T4v; | |
987 T4u = KP559016994 * (T4q - T4r); | |
988 T4s = T4q + T4r; | |
989 T4t = FNMS(KP250000000, T4s, T4p); | |
990 T4w = T2G - T2L; | |
991 T4x = T2v - T2A; | |
992 T4y = FNMS(KP587785252, T4x, KP951056516 * T4w); | |
993 T4A = FMA(KP951056516, T4x, KP587785252 * T4w); | |
994 ii[WS(rs, 15)] = T4s + T4p; | |
995 T4z = T4u + T4t; | |
996 ii[WS(rs, 11)] = T4z - T4A; | |
997 ii[WS(rs, 19)] = T4A + T4z; | |
998 T4v = T4t - T4u; | |
999 ii[WS(rs, 3)] = T4v - T4y; | |
1000 ii[WS(rs, 7)] = T4y + T4v; | |
1001 } | |
1002 { | |
1003 E T36, T38, T39, T2Z, T3b, T2V, T2Y, T3c, T3a; | |
1004 T36 = KP559016994 * (T32 - T35); | |
1005 T38 = T32 + T35; | |
1006 T39 = FNMS(KP250000000, T38, T37); | |
1007 T2V = T2T - T2U; | |
1008 T2Y = T2W - T2X; | |
1009 T2Z = FMA(KP951056516, T2V, KP587785252 * T2Y); | |
1010 T3b = FNMS(KP587785252, T2V, KP951056516 * T2Y); | |
1011 ri[WS(rs, 5)] = T37 + T38; | |
1012 T3c = T39 - T36; | |
1013 ri[WS(rs, 13)] = T3b + T3c; | |
1014 ri[WS(rs, 17)] = T3c - T3b; | |
1015 T3a = T36 + T39; | |
1016 ri[WS(rs, 1)] = T2Z + T3a; | |
1017 ri[WS(rs, 9)] = T3a - T2Z; | |
1018 } | |
1019 { | |
1020 E T4d, T4h, T4i, T4m, T4o, T4k, T4l, T4n, T4j; | |
1021 T4d = KP559016994 * (T4b - T4c); | |
1022 T4h = T4b + T4c; | |
1023 T4i = FNMS(KP250000000, T4h, T4g); | |
1024 T4k = T30 - T31; | |
1025 T4l = T33 - T34; | |
1026 T4m = FMA(KP951056516, T4k, KP587785252 * T4l); | |
1027 T4o = FNMS(KP587785252, T4k, KP951056516 * T4l); | |
1028 ii[WS(rs, 5)] = T4h + T4g; | |
1029 T4n = T4i - T4d; | |
1030 ii[WS(rs, 13)] = T4n - T4o; | |
1031 ii[WS(rs, 17)] = T4o + T4n; | |
1032 T4j = T4d + T4i; | |
1033 ii[WS(rs, 1)] = T4j - T4m; | |
1034 ii[WS(rs, 9)] = T4m + T4j; | |
1035 } | |
1036 } | |
1037 } | |
1038 } | |
1039 | |
1040 static const tw_instr twinstr[] = { | |
1041 {TW_FULL, 0, 20}, | |
1042 {TW_NEXT, 1, 0} | |
1043 }; | |
1044 | |
1045 static const ct_desc desc = { 20, "t1_20", twinstr, &GENUS, {184, 62, 62, 0}, 0, 0, 0 }; | |
1046 | |
1047 void X(codelet_t1_20) (planner *p) { | |
1048 X(kdft_dit_register) (p, t1_20, &desc); | |
1049 } | |
1050 #endif |