Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/scalar/codelets/t1_15.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:14 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 15 -name t1_15 -include dft/scalar/t.h */ | |
29 | |
30 /* | |
31 * This function contains 184 FP additions, 140 FP multiplications, | |
32 * (or, 72 additions, 28 multiplications, 112 fused multiply/add), | |
33 * 51 stack variables, 6 constants, and 60 memory accesses | |
34 */ | |
35 #include "dft/scalar/t.h" | |
36 | |
37 static void t1_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
43 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
44 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
45 { | |
46 INT m; | |
47 for (m = mb, W = W + (mb * 28); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 28, MAKE_VOLATILE_STRIDE(30, rs)) { | |
48 E T1, T3j, T1G, T3u, Te, T1B, T3i, T3t, T1y, T2i, T2a, T2M, T37, T2V, Tz; | |
49 E T2e, T1O, T2t, T39, T2X, TT, T2f, T1V, T2z, T3a, T2Y, T1e, T2h, T23, T2G; | |
50 E T36, T2U; | |
51 { | |
52 E T7, T1D, Td, T1F; | |
53 T1 = ri[0]; | |
54 T3j = ii[0]; | |
55 { | |
56 E T3, T6, T4, T1C, T2, T5; | |
57 T3 = ri[WS(rs, 5)]; | |
58 T6 = ii[WS(rs, 5)]; | |
59 T2 = W[8]; | |
60 T4 = T2 * T3; | |
61 T1C = T2 * T6; | |
62 T5 = W[9]; | |
63 T7 = FMA(T5, T6, T4); | |
64 T1D = FNMS(T5, T3, T1C); | |
65 } | |
66 { | |
67 E T9, Tc, Ta, T1E, T8, Tb; | |
68 T9 = ri[WS(rs, 10)]; | |
69 Tc = ii[WS(rs, 10)]; | |
70 T8 = W[18]; | |
71 Ta = T8 * T9; | |
72 T1E = T8 * Tc; | |
73 Tb = W[19]; | |
74 Td = FMA(Tb, Tc, Ta); | |
75 T1F = FNMS(Tb, T9, T1E); | |
76 } | |
77 T1G = T1D - T1F; | |
78 T3u = Td - T7; | |
79 Te = T7 + Td; | |
80 T1B = FNMS(KP500000000, Te, T1); | |
81 T3i = T1D + T1F; | |
82 T3t = FNMS(KP500000000, T3i, T3j); | |
83 } | |
84 { | |
85 E T1k, T2I, T1w, T28, T1q, T26; | |
86 { | |
87 E T1g, T1j, T1h, T2H, T1f, T1i; | |
88 T1g = ri[WS(rs, 9)]; | |
89 T1j = ii[WS(rs, 9)]; | |
90 T1f = W[16]; | |
91 T1h = T1f * T1g; | |
92 T2H = T1f * T1j; | |
93 T1i = W[17]; | |
94 T1k = FMA(T1i, T1j, T1h); | |
95 T2I = FNMS(T1i, T1g, T2H); | |
96 } | |
97 { | |
98 E T1s, T1v, T1t, T27, T1r, T1u; | |
99 T1s = ri[WS(rs, 4)]; | |
100 T1v = ii[WS(rs, 4)]; | |
101 T1r = W[6]; | |
102 T1t = T1r * T1s; | |
103 T27 = T1r * T1v; | |
104 T1u = W[7]; | |
105 T1w = FMA(T1u, T1v, T1t); | |
106 T28 = FNMS(T1u, T1s, T27); | |
107 } | |
108 { | |
109 E T1m, T1p, T1n, T25, T1l, T1o; | |
110 T1m = ri[WS(rs, 14)]; | |
111 T1p = ii[WS(rs, 14)]; | |
112 T1l = W[26]; | |
113 T1n = T1l * T1m; | |
114 T25 = T1l * T1p; | |
115 T1o = W[27]; | |
116 T1q = FMA(T1o, T1p, T1n); | |
117 T26 = FNMS(T1o, T1m, T25); | |
118 } | |
119 { | |
120 E T29, T1x, T24, T2L, T2J, T2K; | |
121 T29 = T26 - T28; | |
122 T1x = T1q + T1w; | |
123 T24 = FNMS(KP500000000, T1x, T1k); | |
124 T1y = T1k + T1x; | |
125 T2i = FMA(KP866025403, T29, T24); | |
126 T2a = FNMS(KP866025403, T29, T24); | |
127 T2L = T1w - T1q; | |
128 T2J = T26 + T28; | |
129 T2K = FNMS(KP500000000, T2J, T2I); | |
130 T2M = FMA(KP866025403, T2L, T2K); | |
131 T37 = T2I + T2J; | |
132 T2V = FNMS(KP866025403, T2L, T2K); | |
133 } | |
134 } | |
135 { | |
136 E Tl, T2p, Tx, T1M, Tr, T1K; | |
137 { | |
138 E Th, Tk, Ti, T2o, Tg, Tj; | |
139 Th = ri[WS(rs, 3)]; | |
140 Tk = ii[WS(rs, 3)]; | |
141 Tg = W[4]; | |
142 Ti = Tg * Th; | |
143 T2o = Tg * Tk; | |
144 Tj = W[5]; | |
145 Tl = FMA(Tj, Tk, Ti); | |
146 T2p = FNMS(Tj, Th, T2o); | |
147 } | |
148 { | |
149 E Tt, Tw, Tu, T1L, Ts, Tv; | |
150 Tt = ri[WS(rs, 13)]; | |
151 Tw = ii[WS(rs, 13)]; | |
152 Ts = W[24]; | |
153 Tu = Ts * Tt; | |
154 T1L = Ts * Tw; | |
155 Tv = W[25]; | |
156 Tx = FMA(Tv, Tw, Tu); | |
157 T1M = FNMS(Tv, Tt, T1L); | |
158 } | |
159 { | |
160 E Tn, Tq, To, T1J, Tm, Tp; | |
161 Tn = ri[WS(rs, 8)]; | |
162 Tq = ii[WS(rs, 8)]; | |
163 Tm = W[14]; | |
164 To = Tm * Tn; | |
165 T1J = Tm * Tq; | |
166 Tp = W[15]; | |
167 Tr = FMA(Tp, Tq, To); | |
168 T1K = FNMS(Tp, Tn, T1J); | |
169 } | |
170 { | |
171 E T1N, Ty, T1I, T2s, T2q, T2r; | |
172 T1N = T1K - T1M; | |
173 Ty = Tr + Tx; | |
174 T1I = FNMS(KP500000000, Ty, Tl); | |
175 Tz = Tl + Ty; | |
176 T2e = FMA(KP866025403, T1N, T1I); | |
177 T1O = FNMS(KP866025403, T1N, T1I); | |
178 T2s = Tx - Tr; | |
179 T2q = T1K + T1M; | |
180 T2r = FNMS(KP500000000, T2q, T2p); | |
181 T2t = FMA(KP866025403, T2s, T2r); | |
182 T39 = T2p + T2q; | |
183 T2X = FNMS(KP866025403, T2s, T2r); | |
184 } | |
185 } | |
186 { | |
187 E TF, T2v, TR, T1T, TL, T1R; | |
188 { | |
189 E TB, TE, TC, T2u, TA, TD; | |
190 TB = ri[WS(rs, 12)]; | |
191 TE = ii[WS(rs, 12)]; | |
192 TA = W[22]; | |
193 TC = TA * TB; | |
194 T2u = TA * TE; | |
195 TD = W[23]; | |
196 TF = FMA(TD, TE, TC); | |
197 T2v = FNMS(TD, TB, T2u); | |
198 } | |
199 { | |
200 E TN, TQ, TO, T1S, TM, TP; | |
201 TN = ri[WS(rs, 7)]; | |
202 TQ = ii[WS(rs, 7)]; | |
203 TM = W[12]; | |
204 TO = TM * TN; | |
205 T1S = TM * TQ; | |
206 TP = W[13]; | |
207 TR = FMA(TP, TQ, TO); | |
208 T1T = FNMS(TP, TN, T1S); | |
209 } | |
210 { | |
211 E TH, TK, TI, T1Q, TG, TJ; | |
212 TH = ri[WS(rs, 2)]; | |
213 TK = ii[WS(rs, 2)]; | |
214 TG = W[2]; | |
215 TI = TG * TH; | |
216 T1Q = TG * TK; | |
217 TJ = W[3]; | |
218 TL = FMA(TJ, TK, TI); | |
219 T1R = FNMS(TJ, TH, T1Q); | |
220 } | |
221 { | |
222 E T1U, TS, T1P, T2y, T2w, T2x; | |
223 T1U = T1R - T1T; | |
224 TS = TL + TR; | |
225 T1P = FNMS(KP500000000, TS, TF); | |
226 TT = TF + TS; | |
227 T2f = FMA(KP866025403, T1U, T1P); | |
228 T1V = FNMS(KP866025403, T1U, T1P); | |
229 T2y = TR - TL; | |
230 T2w = T1R + T1T; | |
231 T2x = FNMS(KP500000000, T2w, T2v); | |
232 T2z = FMA(KP866025403, T2y, T2x); | |
233 T3a = T2v + T2w; | |
234 T2Y = FNMS(KP866025403, T2y, T2x); | |
235 } | |
236 } | |
237 { | |
238 E T10, T2C, T1c, T21, T16, T1Z; | |
239 { | |
240 E TW, TZ, TX, T2B, TV, TY; | |
241 TW = ri[WS(rs, 6)]; | |
242 TZ = ii[WS(rs, 6)]; | |
243 TV = W[10]; | |
244 TX = TV * TW; | |
245 T2B = TV * TZ; | |
246 TY = W[11]; | |
247 T10 = FMA(TY, TZ, TX); | |
248 T2C = FNMS(TY, TW, T2B); | |
249 } | |
250 { | |
251 E T18, T1b, T19, T20, T17, T1a; | |
252 T18 = ri[WS(rs, 1)]; | |
253 T1b = ii[WS(rs, 1)]; | |
254 T17 = W[0]; | |
255 T19 = T17 * T18; | |
256 T20 = T17 * T1b; | |
257 T1a = W[1]; | |
258 T1c = FMA(T1a, T1b, T19); | |
259 T21 = FNMS(T1a, T18, T20); | |
260 } | |
261 { | |
262 E T12, T15, T13, T1Y, T11, T14; | |
263 T12 = ri[WS(rs, 11)]; | |
264 T15 = ii[WS(rs, 11)]; | |
265 T11 = W[20]; | |
266 T13 = T11 * T12; | |
267 T1Y = T11 * T15; | |
268 T14 = W[21]; | |
269 T16 = FMA(T14, T15, T13); | |
270 T1Z = FNMS(T14, T12, T1Y); | |
271 } | |
272 { | |
273 E T22, T1d, T1X, T2F, T2D, T2E; | |
274 T22 = T1Z - T21; | |
275 T1d = T16 + T1c; | |
276 T1X = FNMS(KP500000000, T1d, T10); | |
277 T1e = T10 + T1d; | |
278 T2h = FMA(KP866025403, T22, T1X); | |
279 T23 = FNMS(KP866025403, T22, T1X); | |
280 T2F = T1c - T16; | |
281 T2D = T1Z + T21; | |
282 T2E = FNMS(KP500000000, T2D, T2C); | |
283 T2G = FMA(KP866025403, T2F, T2E); | |
284 T36 = T2C + T2D; | |
285 T2U = FNMS(KP866025403, T2F, T2E); | |
286 } | |
287 } | |
288 { | |
289 E T3c, T3e, Tf, T1A, T33, T34, T3d, T35; | |
290 { | |
291 E T38, T3b, TU, T1z; | |
292 T38 = T36 - T37; | |
293 T3b = T39 - T3a; | |
294 T3c = FNMS(KP618033988, T3b, T38); | |
295 T3e = FMA(KP618033988, T38, T3b); | |
296 Tf = T1 + Te; | |
297 TU = Tz + TT; | |
298 T1z = T1e + T1y; | |
299 T1A = TU + T1z; | |
300 T33 = FNMS(KP250000000, T1A, Tf); | |
301 T34 = TU - T1z; | |
302 } | |
303 ri[0] = Tf + T1A; | |
304 T3d = FMA(KP559016994, T34, T33); | |
305 ri[WS(rs, 9)] = FNMS(KP951056516, T3e, T3d); | |
306 ri[WS(rs, 6)] = FMA(KP951056516, T3e, T3d); | |
307 T35 = FNMS(KP559016994, T34, T33); | |
308 ri[WS(rs, 12)] = FNMS(KP951056516, T3c, T35); | |
309 ri[WS(rs, 3)] = FMA(KP951056516, T3c, T35); | |
310 } | |
311 { | |
312 E T3q, T3s, T3k, T3h, T3l, T3m, T3r, T3n; | |
313 { | |
314 E T3o, T3p, T3f, T3g; | |
315 T3o = T1e - T1y; | |
316 T3p = Tz - TT; | |
317 T3q = FNMS(KP618033988, T3p, T3o); | |
318 T3s = FMA(KP618033988, T3o, T3p); | |
319 T3k = T3i + T3j; | |
320 T3f = T39 + T3a; | |
321 T3g = T36 + T37; | |
322 T3h = T3f + T3g; | |
323 T3l = FNMS(KP250000000, T3h, T3k); | |
324 T3m = T3f - T3g; | |
325 } | |
326 ii[0] = T3h + T3k; | |
327 T3r = FMA(KP559016994, T3m, T3l); | |
328 ii[WS(rs, 6)] = FNMS(KP951056516, T3s, T3r); | |
329 ii[WS(rs, 9)] = FMA(KP951056516, T3s, T3r); | |
330 T3n = FNMS(KP559016994, T3m, T3l); | |
331 ii[WS(rs, 3)] = FNMS(KP951056516, T3q, T3n); | |
332 ii[WS(rs, 12)] = FMA(KP951056516, T3q, T3n); | |
333 } | |
334 { | |
335 E T30, T32, T1H, T2c, T2R, T2S, T31, T2T; | |
336 { | |
337 E T2W, T2Z, T1W, T2b; | |
338 T2W = T2U - T2V; | |
339 T2Z = T2X - T2Y; | |
340 T30 = FNMS(KP618033988, T2Z, T2W); | |
341 T32 = FMA(KP618033988, T2W, T2Z); | |
342 T1H = FNMS(KP866025403, T1G, T1B); | |
343 T1W = T1O + T1V; | |
344 T2b = T23 + T2a; | |
345 T2c = T1W + T2b; | |
346 T2R = FNMS(KP250000000, T2c, T1H); | |
347 T2S = T1W - T2b; | |
348 } | |
349 ri[WS(rs, 5)] = T1H + T2c; | |
350 T31 = FMA(KP559016994, T2S, T2R); | |
351 ri[WS(rs, 14)] = FNMS(KP951056516, T32, T31); | |
352 ri[WS(rs, 11)] = FMA(KP951056516, T32, T31); | |
353 T2T = FNMS(KP559016994, T2S, T2R); | |
354 ri[WS(rs, 2)] = FNMS(KP951056516, T30, T2T); | |
355 ri[WS(rs, 8)] = FMA(KP951056516, T30, T2T); | |
356 } | |
357 { | |
358 E T3Q, T3S, T3H, T3K, T3L, T3M, T3R, T3N; | |
359 { | |
360 E T3O, T3P, T3I, T3J; | |
361 T3O = T23 - T2a; | |
362 T3P = T1O - T1V; | |
363 T3Q = FNMS(KP618033988, T3P, T3O); | |
364 T3S = FMA(KP618033988, T3O, T3P); | |
365 T3H = FNMS(KP866025403, T3u, T3t); | |
366 T3I = T2X + T2Y; | |
367 T3J = T2U + T2V; | |
368 T3K = T3I + T3J; | |
369 T3L = FNMS(KP250000000, T3K, T3H); | |
370 T3M = T3I - T3J; | |
371 } | |
372 ii[WS(rs, 5)] = T3K + T3H; | |
373 T3R = FMA(KP559016994, T3M, T3L); | |
374 ii[WS(rs, 11)] = FNMS(KP951056516, T3S, T3R); | |
375 ii[WS(rs, 14)] = FMA(KP951056516, T3S, T3R); | |
376 T3N = FNMS(KP559016994, T3M, T3L); | |
377 ii[WS(rs, 2)] = FMA(KP951056516, T3Q, T3N); | |
378 ii[WS(rs, 8)] = FNMS(KP951056516, T3Q, T3N); | |
379 } | |
380 { | |
381 E T3E, T3G, T3v, T3y, T3z, T3A, T3F, T3B; | |
382 { | |
383 E T3C, T3D, T3w, T3x; | |
384 T3C = T2e - T2f; | |
385 T3D = T2h - T2i; | |
386 T3E = FMA(KP618033988, T3D, T3C); | |
387 T3G = FNMS(KP618033988, T3C, T3D); | |
388 T3v = FMA(KP866025403, T3u, T3t); | |
389 T3w = T2t + T2z; | |
390 T3x = T2G + T2M; | |
391 T3y = T3w + T3x; | |
392 T3z = FNMS(KP250000000, T3y, T3v); | |
393 T3A = T3w - T3x; | |
394 } | |
395 ii[WS(rs, 10)] = T3y + T3v; | |
396 T3F = FNMS(KP559016994, T3A, T3z); | |
397 ii[WS(rs, 7)] = FMA(KP951056516, T3G, T3F); | |
398 ii[WS(rs, 13)] = FNMS(KP951056516, T3G, T3F); | |
399 T3B = FMA(KP559016994, T3A, T3z); | |
400 ii[WS(rs, 1)] = FNMS(KP951056516, T3E, T3B); | |
401 ii[WS(rs, 4)] = FMA(KP951056516, T3E, T3B); | |
402 } | |
403 { | |
404 E T2O, T2Q, T2d, T2k, T2l, T2m, T2P, T2n; | |
405 { | |
406 E T2A, T2N, T2g, T2j; | |
407 T2A = T2t - T2z; | |
408 T2N = T2G - T2M; | |
409 T2O = FMA(KP618033988, T2N, T2A); | |
410 T2Q = FNMS(KP618033988, T2A, T2N); | |
411 T2d = FMA(KP866025403, T1G, T1B); | |
412 T2g = T2e + T2f; | |
413 T2j = T2h + T2i; | |
414 T2k = T2g + T2j; | |
415 T2l = FNMS(KP250000000, T2k, T2d); | |
416 T2m = T2g - T2j; | |
417 } | |
418 ri[WS(rs, 10)] = T2d + T2k; | |
419 T2P = FNMS(KP559016994, T2m, T2l); | |
420 ri[WS(rs, 7)] = FNMS(KP951056516, T2Q, T2P); | |
421 ri[WS(rs, 13)] = FMA(KP951056516, T2Q, T2P); | |
422 T2n = FMA(KP559016994, T2m, T2l); | |
423 ri[WS(rs, 4)] = FNMS(KP951056516, T2O, T2n); | |
424 ri[WS(rs, 1)] = FMA(KP951056516, T2O, T2n); | |
425 } | |
426 } | |
427 } | |
428 } | |
429 | |
430 static const tw_instr twinstr[] = { | |
431 {TW_FULL, 0, 15}, | |
432 {TW_NEXT, 1, 0} | |
433 }; | |
434 | |
435 static const ct_desc desc = { 15, "t1_15", twinstr, &GENUS, {72, 28, 112, 0}, 0, 0, 0 }; | |
436 | |
437 void X(codelet_t1_15) (planner *p) { | |
438 X(kdft_dit_register) (p, t1_15, &desc); | |
439 } | |
440 #else | |
441 | |
442 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 15 -name t1_15 -include dft/scalar/t.h */ | |
443 | |
444 /* | |
445 * This function contains 184 FP additions, 112 FP multiplications, | |
446 * (or, 128 additions, 56 multiplications, 56 fused multiply/add), | |
447 * 65 stack variables, 6 constants, and 60 memory accesses | |
448 */ | |
449 #include "dft/scalar/t.h" | |
450 | |
451 static void t1_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
452 { | |
453 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
454 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
455 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
456 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
457 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
458 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
459 { | |
460 INT m; | |
461 for (m = mb, W = W + (mb * 28); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 28, MAKE_VOLATILE_STRIDE(30, rs)) { | |
462 E T1q, T34, Td, T1n, T2S, T35, T13, T1k, T1l, T2E, T2F, T2O, T1H, T1T, T2k; | |
463 E T2t, T2f, T2s, T1M, T1U, Tu, TL, TM, T2H, T2I, T2N, T1w, T1Q, T29, T2w; | |
464 E T24, T2v, T1B, T1R; | |
465 { | |
466 E T1, T2R, T6, T1o, Tb, T1p, Tc, T2Q; | |
467 T1 = ri[0]; | |
468 T2R = ii[0]; | |
469 { | |
470 E T3, T5, T2, T4; | |
471 T3 = ri[WS(rs, 5)]; | |
472 T5 = ii[WS(rs, 5)]; | |
473 T2 = W[8]; | |
474 T4 = W[9]; | |
475 T6 = FMA(T2, T3, T4 * T5); | |
476 T1o = FNMS(T4, T3, T2 * T5); | |
477 } | |
478 { | |
479 E T8, Ta, T7, T9; | |
480 T8 = ri[WS(rs, 10)]; | |
481 Ta = ii[WS(rs, 10)]; | |
482 T7 = W[18]; | |
483 T9 = W[19]; | |
484 Tb = FMA(T7, T8, T9 * Ta); | |
485 T1p = FNMS(T9, T8, T7 * Ta); | |
486 } | |
487 T1q = KP866025403 * (T1o - T1p); | |
488 T34 = KP866025403 * (Tb - T6); | |
489 Tc = T6 + Tb; | |
490 Td = T1 + Tc; | |
491 T1n = FNMS(KP500000000, Tc, T1); | |
492 T2Q = T1o + T1p; | |
493 T2S = T2Q + T2R; | |
494 T35 = FNMS(KP500000000, T2Q, T2R); | |
495 } | |
496 { | |
497 E TR, T2c, T18, T2h, TW, T1E, T11, T1F, T12, T2d, T1d, T1J, T1i, T1K, T1j; | |
498 E T2i; | |
499 { | |
500 E TO, TQ, TN, TP; | |
501 TO = ri[WS(rs, 6)]; | |
502 TQ = ii[WS(rs, 6)]; | |
503 TN = W[10]; | |
504 TP = W[11]; | |
505 TR = FMA(TN, TO, TP * TQ); | |
506 T2c = FNMS(TP, TO, TN * TQ); | |
507 } | |
508 { | |
509 E T15, T17, T14, T16; | |
510 T15 = ri[WS(rs, 9)]; | |
511 T17 = ii[WS(rs, 9)]; | |
512 T14 = W[16]; | |
513 T16 = W[17]; | |
514 T18 = FMA(T14, T15, T16 * T17); | |
515 T2h = FNMS(T16, T15, T14 * T17); | |
516 } | |
517 { | |
518 E TT, TV, TS, TU; | |
519 TT = ri[WS(rs, 11)]; | |
520 TV = ii[WS(rs, 11)]; | |
521 TS = W[20]; | |
522 TU = W[21]; | |
523 TW = FMA(TS, TT, TU * TV); | |
524 T1E = FNMS(TU, TT, TS * TV); | |
525 } | |
526 { | |
527 E TY, T10, TX, TZ; | |
528 TY = ri[WS(rs, 1)]; | |
529 T10 = ii[WS(rs, 1)]; | |
530 TX = W[0]; | |
531 TZ = W[1]; | |
532 T11 = FMA(TX, TY, TZ * T10); | |
533 T1F = FNMS(TZ, TY, TX * T10); | |
534 } | |
535 T12 = TW + T11; | |
536 T2d = T1E + T1F; | |
537 { | |
538 E T1a, T1c, T19, T1b; | |
539 T1a = ri[WS(rs, 14)]; | |
540 T1c = ii[WS(rs, 14)]; | |
541 T19 = W[26]; | |
542 T1b = W[27]; | |
543 T1d = FMA(T19, T1a, T1b * T1c); | |
544 T1J = FNMS(T1b, T1a, T19 * T1c); | |
545 } | |
546 { | |
547 E T1f, T1h, T1e, T1g; | |
548 T1f = ri[WS(rs, 4)]; | |
549 T1h = ii[WS(rs, 4)]; | |
550 T1e = W[6]; | |
551 T1g = W[7]; | |
552 T1i = FMA(T1e, T1f, T1g * T1h); | |
553 T1K = FNMS(T1g, T1f, T1e * T1h); | |
554 } | |
555 T1j = T1d + T1i; | |
556 T2i = T1J + T1K; | |
557 { | |
558 E T1D, T1G, T2g, T2j; | |
559 T13 = TR + T12; | |
560 T1k = T18 + T1j; | |
561 T1l = T13 + T1k; | |
562 T2E = T2c + T2d; | |
563 T2F = T2h + T2i; | |
564 T2O = T2E + T2F; | |
565 T1D = FNMS(KP500000000, T12, TR); | |
566 T1G = KP866025403 * (T1E - T1F); | |
567 T1H = T1D - T1G; | |
568 T1T = T1D + T1G; | |
569 T2g = KP866025403 * (T1i - T1d); | |
570 T2j = FNMS(KP500000000, T2i, T2h); | |
571 T2k = T2g + T2j; | |
572 T2t = T2j - T2g; | |
573 { | |
574 E T2b, T2e, T1I, T1L; | |
575 T2b = KP866025403 * (T11 - TW); | |
576 T2e = FNMS(KP500000000, T2d, T2c); | |
577 T2f = T2b + T2e; | |
578 T2s = T2e - T2b; | |
579 T1I = FNMS(KP500000000, T1j, T18); | |
580 T1L = KP866025403 * (T1J - T1K); | |
581 T1M = T1I - T1L; | |
582 T1U = T1I + T1L; | |
583 } | |
584 } | |
585 } | |
586 { | |
587 E Ti, T21, Tz, T26, Tn, T1t, Ts, T1u, Tt, T22, TE, T1y, TJ, T1z, TK; | |
588 E T27; | |
589 { | |
590 E Tf, Th, Te, Tg; | |
591 Tf = ri[WS(rs, 3)]; | |
592 Th = ii[WS(rs, 3)]; | |
593 Te = W[4]; | |
594 Tg = W[5]; | |
595 Ti = FMA(Te, Tf, Tg * Th); | |
596 T21 = FNMS(Tg, Tf, Te * Th); | |
597 } | |
598 { | |
599 E Tw, Ty, Tv, Tx; | |
600 Tw = ri[WS(rs, 12)]; | |
601 Ty = ii[WS(rs, 12)]; | |
602 Tv = W[22]; | |
603 Tx = W[23]; | |
604 Tz = FMA(Tv, Tw, Tx * Ty); | |
605 T26 = FNMS(Tx, Tw, Tv * Ty); | |
606 } | |
607 { | |
608 E Tk, Tm, Tj, Tl; | |
609 Tk = ri[WS(rs, 8)]; | |
610 Tm = ii[WS(rs, 8)]; | |
611 Tj = W[14]; | |
612 Tl = W[15]; | |
613 Tn = FMA(Tj, Tk, Tl * Tm); | |
614 T1t = FNMS(Tl, Tk, Tj * Tm); | |
615 } | |
616 { | |
617 E Tp, Tr, To, Tq; | |
618 Tp = ri[WS(rs, 13)]; | |
619 Tr = ii[WS(rs, 13)]; | |
620 To = W[24]; | |
621 Tq = W[25]; | |
622 Ts = FMA(To, Tp, Tq * Tr); | |
623 T1u = FNMS(Tq, Tp, To * Tr); | |
624 } | |
625 Tt = Tn + Ts; | |
626 T22 = T1t + T1u; | |
627 { | |
628 E TB, TD, TA, TC; | |
629 TB = ri[WS(rs, 2)]; | |
630 TD = ii[WS(rs, 2)]; | |
631 TA = W[2]; | |
632 TC = W[3]; | |
633 TE = FMA(TA, TB, TC * TD); | |
634 T1y = FNMS(TC, TB, TA * TD); | |
635 } | |
636 { | |
637 E TG, TI, TF, TH; | |
638 TG = ri[WS(rs, 7)]; | |
639 TI = ii[WS(rs, 7)]; | |
640 TF = W[12]; | |
641 TH = W[13]; | |
642 TJ = FMA(TF, TG, TH * TI); | |
643 T1z = FNMS(TH, TG, TF * TI); | |
644 } | |
645 TK = TE + TJ; | |
646 T27 = T1y + T1z; | |
647 { | |
648 E T1s, T1v, T25, T28; | |
649 Tu = Ti + Tt; | |
650 TL = Tz + TK; | |
651 TM = Tu + TL; | |
652 T2H = T21 + T22; | |
653 T2I = T26 + T27; | |
654 T2N = T2H + T2I; | |
655 T1s = FNMS(KP500000000, Tt, Ti); | |
656 T1v = KP866025403 * (T1t - T1u); | |
657 T1w = T1s - T1v; | |
658 T1Q = T1s + T1v; | |
659 T25 = KP866025403 * (TJ - TE); | |
660 T28 = FNMS(KP500000000, T27, T26); | |
661 T29 = T25 + T28; | |
662 T2w = T28 - T25; | |
663 { | |
664 E T20, T23, T1x, T1A; | |
665 T20 = KP866025403 * (Ts - Tn); | |
666 T23 = FNMS(KP500000000, T22, T21); | |
667 T24 = T20 + T23; | |
668 T2v = T23 - T20; | |
669 T1x = FNMS(KP500000000, TK, Tz); | |
670 T1A = KP866025403 * (T1y - T1z); | |
671 T1B = T1x - T1A; | |
672 T1R = T1x + T1A; | |
673 } | |
674 } | |
675 } | |
676 { | |
677 E T2C, T1m, T2B, T2K, T2M, T2G, T2J, T2L, T2D; | |
678 T2C = KP559016994 * (TM - T1l); | |
679 T1m = TM + T1l; | |
680 T2B = FNMS(KP250000000, T1m, Td); | |
681 T2G = T2E - T2F; | |
682 T2J = T2H - T2I; | |
683 T2K = FNMS(KP587785252, T2J, KP951056516 * T2G); | |
684 T2M = FMA(KP951056516, T2J, KP587785252 * T2G); | |
685 ri[0] = Td + T1m; | |
686 T2L = T2C + T2B; | |
687 ri[WS(rs, 9)] = T2L - T2M; | |
688 ri[WS(rs, 6)] = T2L + T2M; | |
689 T2D = T2B - T2C; | |
690 ri[WS(rs, 12)] = T2D - T2K; | |
691 ri[WS(rs, 3)] = T2D + T2K; | |
692 } | |
693 { | |
694 E T2U, T2P, T2T, T2Y, T30, T2W, T2X, T2Z, T2V; | |
695 T2U = KP559016994 * (T2N - T2O); | |
696 T2P = T2N + T2O; | |
697 T2T = FNMS(KP250000000, T2P, T2S); | |
698 T2W = T13 - T1k; | |
699 T2X = Tu - TL; | |
700 T2Y = FNMS(KP587785252, T2X, KP951056516 * T2W); | |
701 T30 = FMA(KP951056516, T2X, KP587785252 * T2W); | |
702 ii[0] = T2P + T2S; | |
703 T2Z = T2U + T2T; | |
704 ii[WS(rs, 6)] = T2Z - T30; | |
705 ii[WS(rs, 9)] = T30 + T2Z; | |
706 T2V = T2T - T2U; | |
707 ii[WS(rs, 3)] = T2V - T2Y; | |
708 ii[WS(rs, 12)] = T2Y + T2V; | |
709 } | |
710 { | |
711 E T2y, T2A, T1r, T1O, T2p, T2q, T2z, T2r; | |
712 { | |
713 E T2u, T2x, T1C, T1N; | |
714 T2u = T2s - T2t; | |
715 T2x = T2v - T2w; | |
716 T2y = FNMS(KP587785252, T2x, KP951056516 * T2u); | |
717 T2A = FMA(KP951056516, T2x, KP587785252 * T2u); | |
718 T1r = T1n - T1q; | |
719 T1C = T1w + T1B; | |
720 T1N = T1H + T1M; | |
721 T1O = T1C + T1N; | |
722 T2p = FNMS(KP250000000, T1O, T1r); | |
723 T2q = KP559016994 * (T1C - T1N); | |
724 } | |
725 ri[WS(rs, 5)] = T1r + T1O; | |
726 T2z = T2q + T2p; | |
727 ri[WS(rs, 14)] = T2z - T2A; | |
728 ri[WS(rs, 11)] = T2z + T2A; | |
729 T2r = T2p - T2q; | |
730 ri[WS(rs, 2)] = T2r - T2y; | |
731 ri[WS(rs, 8)] = T2r + T2y; | |
732 } | |
733 { | |
734 E T3h, T3q, T3i, T3l, T3m, T3n, T3p, T3o; | |
735 { | |
736 E T3f, T3g, T3j, T3k; | |
737 T3f = T1H - T1M; | |
738 T3g = T1w - T1B; | |
739 T3h = FNMS(KP587785252, T3g, KP951056516 * T3f); | |
740 T3q = FMA(KP951056516, T3g, KP587785252 * T3f); | |
741 T3i = T35 - T34; | |
742 T3j = T2v + T2w; | |
743 T3k = T2s + T2t; | |
744 T3l = T3j + T3k; | |
745 T3m = FNMS(KP250000000, T3l, T3i); | |
746 T3n = KP559016994 * (T3j - T3k); | |
747 } | |
748 ii[WS(rs, 5)] = T3l + T3i; | |
749 T3p = T3n + T3m; | |
750 ii[WS(rs, 11)] = T3p - T3q; | |
751 ii[WS(rs, 14)] = T3q + T3p; | |
752 T3o = T3m - T3n; | |
753 ii[WS(rs, 2)] = T3h + T3o; | |
754 ii[WS(rs, 8)] = T3o - T3h; | |
755 } | |
756 { | |
757 E T3c, T3d, T36, T37, T33, T38, T3e, T39; | |
758 { | |
759 E T3a, T3b, T31, T32; | |
760 T3a = T1Q - T1R; | |
761 T3b = T1T - T1U; | |
762 T3c = FMA(KP951056516, T3a, KP587785252 * T3b); | |
763 T3d = FNMS(KP587785252, T3a, KP951056516 * T3b); | |
764 T36 = T34 + T35; | |
765 T31 = T24 + T29; | |
766 T32 = T2f + T2k; | |
767 T37 = T31 + T32; | |
768 T33 = KP559016994 * (T31 - T32); | |
769 T38 = FNMS(KP250000000, T37, T36); | |
770 } | |
771 ii[WS(rs, 10)] = T37 + T36; | |
772 T3e = T38 - T33; | |
773 ii[WS(rs, 7)] = T3d + T3e; | |
774 ii[WS(rs, 13)] = T3e - T3d; | |
775 T39 = T33 + T38; | |
776 ii[WS(rs, 1)] = T39 - T3c; | |
777 ii[WS(rs, 4)] = T3c + T39; | |
778 } | |
779 { | |
780 E T2m, T2o, T1P, T1W, T1X, T1Y, T2n, T1Z; | |
781 { | |
782 E T2a, T2l, T1S, T1V; | |
783 T2a = T24 - T29; | |
784 T2l = T2f - T2k; | |
785 T2m = FMA(KP951056516, T2a, KP587785252 * T2l); | |
786 T2o = FNMS(KP587785252, T2a, KP951056516 * T2l); | |
787 T1P = T1n + T1q; | |
788 T1S = T1Q + T1R; | |
789 T1V = T1T + T1U; | |
790 T1W = T1S + T1V; | |
791 T1X = KP559016994 * (T1S - T1V); | |
792 T1Y = FNMS(KP250000000, T1W, T1P); | |
793 } | |
794 ri[WS(rs, 10)] = T1P + T1W; | |
795 T2n = T1Y - T1X; | |
796 ri[WS(rs, 7)] = T2n - T2o; | |
797 ri[WS(rs, 13)] = T2n + T2o; | |
798 T1Z = T1X + T1Y; | |
799 ri[WS(rs, 4)] = T1Z - T2m; | |
800 ri[WS(rs, 1)] = T1Z + T2m; | |
801 } | |
802 } | |
803 } | |
804 } | |
805 | |
806 static const tw_instr twinstr[] = { | |
807 {TW_FULL, 0, 15}, | |
808 {TW_NEXT, 1, 0} | |
809 }; | |
810 | |
811 static const ct_desc desc = { 15, "t1_15", twinstr, &GENUS, {128, 56, 56, 0}, 0, 0, 0 }; | |
812 | |
813 void X(codelet_t1_15) (planner *p) { | |
814 X(kdft_dit_register) (p, t1_15, &desc); | |
815 } | |
816 #endif |