Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/scalar/codelets/q1_8.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:30 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 8 -name q1_8 -include dft/scalar/q.h */ | |
29 | |
30 /* | |
31 * This function contains 528 FP additions, 288 FP multiplications, | |
32 * (or, 352 additions, 112 multiplications, 176 fused multiply/add), | |
33 * 152 stack variables, 1 constants, and 256 memory accesses | |
34 */ | |
35 #include "dft/scalar/q.h" | |
36 | |
37 static void q1_8(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
40 { | |
41 INT m; | |
42 for (m = mb, W = W + (mb * 14); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 14, MAKE_VOLATILE_STRIDE(16, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | |
43 E T7, T1d, T1t, Tk, TD, TV, T18, TQ, T4F, T5L, T61, T4S, T5b, T5t, T5G; | |
44 E T5o, T6b, T7h, T7x, T6o, T6H, T6Z, T7c, T6U, TaJ, TbP, Tc5, TaW, Tbf, Tbx; | |
45 E TbK, Tbs, T1D, T2J, T2Z, T1Q, T29, T2r, T2E, T2m, T39, T4f, T4v, T3m, T3F; | |
46 E T3X, T4a, T3S, T7H, T8N, T93, T7U, T8d, T8v, T8I, T8q, T9d, Taj, Taz, T9q; | |
47 E T9J, Ta1, Tae, T9W, Te, T19, T1u, T1g, TE, TF, TW, Tv, TR, T4M, T5H; | |
48 E T62, T5O, T5c, T5d, T5u, T53, T5p, T6i, T7d, T7y, T7k, T6I, T6J, T70, T6z; | |
49 E T6V, TaQ, TbL, Tc6, TbS, Tbg, Tbh, Tby, Tb7, Tbt, T1K, T2F, T30, T2M, T2a; | |
50 E T2b, T2s, T21, T2n, T3g, T4b, T4w, T4i, T3G, T3H, T3Y, T3x, T3T, T7O, T8J; | |
51 E T94, T8Q, T8e, T8f, T8w, T85, T8r, T9k, Taf, TaA, Tam, T9K, T9L, Ta2, T9B; | |
52 E T9X; | |
53 { | |
54 E T3, Tz, Tj, T16, T6, Tg, TC, T17; | |
55 { | |
56 E T1, T2, Th, Ti; | |
57 T1 = rio[0]; | |
58 T2 = rio[WS(rs, 4)]; | |
59 T3 = T1 + T2; | |
60 Tz = T1 - T2; | |
61 Th = iio[0]; | |
62 Ti = iio[WS(rs, 4)]; | |
63 Tj = Th - Ti; | |
64 T16 = Th + Ti; | |
65 } | |
66 { | |
67 E T4, T5, TA, TB; | |
68 T4 = rio[WS(rs, 2)]; | |
69 T5 = rio[WS(rs, 6)]; | |
70 T6 = T4 + T5; | |
71 Tg = T4 - T5; | |
72 TA = iio[WS(rs, 2)]; | |
73 TB = iio[WS(rs, 6)]; | |
74 TC = TA - TB; | |
75 T17 = TA + TB; | |
76 } | |
77 T7 = T3 + T6; | |
78 T1d = T3 - T6; | |
79 T1t = T16 + T17; | |
80 Tk = Tg + Tj; | |
81 TD = Tz - TC; | |
82 TV = Tj - Tg; | |
83 T18 = T16 - T17; | |
84 TQ = Tz + TC; | |
85 } | |
86 { | |
87 E T4B, T57, T4R, T5E, T4E, T4O, T5a, T5F; | |
88 { | |
89 E T4z, T4A, T4P, T4Q; | |
90 T4z = rio[WS(vs, 3)]; | |
91 T4A = rio[WS(vs, 3) + WS(rs, 4)]; | |
92 T4B = T4z + T4A; | |
93 T57 = T4z - T4A; | |
94 T4P = iio[WS(vs, 3)]; | |
95 T4Q = iio[WS(vs, 3) + WS(rs, 4)]; | |
96 T4R = T4P - T4Q; | |
97 T5E = T4P + T4Q; | |
98 } | |
99 { | |
100 E T4C, T4D, T58, T59; | |
101 T4C = rio[WS(vs, 3) + WS(rs, 2)]; | |
102 T4D = rio[WS(vs, 3) + WS(rs, 6)]; | |
103 T4E = T4C + T4D; | |
104 T4O = T4C - T4D; | |
105 T58 = iio[WS(vs, 3) + WS(rs, 2)]; | |
106 T59 = iio[WS(vs, 3) + WS(rs, 6)]; | |
107 T5a = T58 - T59; | |
108 T5F = T58 + T59; | |
109 } | |
110 T4F = T4B + T4E; | |
111 T5L = T4B - T4E; | |
112 T61 = T5E + T5F; | |
113 T4S = T4O + T4R; | |
114 T5b = T57 - T5a; | |
115 T5t = T4R - T4O; | |
116 T5G = T5E - T5F; | |
117 T5o = T57 + T5a; | |
118 } | |
119 { | |
120 E T67, T6D, T6n, T7a, T6a, T6k, T6G, T7b; | |
121 { | |
122 E T65, T66, T6l, T6m; | |
123 T65 = rio[WS(vs, 4)]; | |
124 T66 = rio[WS(vs, 4) + WS(rs, 4)]; | |
125 T67 = T65 + T66; | |
126 T6D = T65 - T66; | |
127 T6l = iio[WS(vs, 4)]; | |
128 T6m = iio[WS(vs, 4) + WS(rs, 4)]; | |
129 T6n = T6l - T6m; | |
130 T7a = T6l + T6m; | |
131 } | |
132 { | |
133 E T68, T69, T6E, T6F; | |
134 T68 = rio[WS(vs, 4) + WS(rs, 2)]; | |
135 T69 = rio[WS(vs, 4) + WS(rs, 6)]; | |
136 T6a = T68 + T69; | |
137 T6k = T68 - T69; | |
138 T6E = iio[WS(vs, 4) + WS(rs, 2)]; | |
139 T6F = iio[WS(vs, 4) + WS(rs, 6)]; | |
140 T6G = T6E - T6F; | |
141 T7b = T6E + T6F; | |
142 } | |
143 T6b = T67 + T6a; | |
144 T7h = T67 - T6a; | |
145 T7x = T7a + T7b; | |
146 T6o = T6k + T6n; | |
147 T6H = T6D - T6G; | |
148 T6Z = T6n - T6k; | |
149 T7c = T7a - T7b; | |
150 T6U = T6D + T6G; | |
151 } | |
152 { | |
153 E TaF, Tbb, TaV, TbI, TaI, TaS, Tbe, TbJ; | |
154 { | |
155 E TaD, TaE, TaT, TaU; | |
156 TaD = rio[WS(vs, 7)]; | |
157 TaE = rio[WS(vs, 7) + WS(rs, 4)]; | |
158 TaF = TaD + TaE; | |
159 Tbb = TaD - TaE; | |
160 TaT = iio[WS(vs, 7)]; | |
161 TaU = iio[WS(vs, 7) + WS(rs, 4)]; | |
162 TaV = TaT - TaU; | |
163 TbI = TaT + TaU; | |
164 } | |
165 { | |
166 E TaG, TaH, Tbc, Tbd; | |
167 TaG = rio[WS(vs, 7) + WS(rs, 2)]; | |
168 TaH = rio[WS(vs, 7) + WS(rs, 6)]; | |
169 TaI = TaG + TaH; | |
170 TaS = TaG - TaH; | |
171 Tbc = iio[WS(vs, 7) + WS(rs, 2)]; | |
172 Tbd = iio[WS(vs, 7) + WS(rs, 6)]; | |
173 Tbe = Tbc - Tbd; | |
174 TbJ = Tbc + Tbd; | |
175 } | |
176 TaJ = TaF + TaI; | |
177 TbP = TaF - TaI; | |
178 Tc5 = TbI + TbJ; | |
179 TaW = TaS + TaV; | |
180 Tbf = Tbb - Tbe; | |
181 Tbx = TaV - TaS; | |
182 TbK = TbI - TbJ; | |
183 Tbs = Tbb + Tbe; | |
184 } | |
185 { | |
186 E T1z, T25, T1P, T2C, T1C, T1M, T28, T2D; | |
187 { | |
188 E T1x, T1y, T1N, T1O; | |
189 T1x = rio[WS(vs, 1)]; | |
190 T1y = rio[WS(vs, 1) + WS(rs, 4)]; | |
191 T1z = T1x + T1y; | |
192 T25 = T1x - T1y; | |
193 T1N = iio[WS(vs, 1)]; | |
194 T1O = iio[WS(vs, 1) + WS(rs, 4)]; | |
195 T1P = T1N - T1O; | |
196 T2C = T1N + T1O; | |
197 } | |
198 { | |
199 E T1A, T1B, T26, T27; | |
200 T1A = rio[WS(vs, 1) + WS(rs, 2)]; | |
201 T1B = rio[WS(vs, 1) + WS(rs, 6)]; | |
202 T1C = T1A + T1B; | |
203 T1M = T1A - T1B; | |
204 T26 = iio[WS(vs, 1) + WS(rs, 2)]; | |
205 T27 = iio[WS(vs, 1) + WS(rs, 6)]; | |
206 T28 = T26 - T27; | |
207 T2D = T26 + T27; | |
208 } | |
209 T1D = T1z + T1C; | |
210 T2J = T1z - T1C; | |
211 T2Z = T2C + T2D; | |
212 T1Q = T1M + T1P; | |
213 T29 = T25 - T28; | |
214 T2r = T1P - T1M; | |
215 T2E = T2C - T2D; | |
216 T2m = T25 + T28; | |
217 } | |
218 { | |
219 E T35, T3B, T3l, T48, T38, T3i, T3E, T49; | |
220 { | |
221 E T33, T34, T3j, T3k; | |
222 T33 = rio[WS(vs, 2)]; | |
223 T34 = rio[WS(vs, 2) + WS(rs, 4)]; | |
224 T35 = T33 + T34; | |
225 T3B = T33 - T34; | |
226 T3j = iio[WS(vs, 2)]; | |
227 T3k = iio[WS(vs, 2) + WS(rs, 4)]; | |
228 T3l = T3j - T3k; | |
229 T48 = T3j + T3k; | |
230 } | |
231 { | |
232 E T36, T37, T3C, T3D; | |
233 T36 = rio[WS(vs, 2) + WS(rs, 2)]; | |
234 T37 = rio[WS(vs, 2) + WS(rs, 6)]; | |
235 T38 = T36 + T37; | |
236 T3i = T36 - T37; | |
237 T3C = iio[WS(vs, 2) + WS(rs, 2)]; | |
238 T3D = iio[WS(vs, 2) + WS(rs, 6)]; | |
239 T3E = T3C - T3D; | |
240 T49 = T3C + T3D; | |
241 } | |
242 T39 = T35 + T38; | |
243 T4f = T35 - T38; | |
244 T4v = T48 + T49; | |
245 T3m = T3i + T3l; | |
246 T3F = T3B - T3E; | |
247 T3X = T3l - T3i; | |
248 T4a = T48 - T49; | |
249 T3S = T3B + T3E; | |
250 } | |
251 { | |
252 E T7D, T89, T7T, T8G, T7G, T7Q, T8c, T8H; | |
253 { | |
254 E T7B, T7C, T7R, T7S; | |
255 T7B = rio[WS(vs, 5)]; | |
256 T7C = rio[WS(vs, 5) + WS(rs, 4)]; | |
257 T7D = T7B + T7C; | |
258 T89 = T7B - T7C; | |
259 T7R = iio[WS(vs, 5)]; | |
260 T7S = iio[WS(vs, 5) + WS(rs, 4)]; | |
261 T7T = T7R - T7S; | |
262 T8G = T7R + T7S; | |
263 } | |
264 { | |
265 E T7E, T7F, T8a, T8b; | |
266 T7E = rio[WS(vs, 5) + WS(rs, 2)]; | |
267 T7F = rio[WS(vs, 5) + WS(rs, 6)]; | |
268 T7G = T7E + T7F; | |
269 T7Q = T7E - T7F; | |
270 T8a = iio[WS(vs, 5) + WS(rs, 2)]; | |
271 T8b = iio[WS(vs, 5) + WS(rs, 6)]; | |
272 T8c = T8a - T8b; | |
273 T8H = T8a + T8b; | |
274 } | |
275 T7H = T7D + T7G; | |
276 T8N = T7D - T7G; | |
277 T93 = T8G + T8H; | |
278 T7U = T7Q + T7T; | |
279 T8d = T89 - T8c; | |
280 T8v = T7T - T7Q; | |
281 T8I = T8G - T8H; | |
282 T8q = T89 + T8c; | |
283 } | |
284 { | |
285 E T99, T9F, T9p, Tac, T9c, T9m, T9I, Tad; | |
286 { | |
287 E T97, T98, T9n, T9o; | |
288 T97 = rio[WS(vs, 6)]; | |
289 T98 = rio[WS(vs, 6) + WS(rs, 4)]; | |
290 T99 = T97 + T98; | |
291 T9F = T97 - T98; | |
292 T9n = iio[WS(vs, 6)]; | |
293 T9o = iio[WS(vs, 6) + WS(rs, 4)]; | |
294 T9p = T9n - T9o; | |
295 Tac = T9n + T9o; | |
296 } | |
297 { | |
298 E T9a, T9b, T9G, T9H; | |
299 T9a = rio[WS(vs, 6) + WS(rs, 2)]; | |
300 T9b = rio[WS(vs, 6) + WS(rs, 6)]; | |
301 T9c = T9a + T9b; | |
302 T9m = T9a - T9b; | |
303 T9G = iio[WS(vs, 6) + WS(rs, 2)]; | |
304 T9H = iio[WS(vs, 6) + WS(rs, 6)]; | |
305 T9I = T9G - T9H; | |
306 Tad = T9G + T9H; | |
307 } | |
308 T9d = T99 + T9c; | |
309 Taj = T99 - T9c; | |
310 Taz = Tac + Tad; | |
311 T9q = T9m + T9p; | |
312 T9J = T9F - T9I; | |
313 Ta1 = T9p - T9m; | |
314 Tae = Tac - Tad; | |
315 T9W = T9F + T9I; | |
316 } | |
317 { | |
318 E Ta, Tq, Tt, T1e, Td, Tl, To, T1f, Tp, Tu; | |
319 { | |
320 E T8, T9, Tr, Ts; | |
321 T8 = rio[WS(rs, 1)]; | |
322 T9 = rio[WS(rs, 5)]; | |
323 Ta = T8 + T9; | |
324 Tq = T8 - T9; | |
325 Tr = iio[WS(rs, 1)]; | |
326 Ts = iio[WS(rs, 5)]; | |
327 Tt = Tr - Ts; | |
328 T1e = Tr + Ts; | |
329 } | |
330 { | |
331 E Tb, Tc, Tm, Tn; | |
332 Tb = rio[WS(rs, 7)]; | |
333 Tc = rio[WS(rs, 3)]; | |
334 Td = Tb + Tc; | |
335 Tl = Tb - Tc; | |
336 Tm = iio[WS(rs, 7)]; | |
337 Tn = iio[WS(rs, 3)]; | |
338 To = Tm - Tn; | |
339 T1f = Tm + Tn; | |
340 } | |
341 Te = Ta + Td; | |
342 T19 = Td - Ta; | |
343 T1u = T1e + T1f; | |
344 T1g = T1e - T1f; | |
345 TE = Tt - Tq; | |
346 TF = Tl + To; | |
347 TW = TE + TF; | |
348 Tp = Tl - To; | |
349 Tu = Tq + Tt; | |
350 Tv = Tp - Tu; | |
351 TR = Tu + Tp; | |
352 } | |
353 { | |
354 E T4I, T4Y, T51, T5M, T4L, T4T, T4W, T5N, T4X, T52; | |
355 { | |
356 E T4G, T4H, T4Z, T50; | |
357 T4G = rio[WS(vs, 3) + WS(rs, 1)]; | |
358 T4H = rio[WS(vs, 3) + WS(rs, 5)]; | |
359 T4I = T4G + T4H; | |
360 T4Y = T4G - T4H; | |
361 T4Z = iio[WS(vs, 3) + WS(rs, 1)]; | |
362 T50 = iio[WS(vs, 3) + WS(rs, 5)]; | |
363 T51 = T4Z - T50; | |
364 T5M = T4Z + T50; | |
365 } | |
366 { | |
367 E T4J, T4K, T4U, T4V; | |
368 T4J = rio[WS(vs, 3) + WS(rs, 7)]; | |
369 T4K = rio[WS(vs, 3) + WS(rs, 3)]; | |
370 T4L = T4J + T4K; | |
371 T4T = T4J - T4K; | |
372 T4U = iio[WS(vs, 3) + WS(rs, 7)]; | |
373 T4V = iio[WS(vs, 3) + WS(rs, 3)]; | |
374 T4W = T4U - T4V; | |
375 T5N = T4U + T4V; | |
376 } | |
377 T4M = T4I + T4L; | |
378 T5H = T4L - T4I; | |
379 T62 = T5M + T5N; | |
380 T5O = T5M - T5N; | |
381 T5c = T51 - T4Y; | |
382 T5d = T4T + T4W; | |
383 T5u = T5c + T5d; | |
384 T4X = T4T - T4W; | |
385 T52 = T4Y + T51; | |
386 T53 = T4X - T52; | |
387 T5p = T52 + T4X; | |
388 } | |
389 { | |
390 E T6e, T6u, T6x, T7i, T6h, T6p, T6s, T7j, T6t, T6y; | |
391 { | |
392 E T6c, T6d, T6v, T6w; | |
393 T6c = rio[WS(vs, 4) + WS(rs, 1)]; | |
394 T6d = rio[WS(vs, 4) + WS(rs, 5)]; | |
395 T6e = T6c + T6d; | |
396 T6u = T6c - T6d; | |
397 T6v = iio[WS(vs, 4) + WS(rs, 1)]; | |
398 T6w = iio[WS(vs, 4) + WS(rs, 5)]; | |
399 T6x = T6v - T6w; | |
400 T7i = T6v + T6w; | |
401 } | |
402 { | |
403 E T6f, T6g, T6q, T6r; | |
404 T6f = rio[WS(vs, 4) + WS(rs, 7)]; | |
405 T6g = rio[WS(vs, 4) + WS(rs, 3)]; | |
406 T6h = T6f + T6g; | |
407 T6p = T6f - T6g; | |
408 T6q = iio[WS(vs, 4) + WS(rs, 7)]; | |
409 T6r = iio[WS(vs, 4) + WS(rs, 3)]; | |
410 T6s = T6q - T6r; | |
411 T7j = T6q + T6r; | |
412 } | |
413 T6i = T6e + T6h; | |
414 T7d = T6h - T6e; | |
415 T7y = T7i + T7j; | |
416 T7k = T7i - T7j; | |
417 T6I = T6x - T6u; | |
418 T6J = T6p + T6s; | |
419 T70 = T6I + T6J; | |
420 T6t = T6p - T6s; | |
421 T6y = T6u + T6x; | |
422 T6z = T6t - T6y; | |
423 T6V = T6y + T6t; | |
424 } | |
425 { | |
426 E TaM, Tb2, Tb5, TbQ, TaP, TaX, Tb0, TbR, Tb1, Tb6; | |
427 { | |
428 E TaK, TaL, Tb3, Tb4; | |
429 TaK = rio[WS(vs, 7) + WS(rs, 1)]; | |
430 TaL = rio[WS(vs, 7) + WS(rs, 5)]; | |
431 TaM = TaK + TaL; | |
432 Tb2 = TaK - TaL; | |
433 Tb3 = iio[WS(vs, 7) + WS(rs, 1)]; | |
434 Tb4 = iio[WS(vs, 7) + WS(rs, 5)]; | |
435 Tb5 = Tb3 - Tb4; | |
436 TbQ = Tb3 + Tb4; | |
437 } | |
438 { | |
439 E TaN, TaO, TaY, TaZ; | |
440 TaN = rio[WS(vs, 7) + WS(rs, 7)]; | |
441 TaO = rio[WS(vs, 7) + WS(rs, 3)]; | |
442 TaP = TaN + TaO; | |
443 TaX = TaN - TaO; | |
444 TaY = iio[WS(vs, 7) + WS(rs, 7)]; | |
445 TaZ = iio[WS(vs, 7) + WS(rs, 3)]; | |
446 Tb0 = TaY - TaZ; | |
447 TbR = TaY + TaZ; | |
448 } | |
449 TaQ = TaM + TaP; | |
450 TbL = TaP - TaM; | |
451 Tc6 = TbQ + TbR; | |
452 TbS = TbQ - TbR; | |
453 Tbg = Tb5 - Tb2; | |
454 Tbh = TaX + Tb0; | |
455 Tby = Tbg + Tbh; | |
456 Tb1 = TaX - Tb0; | |
457 Tb6 = Tb2 + Tb5; | |
458 Tb7 = Tb1 - Tb6; | |
459 Tbt = Tb6 + Tb1; | |
460 } | |
461 { | |
462 E T1G, T1W, T1Z, T2K, T1J, T1R, T1U, T2L, T1V, T20; | |
463 { | |
464 E T1E, T1F, T1X, T1Y; | |
465 T1E = rio[WS(vs, 1) + WS(rs, 1)]; | |
466 T1F = rio[WS(vs, 1) + WS(rs, 5)]; | |
467 T1G = T1E + T1F; | |
468 T1W = T1E - T1F; | |
469 T1X = iio[WS(vs, 1) + WS(rs, 1)]; | |
470 T1Y = iio[WS(vs, 1) + WS(rs, 5)]; | |
471 T1Z = T1X - T1Y; | |
472 T2K = T1X + T1Y; | |
473 } | |
474 { | |
475 E T1H, T1I, T1S, T1T; | |
476 T1H = rio[WS(vs, 1) + WS(rs, 7)]; | |
477 T1I = rio[WS(vs, 1) + WS(rs, 3)]; | |
478 T1J = T1H + T1I; | |
479 T1R = T1H - T1I; | |
480 T1S = iio[WS(vs, 1) + WS(rs, 7)]; | |
481 T1T = iio[WS(vs, 1) + WS(rs, 3)]; | |
482 T1U = T1S - T1T; | |
483 T2L = T1S + T1T; | |
484 } | |
485 T1K = T1G + T1J; | |
486 T2F = T1J - T1G; | |
487 T30 = T2K + T2L; | |
488 T2M = T2K - T2L; | |
489 T2a = T1Z - T1W; | |
490 T2b = T1R + T1U; | |
491 T2s = T2a + T2b; | |
492 T1V = T1R - T1U; | |
493 T20 = T1W + T1Z; | |
494 T21 = T1V - T20; | |
495 T2n = T20 + T1V; | |
496 } | |
497 { | |
498 E T3c, T3s, T3v, T4g, T3f, T3n, T3q, T4h, T3r, T3w; | |
499 { | |
500 E T3a, T3b, T3t, T3u; | |
501 T3a = rio[WS(vs, 2) + WS(rs, 1)]; | |
502 T3b = rio[WS(vs, 2) + WS(rs, 5)]; | |
503 T3c = T3a + T3b; | |
504 T3s = T3a - T3b; | |
505 T3t = iio[WS(vs, 2) + WS(rs, 1)]; | |
506 T3u = iio[WS(vs, 2) + WS(rs, 5)]; | |
507 T3v = T3t - T3u; | |
508 T4g = T3t + T3u; | |
509 } | |
510 { | |
511 E T3d, T3e, T3o, T3p; | |
512 T3d = rio[WS(vs, 2) + WS(rs, 7)]; | |
513 T3e = rio[WS(vs, 2) + WS(rs, 3)]; | |
514 T3f = T3d + T3e; | |
515 T3n = T3d - T3e; | |
516 T3o = iio[WS(vs, 2) + WS(rs, 7)]; | |
517 T3p = iio[WS(vs, 2) + WS(rs, 3)]; | |
518 T3q = T3o - T3p; | |
519 T4h = T3o + T3p; | |
520 } | |
521 T3g = T3c + T3f; | |
522 T4b = T3f - T3c; | |
523 T4w = T4g + T4h; | |
524 T4i = T4g - T4h; | |
525 T3G = T3v - T3s; | |
526 T3H = T3n + T3q; | |
527 T3Y = T3G + T3H; | |
528 T3r = T3n - T3q; | |
529 T3w = T3s + T3v; | |
530 T3x = T3r - T3w; | |
531 T3T = T3w + T3r; | |
532 } | |
533 { | |
534 E T7K, T80, T83, T8O, T7N, T7V, T7Y, T8P, T7Z, T84; | |
535 { | |
536 E T7I, T7J, T81, T82; | |
537 T7I = rio[WS(vs, 5) + WS(rs, 1)]; | |
538 T7J = rio[WS(vs, 5) + WS(rs, 5)]; | |
539 T7K = T7I + T7J; | |
540 T80 = T7I - T7J; | |
541 T81 = iio[WS(vs, 5) + WS(rs, 1)]; | |
542 T82 = iio[WS(vs, 5) + WS(rs, 5)]; | |
543 T83 = T81 - T82; | |
544 T8O = T81 + T82; | |
545 } | |
546 { | |
547 E T7L, T7M, T7W, T7X; | |
548 T7L = rio[WS(vs, 5) + WS(rs, 7)]; | |
549 T7M = rio[WS(vs, 5) + WS(rs, 3)]; | |
550 T7N = T7L + T7M; | |
551 T7V = T7L - T7M; | |
552 T7W = iio[WS(vs, 5) + WS(rs, 7)]; | |
553 T7X = iio[WS(vs, 5) + WS(rs, 3)]; | |
554 T7Y = T7W - T7X; | |
555 T8P = T7W + T7X; | |
556 } | |
557 T7O = T7K + T7N; | |
558 T8J = T7N - T7K; | |
559 T94 = T8O + T8P; | |
560 T8Q = T8O - T8P; | |
561 T8e = T83 - T80; | |
562 T8f = T7V + T7Y; | |
563 T8w = T8e + T8f; | |
564 T7Z = T7V - T7Y; | |
565 T84 = T80 + T83; | |
566 T85 = T7Z - T84; | |
567 T8r = T84 + T7Z; | |
568 } | |
569 { | |
570 E T9g, T9w, T9z, Tak, T9j, T9r, T9u, Tal, T9v, T9A; | |
571 { | |
572 E T9e, T9f, T9x, T9y; | |
573 T9e = rio[WS(vs, 6) + WS(rs, 1)]; | |
574 T9f = rio[WS(vs, 6) + WS(rs, 5)]; | |
575 T9g = T9e + T9f; | |
576 T9w = T9e - T9f; | |
577 T9x = iio[WS(vs, 6) + WS(rs, 1)]; | |
578 T9y = iio[WS(vs, 6) + WS(rs, 5)]; | |
579 T9z = T9x - T9y; | |
580 Tak = T9x + T9y; | |
581 } | |
582 { | |
583 E T9h, T9i, T9s, T9t; | |
584 T9h = rio[WS(vs, 6) + WS(rs, 7)]; | |
585 T9i = rio[WS(vs, 6) + WS(rs, 3)]; | |
586 T9j = T9h + T9i; | |
587 T9r = T9h - T9i; | |
588 T9s = iio[WS(vs, 6) + WS(rs, 7)]; | |
589 T9t = iio[WS(vs, 6) + WS(rs, 3)]; | |
590 T9u = T9s - T9t; | |
591 Tal = T9s + T9t; | |
592 } | |
593 T9k = T9g + T9j; | |
594 Taf = T9j - T9g; | |
595 TaA = Tak + Tal; | |
596 Tam = Tak - Tal; | |
597 T9K = T9z - T9w; | |
598 T9L = T9r + T9u; | |
599 Ta2 = T9K + T9L; | |
600 T9v = T9r - T9u; | |
601 T9A = T9w + T9z; | |
602 T9B = T9v - T9A; | |
603 T9X = T9A + T9v; | |
604 } | |
605 rio[0] = T7 + Te; | |
606 iio[0] = T1t + T1u; | |
607 rio[WS(rs, 1)] = T1D + T1K; | |
608 iio[WS(rs, 1)] = T2Z + T30; | |
609 rio[WS(rs, 2)] = T39 + T3g; | |
610 iio[WS(rs, 2)] = T4v + T4w; | |
611 rio[WS(rs, 3)] = T4F + T4M; | |
612 iio[WS(rs, 3)] = T61 + T62; | |
613 rio[WS(rs, 4)] = T6b + T6i; | |
614 iio[WS(rs, 4)] = T7x + T7y; | |
615 rio[WS(rs, 5)] = T7H + T7O; | |
616 iio[WS(rs, 5)] = T93 + T94; | |
617 rio[WS(rs, 6)] = T9d + T9k; | |
618 iio[WS(rs, 6)] = Taz + TaA; | |
619 rio[WS(rs, 7)] = TaJ + TaQ; | |
620 iio[WS(rs, 7)] = Tc5 + Tc6; | |
621 { | |
622 E TS, TX, TT, TY, TP, TU; | |
623 TS = FNMS(KP707106781, TR, TQ); | |
624 TX = FNMS(KP707106781, TW, TV); | |
625 TP = W[8]; | |
626 TT = TP * TS; | |
627 TY = TP * TX; | |
628 TU = W[9]; | |
629 rio[WS(vs, 5)] = FMA(TU, TX, TT); | |
630 iio[WS(vs, 5)] = FNMS(TU, TS, TY); | |
631 } | |
632 { | |
633 E T2N, T2B, T2H, T2I, T2O, T2G; | |
634 T2N = T2J - T2M; | |
635 T2G = T2E - T2F; | |
636 T2B = W[10]; | |
637 T2H = T2B * T2G; | |
638 T2I = W[11]; | |
639 T2O = T2I * T2G; | |
640 iio[WS(vs, 6) + WS(rs, 1)] = FNMS(T2I, T2N, T2H); | |
641 rio[WS(vs, 6) + WS(rs, 1)] = FMA(T2B, T2N, T2O); | |
642 } | |
643 { | |
644 E T1n, T1j, T1l, T1m, T1o, T1k; | |
645 T1n = T1d + T1g; | |
646 T1k = T19 + T18; | |
647 T1j = W[2]; | |
648 T1l = T1j * T1k; | |
649 T1m = W[3]; | |
650 T1o = T1m * T1k; | |
651 iio[WS(vs, 2)] = FNMS(T1m, T1n, T1l); | |
652 rio[WS(vs, 2)] = FMA(T1j, T1n, T1o); | |
653 } | |
654 { | |
655 E T1q, T1v, T1r, T1w, T1p, T1s; | |
656 T1q = T7 - Te; | |
657 T1v = T1t - T1u; | |
658 T1p = W[6]; | |
659 T1r = T1p * T1q; | |
660 T1w = T1p * T1v; | |
661 T1s = W[7]; | |
662 rio[WS(vs, 4)] = FMA(T1s, T1v, T1r); | |
663 iio[WS(vs, 4)] = FNMS(T1s, T1q, T1w); | |
664 } | |
665 { | |
666 E Tan, Tab, Tah, Tai, Tao, Tag; | |
667 Tan = Taj - Tam; | |
668 Tag = Tae - Taf; | |
669 Tab = W[10]; | |
670 Tah = Tab * Tag; | |
671 Tai = W[11]; | |
672 Tao = Tai * Tag; | |
673 iio[WS(vs, 6) + WS(rs, 6)] = FNMS(Tai, Tan, Tah); | |
674 rio[WS(vs, 6) + WS(rs, 6)] = FMA(Tab, Tan, Tao); | |
675 } | |
676 { | |
677 E Tc2, Tc7, Tc3, Tc8, Tc1, Tc4; | |
678 Tc2 = TaJ - TaQ; | |
679 Tc7 = Tc5 - Tc6; | |
680 Tc1 = W[6]; | |
681 Tc3 = Tc1 * Tc2; | |
682 Tc8 = Tc1 * Tc7; | |
683 Tc4 = W[7]; | |
684 rio[WS(vs, 4) + WS(rs, 7)] = FMA(Tc4, Tc7, Tc3); | |
685 iio[WS(vs, 4) + WS(rs, 7)] = FNMS(Tc4, Tc2, Tc8); | |
686 } | |
687 { | |
688 E Tbu, Tbz, Tbv, TbA, Tbr, Tbw; | |
689 Tbu = FNMS(KP707106781, Tbt, Tbs); | |
690 Tbz = FNMS(KP707106781, Tby, Tbx); | |
691 Tbr = W[8]; | |
692 Tbv = Tbr * Tbu; | |
693 TbA = Tbr * Tbz; | |
694 Tbw = W[9]; | |
695 rio[WS(vs, 5) + WS(rs, 7)] = FMA(Tbw, Tbz, Tbv); | |
696 iio[WS(vs, 5) + WS(rs, 7)] = FNMS(Tbw, Tbu, TbA); | |
697 } | |
698 { | |
699 E TbC, TbF, TbD, TbG, TbB, TbE; | |
700 TbC = FMA(KP707106781, Tbt, Tbs); | |
701 TbF = FMA(KP707106781, Tby, Tbx); | |
702 TbB = W[0]; | |
703 TbD = TbB * TbC; | |
704 TbG = TbB * TbF; | |
705 TbE = W[1]; | |
706 rio[WS(vs, 1) + WS(rs, 7)] = FMA(TbE, TbF, TbD); | |
707 iio[WS(vs, 1) + WS(rs, 7)] = FNMS(TbE, TbC, TbG); | |
708 } | |
709 { | |
710 E T10, T13, T11, T14, TZ, T12; | |
711 T10 = FMA(KP707106781, TR, TQ); | |
712 T13 = FMA(KP707106781, TW, TV); | |
713 TZ = W[0]; | |
714 T11 = TZ * T10; | |
715 T14 = TZ * T13; | |
716 T12 = W[1]; | |
717 rio[WS(vs, 1)] = FMA(T12, T13, T11); | |
718 iio[WS(vs, 1)] = FNMS(T12, T10, T14); | |
719 } | |
720 { | |
721 E T2w, T2z, T2x, T2A, T2v, T2y; | |
722 T2w = FMA(KP707106781, T2n, T2m); | |
723 T2z = FMA(KP707106781, T2s, T2r); | |
724 T2v = W[0]; | |
725 T2x = T2v * T2w; | |
726 T2A = T2v * T2z; | |
727 T2y = W[1]; | |
728 rio[WS(vs, 1) + WS(rs, 1)] = FMA(T2y, T2z, T2x); | |
729 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T2y, T2w, T2A); | |
730 } | |
731 { | |
732 E T1h, T15, T1b, T1c, T1i, T1a; | |
733 T1h = T1d - T1g; | |
734 T1a = T18 - T19; | |
735 T15 = W[10]; | |
736 T1b = T15 * T1a; | |
737 T1c = W[11]; | |
738 T1i = T1c * T1a; | |
739 iio[WS(vs, 6)] = FNMS(T1c, T1h, T1b); | |
740 rio[WS(vs, 6)] = FMA(T15, T1h, T1i); | |
741 } | |
742 { | |
743 E T2o, T2t, T2p, T2u, T2l, T2q; | |
744 T2o = FNMS(KP707106781, T2n, T2m); | |
745 T2t = FNMS(KP707106781, T2s, T2r); | |
746 T2l = W[8]; | |
747 T2p = T2l * T2o; | |
748 T2u = T2l * T2t; | |
749 T2q = W[9]; | |
750 rio[WS(vs, 5) + WS(rs, 1)] = FMA(T2q, T2t, T2p); | |
751 iio[WS(vs, 5) + WS(rs, 1)] = FNMS(T2q, T2o, T2u); | |
752 } | |
753 { | |
754 E Tat, Tap, Tar, Tas, Tau, Taq; | |
755 Tat = Taj + Tam; | |
756 Taq = Taf + Tae; | |
757 Tap = W[2]; | |
758 Tar = Tap * Taq; | |
759 Tas = W[3]; | |
760 Tau = Tas * Taq; | |
761 iio[WS(vs, 2) + WS(rs, 6)] = FNMS(Tas, Tat, Tar); | |
762 rio[WS(vs, 2) + WS(rs, 6)] = FMA(Tap, Tat, Tau); | |
763 } | |
764 { | |
765 E TbZ, TbV, TbX, TbY, Tc0, TbW; | |
766 TbZ = TbP + TbS; | |
767 TbW = TbL + TbK; | |
768 TbV = W[2]; | |
769 TbX = TbV * TbW; | |
770 TbY = W[3]; | |
771 Tc0 = TbY * TbW; | |
772 iio[WS(vs, 2) + WS(rs, 7)] = FNMS(TbY, TbZ, TbX); | |
773 rio[WS(vs, 2) + WS(rs, 7)] = FMA(TbV, TbZ, Tc0); | |
774 } | |
775 { | |
776 E Taw, TaB, Tax, TaC, Tav, Tay; | |
777 Taw = T9d - T9k; | |
778 TaB = Taz - TaA; | |
779 Tav = W[6]; | |
780 Tax = Tav * Taw; | |
781 TaC = Tav * TaB; | |
782 Tay = W[7]; | |
783 rio[WS(vs, 4) + WS(rs, 6)] = FMA(Tay, TaB, Tax); | |
784 iio[WS(vs, 4) + WS(rs, 6)] = FNMS(Tay, Taw, TaC); | |
785 } | |
786 { | |
787 E TbT, TbH, TbN, TbO, TbU, TbM; | |
788 TbT = TbP - TbS; | |
789 TbM = TbK - TbL; | |
790 TbH = W[10]; | |
791 TbN = TbH * TbM; | |
792 TbO = W[11]; | |
793 TbU = TbO * TbM; | |
794 iio[WS(vs, 6) + WS(rs, 7)] = FNMS(TbO, TbT, TbN); | |
795 rio[WS(vs, 6) + WS(rs, 7)] = FMA(TbH, TbT, TbU); | |
796 } | |
797 { | |
798 E T2T, T2P, T2R, T2S, T2U, T2Q; | |
799 T2T = T2J + T2M; | |
800 T2Q = T2F + T2E; | |
801 T2P = W[2]; | |
802 T2R = T2P * T2Q; | |
803 T2S = W[3]; | |
804 T2U = T2S * T2Q; | |
805 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T2S, T2T, T2R); | |
806 rio[WS(vs, 2) + WS(rs, 1)] = FMA(T2P, T2T, T2U); | |
807 } | |
808 { | |
809 E T5Y, T63, T5Z, T64, T5X, T60; | |
810 T5Y = T4F - T4M; | |
811 T63 = T61 - T62; | |
812 T5X = W[6]; | |
813 T5Z = T5X * T5Y; | |
814 T64 = T5X * T63; | |
815 T60 = W[7]; | |
816 rio[WS(vs, 4) + WS(rs, 3)] = FMA(T60, T63, T5Z); | |
817 iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T60, T5Y, T64); | |
818 } | |
819 { | |
820 E T42, T45, T43, T46, T41, T44; | |
821 T42 = FMA(KP707106781, T3T, T3S); | |
822 T45 = FMA(KP707106781, T3Y, T3X); | |
823 T41 = W[0]; | |
824 T43 = T41 * T42; | |
825 T46 = T41 * T45; | |
826 T44 = W[1]; | |
827 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T44, T45, T43); | |
828 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T44, T42, T46); | |
829 } | |
830 { | |
831 E T5y, T5B, T5z, T5C, T5x, T5A; | |
832 T5y = FMA(KP707106781, T5p, T5o); | |
833 T5B = FMA(KP707106781, T5u, T5t); | |
834 T5x = W[0]; | |
835 T5z = T5x * T5y; | |
836 T5C = T5x * T5B; | |
837 T5A = W[1]; | |
838 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T5A, T5B, T5z); | |
839 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T5A, T5y, T5C); | |
840 } | |
841 { | |
842 E T6W, T71, T6X, T72, T6T, T6Y; | |
843 T6W = FNMS(KP707106781, T6V, T6U); | |
844 T71 = FNMS(KP707106781, T70, T6Z); | |
845 T6T = W[8]; | |
846 T6X = T6T * T6W; | |
847 T72 = T6T * T71; | |
848 T6Y = W[9]; | |
849 rio[WS(vs, 5) + WS(rs, 4)] = FMA(T6Y, T71, T6X); | |
850 iio[WS(vs, 5) + WS(rs, 4)] = FNMS(T6Y, T6W, T72); | |
851 } | |
852 { | |
853 E Ta6, Ta9, Ta7, Taa, Ta5, Ta8; | |
854 Ta6 = FMA(KP707106781, T9X, T9W); | |
855 Ta9 = FMA(KP707106781, Ta2, Ta1); | |
856 Ta5 = W[0]; | |
857 Ta7 = Ta5 * Ta6; | |
858 Taa = Ta5 * Ta9; | |
859 Ta8 = W[1]; | |
860 rio[WS(vs, 1) + WS(rs, 6)] = FMA(Ta8, Ta9, Ta7); | |
861 iio[WS(vs, 1) + WS(rs, 6)] = FNMS(Ta8, Ta6, Taa); | |
862 } | |
863 { | |
864 E T7r, T7n, T7p, T7q, T7s, T7o; | |
865 T7r = T7h + T7k; | |
866 T7o = T7d + T7c; | |
867 T7n = W[2]; | |
868 T7p = T7n * T7o; | |
869 T7q = W[3]; | |
870 T7s = T7q * T7o; | |
871 iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T7q, T7r, T7p); | |
872 rio[WS(vs, 2) + WS(rs, 4)] = FMA(T7n, T7r, T7s); | |
873 } | |
874 { | |
875 E T8X, T8T, T8V, T8W, T8Y, T8U; | |
876 T8X = T8N + T8Q; | |
877 T8U = T8J + T8I; | |
878 T8T = W[2]; | |
879 T8V = T8T * T8U; | |
880 T8W = W[3]; | |
881 T8Y = T8W * T8U; | |
882 iio[WS(vs, 2) + WS(rs, 5)] = FNMS(T8W, T8X, T8V); | |
883 rio[WS(vs, 2) + WS(rs, 5)] = FMA(T8T, T8X, T8Y); | |
884 } | |
885 { | |
886 E T2W, T31, T2X, T32, T2V, T2Y; | |
887 T2W = T1D - T1K; | |
888 T31 = T2Z - T30; | |
889 T2V = W[6]; | |
890 T2X = T2V * T2W; | |
891 T32 = T2V * T31; | |
892 T2Y = W[7]; | |
893 rio[WS(vs, 4) + WS(rs, 1)] = FMA(T2Y, T31, T2X); | |
894 iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T2Y, T2W, T32); | |
895 } | |
896 { | |
897 E T5V, T5R, T5T, T5U, T5W, T5S; | |
898 T5V = T5L + T5O; | |
899 T5S = T5H + T5G; | |
900 T5R = W[2]; | |
901 T5T = T5R * T5S; | |
902 T5U = W[3]; | |
903 T5W = T5U * T5S; | |
904 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T5U, T5V, T5T); | |
905 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T5R, T5V, T5W); | |
906 } | |
907 { | |
908 E T3U, T3Z, T3V, T40, T3R, T3W; | |
909 T3U = FNMS(KP707106781, T3T, T3S); | |
910 T3Z = FNMS(KP707106781, T3Y, T3X); | |
911 T3R = W[8]; | |
912 T3V = T3R * T3U; | |
913 T40 = T3R * T3Z; | |
914 T3W = W[9]; | |
915 rio[WS(vs, 5) + WS(rs, 2)] = FMA(T3W, T3Z, T3V); | |
916 iio[WS(vs, 5) + WS(rs, 2)] = FNMS(T3W, T3U, T40); | |
917 } | |
918 { | |
919 E T5P, T5D, T5J, T5K, T5Q, T5I; | |
920 T5P = T5L - T5O; | |
921 T5I = T5G - T5H; | |
922 T5D = W[10]; | |
923 T5J = T5D * T5I; | |
924 T5K = W[11]; | |
925 T5Q = T5K * T5I; | |
926 iio[WS(vs, 6) + WS(rs, 3)] = FNMS(T5K, T5P, T5J); | |
927 rio[WS(vs, 6) + WS(rs, 3)] = FMA(T5D, T5P, T5Q); | |
928 } | |
929 { | |
930 E T74, T77, T75, T78, T73, T76; | |
931 T74 = FMA(KP707106781, T6V, T6U); | |
932 T77 = FMA(KP707106781, T70, T6Z); | |
933 T73 = W[0]; | |
934 T75 = T73 * T74; | |
935 T78 = T73 * T77; | |
936 T76 = W[1]; | |
937 rio[WS(vs, 1) + WS(rs, 4)] = FMA(T76, T77, T75); | |
938 iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T76, T74, T78); | |
939 } | |
940 { | |
941 E T9Y, Ta3, T9Z, Ta4, T9V, Ta0; | |
942 T9Y = FNMS(KP707106781, T9X, T9W); | |
943 Ta3 = FNMS(KP707106781, Ta2, Ta1); | |
944 T9V = W[8]; | |
945 T9Z = T9V * T9Y; | |
946 Ta4 = T9V * Ta3; | |
947 Ta0 = W[9]; | |
948 rio[WS(vs, 5) + WS(rs, 6)] = FMA(Ta0, Ta3, T9Z); | |
949 iio[WS(vs, 5) + WS(rs, 6)] = FNMS(Ta0, T9Y, Ta4); | |
950 } | |
951 { | |
952 E T7l, T79, T7f, T7g, T7m, T7e; | |
953 T7l = T7h - T7k; | |
954 T7e = T7c - T7d; | |
955 T79 = W[10]; | |
956 T7f = T79 * T7e; | |
957 T7g = W[11]; | |
958 T7m = T7g * T7e; | |
959 iio[WS(vs, 6) + WS(rs, 4)] = FNMS(T7g, T7l, T7f); | |
960 rio[WS(vs, 6) + WS(rs, 4)] = FMA(T79, T7l, T7m); | |
961 } | |
962 { | |
963 E T90, T95, T91, T96, T8Z, T92; | |
964 T90 = T7H - T7O; | |
965 T95 = T93 - T94; | |
966 T8Z = W[6]; | |
967 T91 = T8Z * T90; | |
968 T96 = T8Z * T95; | |
969 T92 = W[7]; | |
970 rio[WS(vs, 4) + WS(rs, 5)] = FMA(T92, T95, T91); | |
971 iio[WS(vs, 4) + WS(rs, 5)] = FNMS(T92, T90, T96); | |
972 } | |
973 { | |
974 E T4j, T47, T4d, T4e, T4k, T4c; | |
975 T4j = T4f - T4i; | |
976 T4c = T4a - T4b; | |
977 T47 = W[10]; | |
978 T4d = T47 * T4c; | |
979 T4e = W[11]; | |
980 T4k = T4e * T4c; | |
981 iio[WS(vs, 6) + WS(rs, 2)] = FNMS(T4e, T4j, T4d); | |
982 rio[WS(vs, 6) + WS(rs, 2)] = FMA(T47, T4j, T4k); | |
983 } | |
984 { | |
985 E T5q, T5v, T5r, T5w, T5n, T5s; | |
986 T5q = FNMS(KP707106781, T5p, T5o); | |
987 T5v = FNMS(KP707106781, T5u, T5t); | |
988 T5n = W[8]; | |
989 T5r = T5n * T5q; | |
990 T5w = T5n * T5v; | |
991 T5s = W[9]; | |
992 rio[WS(vs, 5) + WS(rs, 3)] = FMA(T5s, T5v, T5r); | |
993 iio[WS(vs, 5) + WS(rs, 3)] = FNMS(T5s, T5q, T5w); | |
994 } | |
995 { | |
996 E T4p, T4l, T4n, T4o, T4q, T4m; | |
997 T4p = T4f + T4i; | |
998 T4m = T4b + T4a; | |
999 T4l = W[2]; | |
1000 T4n = T4l * T4m; | |
1001 T4o = W[3]; | |
1002 T4q = T4o * T4m; | |
1003 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T4o, T4p, T4n); | |
1004 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T4l, T4p, T4q); | |
1005 } | |
1006 { | |
1007 E T4s, T4x, T4t, T4y, T4r, T4u; | |
1008 T4s = T39 - T3g; | |
1009 T4x = T4v - T4w; | |
1010 T4r = W[6]; | |
1011 T4t = T4r * T4s; | |
1012 T4y = T4r * T4x; | |
1013 T4u = W[7]; | |
1014 rio[WS(vs, 4) + WS(rs, 2)] = FMA(T4u, T4x, T4t); | |
1015 iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T4u, T4s, T4y); | |
1016 } | |
1017 { | |
1018 E T7u, T7z, T7v, T7A, T7t, T7w; | |
1019 T7u = T6b - T6i; | |
1020 T7z = T7x - T7y; | |
1021 T7t = W[6]; | |
1022 T7v = T7t * T7u; | |
1023 T7A = T7t * T7z; | |
1024 T7w = W[7]; | |
1025 rio[WS(vs, 4) + WS(rs, 4)] = FMA(T7w, T7z, T7v); | |
1026 iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T7w, T7u, T7A); | |
1027 } | |
1028 { | |
1029 E T8R, T8F, T8L, T8M, T8S, T8K; | |
1030 T8R = T8N - T8Q; | |
1031 T8K = T8I - T8J; | |
1032 T8F = W[10]; | |
1033 T8L = T8F * T8K; | |
1034 T8M = W[11]; | |
1035 T8S = T8M * T8K; | |
1036 iio[WS(vs, 6) + WS(rs, 5)] = FNMS(T8M, T8R, T8L); | |
1037 rio[WS(vs, 6) + WS(rs, 5)] = FMA(T8F, T8R, T8S); | |
1038 } | |
1039 { | |
1040 E T8s, T8x, T8t, T8y, T8p, T8u; | |
1041 T8s = FNMS(KP707106781, T8r, T8q); | |
1042 T8x = FNMS(KP707106781, T8w, T8v); | |
1043 T8p = W[8]; | |
1044 T8t = T8p * T8s; | |
1045 T8y = T8p * T8x; | |
1046 T8u = W[9]; | |
1047 rio[WS(vs, 5) + WS(rs, 5)] = FMA(T8u, T8x, T8t); | |
1048 iio[WS(vs, 5) + WS(rs, 5)] = FNMS(T8u, T8s, T8y); | |
1049 } | |
1050 { | |
1051 E T8A, T8D, T8B, T8E, T8z, T8C; | |
1052 T8A = FMA(KP707106781, T8r, T8q); | |
1053 T8D = FMA(KP707106781, T8w, T8v); | |
1054 T8z = W[0]; | |
1055 T8B = T8z * T8A; | |
1056 T8E = T8z * T8D; | |
1057 T8C = W[1]; | |
1058 rio[WS(vs, 1) + WS(rs, 5)] = FMA(T8C, T8D, T8B); | |
1059 iio[WS(vs, 1) + WS(rs, 5)] = FNMS(T8C, T8A, T8E); | |
1060 } | |
1061 { | |
1062 E TH, TN, TJ, TL, TM, TO, Tf, Tx, Ty, TI, TG, TK, Tw; | |
1063 TG = TE - TF; | |
1064 TH = FNMS(KP707106781, TG, TD); | |
1065 TN = FMA(KP707106781, TG, TD); | |
1066 TK = FMA(KP707106781, Tv, Tk); | |
1067 TJ = W[4]; | |
1068 TL = TJ * TK; | |
1069 TM = W[5]; | |
1070 TO = TM * TK; | |
1071 Tw = FNMS(KP707106781, Tv, Tk); | |
1072 Tf = W[12]; | |
1073 Tx = Tf * Tw; | |
1074 Ty = W[13]; | |
1075 TI = Ty * Tw; | |
1076 iio[WS(vs, 7)] = FNMS(Ty, TH, Tx); | |
1077 rio[WS(vs, 7)] = FMA(Tf, TH, TI); | |
1078 iio[WS(vs, 3)] = FNMS(TM, TN, TL); | |
1079 rio[WS(vs, 3)] = FMA(TJ, TN, TO); | |
1080 } | |
1081 { | |
1082 E T5f, T5l, T5h, T5j, T5k, T5m, T4N, T55, T56, T5g, T5e, T5i, T54; | |
1083 T5e = T5c - T5d; | |
1084 T5f = FNMS(KP707106781, T5e, T5b); | |
1085 T5l = FMA(KP707106781, T5e, T5b); | |
1086 T5i = FMA(KP707106781, T53, T4S); | |
1087 T5h = W[4]; | |
1088 T5j = T5h * T5i; | |
1089 T5k = W[5]; | |
1090 T5m = T5k * T5i; | |
1091 T54 = FNMS(KP707106781, T53, T4S); | |
1092 T4N = W[12]; | |
1093 T55 = T4N * T54; | |
1094 T56 = W[13]; | |
1095 T5g = T56 * T54; | |
1096 iio[WS(vs, 7) + WS(rs, 3)] = FNMS(T56, T5f, T55); | |
1097 rio[WS(vs, 7) + WS(rs, 3)] = FMA(T4N, T5f, T5g); | |
1098 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T5k, T5l, T5j); | |
1099 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T5h, T5l, T5m); | |
1100 } | |
1101 { | |
1102 E T2d, T2j, T2f, T2h, T2i, T2k, T1L, T23, T24, T2e, T2c, T2g, T22; | |
1103 T2c = T2a - T2b; | |
1104 T2d = FNMS(KP707106781, T2c, T29); | |
1105 T2j = FMA(KP707106781, T2c, T29); | |
1106 T2g = FMA(KP707106781, T21, T1Q); | |
1107 T2f = W[4]; | |
1108 T2h = T2f * T2g; | |
1109 T2i = W[5]; | |
1110 T2k = T2i * T2g; | |
1111 T22 = FNMS(KP707106781, T21, T1Q); | |
1112 T1L = W[12]; | |
1113 T23 = T1L * T22; | |
1114 T24 = W[13]; | |
1115 T2e = T24 * T22; | |
1116 iio[WS(vs, 7) + WS(rs, 1)] = FNMS(T24, T2d, T23); | |
1117 rio[WS(vs, 7) + WS(rs, 1)] = FMA(T1L, T2d, T2e); | |
1118 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T2i, T2j, T2h); | |
1119 rio[WS(vs, 3) + WS(rs, 1)] = FMA(T2f, T2j, T2k); | |
1120 } | |
1121 { | |
1122 E T3J, T3P, T3L, T3N, T3O, T3Q, T3h, T3z, T3A, T3K, T3I, T3M, T3y; | |
1123 T3I = T3G - T3H; | |
1124 T3J = FNMS(KP707106781, T3I, T3F); | |
1125 T3P = FMA(KP707106781, T3I, T3F); | |
1126 T3M = FMA(KP707106781, T3x, T3m); | |
1127 T3L = W[4]; | |
1128 T3N = T3L * T3M; | |
1129 T3O = W[5]; | |
1130 T3Q = T3O * T3M; | |
1131 T3y = FNMS(KP707106781, T3x, T3m); | |
1132 T3h = W[12]; | |
1133 T3z = T3h * T3y; | |
1134 T3A = W[13]; | |
1135 T3K = T3A * T3y; | |
1136 iio[WS(vs, 7) + WS(rs, 2)] = FNMS(T3A, T3J, T3z); | |
1137 rio[WS(vs, 7) + WS(rs, 2)] = FMA(T3h, T3J, T3K); | |
1138 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T3O, T3P, T3N); | |
1139 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T3L, T3P, T3Q); | |
1140 } | |
1141 { | |
1142 E T6L, T6R, T6N, T6P, T6Q, T6S, T6j, T6B, T6C, T6M, T6K, T6O, T6A; | |
1143 T6K = T6I - T6J; | |
1144 T6L = FNMS(KP707106781, T6K, T6H); | |
1145 T6R = FMA(KP707106781, T6K, T6H); | |
1146 T6O = FMA(KP707106781, T6z, T6o); | |
1147 T6N = W[4]; | |
1148 T6P = T6N * T6O; | |
1149 T6Q = W[5]; | |
1150 T6S = T6Q * T6O; | |
1151 T6A = FNMS(KP707106781, T6z, T6o); | |
1152 T6j = W[12]; | |
1153 T6B = T6j * T6A; | |
1154 T6C = W[13]; | |
1155 T6M = T6C * T6A; | |
1156 iio[WS(vs, 7) + WS(rs, 4)] = FNMS(T6C, T6L, T6B); | |
1157 rio[WS(vs, 7) + WS(rs, 4)] = FMA(T6j, T6L, T6M); | |
1158 iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T6Q, T6R, T6P); | |
1159 rio[WS(vs, 3) + WS(rs, 4)] = FMA(T6N, T6R, T6S); | |
1160 } | |
1161 { | |
1162 E Tbj, Tbp, Tbl, Tbn, Tbo, Tbq, TaR, Tb9, Tba, Tbk, Tbi, Tbm, Tb8; | |
1163 Tbi = Tbg - Tbh; | |
1164 Tbj = FNMS(KP707106781, Tbi, Tbf); | |
1165 Tbp = FMA(KP707106781, Tbi, Tbf); | |
1166 Tbm = FMA(KP707106781, Tb7, TaW); | |
1167 Tbl = W[4]; | |
1168 Tbn = Tbl * Tbm; | |
1169 Tbo = W[5]; | |
1170 Tbq = Tbo * Tbm; | |
1171 Tb8 = FNMS(KP707106781, Tb7, TaW); | |
1172 TaR = W[12]; | |
1173 Tb9 = TaR * Tb8; | |
1174 Tba = W[13]; | |
1175 Tbk = Tba * Tb8; | |
1176 iio[WS(vs, 7) + WS(rs, 7)] = FNMS(Tba, Tbj, Tb9); | |
1177 rio[WS(vs, 7) + WS(rs, 7)] = FMA(TaR, Tbj, Tbk); | |
1178 iio[WS(vs, 3) + WS(rs, 7)] = FNMS(Tbo, Tbp, Tbn); | |
1179 rio[WS(vs, 3) + WS(rs, 7)] = FMA(Tbl, Tbp, Tbq); | |
1180 } | |
1181 { | |
1182 E T8h, T8n, T8j, T8l, T8m, T8o, T7P, T87, T88, T8i, T8g, T8k, T86; | |
1183 T8g = T8e - T8f; | |
1184 T8h = FNMS(KP707106781, T8g, T8d); | |
1185 T8n = FMA(KP707106781, T8g, T8d); | |
1186 T8k = FMA(KP707106781, T85, T7U); | |
1187 T8j = W[4]; | |
1188 T8l = T8j * T8k; | |
1189 T8m = W[5]; | |
1190 T8o = T8m * T8k; | |
1191 T86 = FNMS(KP707106781, T85, T7U); | |
1192 T7P = W[12]; | |
1193 T87 = T7P * T86; | |
1194 T88 = W[13]; | |
1195 T8i = T88 * T86; | |
1196 iio[WS(vs, 7) + WS(rs, 5)] = FNMS(T88, T8h, T87); | |
1197 rio[WS(vs, 7) + WS(rs, 5)] = FMA(T7P, T8h, T8i); | |
1198 iio[WS(vs, 3) + WS(rs, 5)] = FNMS(T8m, T8n, T8l); | |
1199 rio[WS(vs, 3) + WS(rs, 5)] = FMA(T8j, T8n, T8o); | |
1200 } | |
1201 { | |
1202 E T9N, T9T, T9P, T9R, T9S, T9U, T9l, T9D, T9E, T9O, T9M, T9Q, T9C; | |
1203 T9M = T9K - T9L; | |
1204 T9N = FNMS(KP707106781, T9M, T9J); | |
1205 T9T = FMA(KP707106781, T9M, T9J); | |
1206 T9Q = FMA(KP707106781, T9B, T9q); | |
1207 T9P = W[4]; | |
1208 T9R = T9P * T9Q; | |
1209 T9S = W[5]; | |
1210 T9U = T9S * T9Q; | |
1211 T9C = FNMS(KP707106781, T9B, T9q); | |
1212 T9l = W[12]; | |
1213 T9D = T9l * T9C; | |
1214 T9E = W[13]; | |
1215 T9O = T9E * T9C; | |
1216 iio[WS(vs, 7) + WS(rs, 6)] = FNMS(T9E, T9N, T9D); | |
1217 rio[WS(vs, 7) + WS(rs, 6)] = FMA(T9l, T9N, T9O); | |
1218 iio[WS(vs, 3) + WS(rs, 6)] = FNMS(T9S, T9T, T9R); | |
1219 rio[WS(vs, 3) + WS(rs, 6)] = FMA(T9P, T9T, T9U); | |
1220 } | |
1221 } | |
1222 } | |
1223 } | |
1224 | |
1225 static const tw_instr twinstr[] = { | |
1226 {TW_FULL, 0, 8}, | |
1227 {TW_NEXT, 1, 0} | |
1228 }; | |
1229 | |
1230 static const ct_desc desc = { 8, "q1_8", twinstr, &GENUS, {352, 112, 176, 0}, 0, 0, 0 }; | |
1231 | |
1232 void X(codelet_q1_8) (planner *p) { | |
1233 X(kdft_difsq_register) (p, q1_8, &desc); | |
1234 } | |
1235 #else | |
1236 | |
1237 /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 8 -name q1_8 -include dft/scalar/q.h */ | |
1238 | |
1239 /* | |
1240 * This function contains 528 FP additions, 256 FP multiplications, | |
1241 * (or, 416 additions, 144 multiplications, 112 fused multiply/add), | |
1242 * 142 stack variables, 1 constants, and 256 memory accesses | |
1243 */ | |
1244 #include "dft/scalar/q.h" | |
1245 | |
1246 static void q1_8(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
1247 { | |
1248 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
1249 { | |
1250 INT m; | |
1251 for (m = mb, W = W + (mb * 14); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 14, MAKE_VOLATILE_STRIDE(16, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | |
1252 E T7, T14, T1g, Tk, TC, TQ, T10, TM, T1w, T2p, T2z, T1H, T1M, T1W, T2j; | |
1253 E T1V, T7R, T8O, T90, T84, T8m, T8A, T8K, T8w, T9g, Ta9, Taj, T9r, T9w, T9G; | |
1254 E Ta3, T9F, Te, T17, T1h, Tp, Tu, TE, T11, TD, T1p, T2m, T2y, T1C, T1U; | |
1255 E T28, T2i, T24, T7Y, T8R, T91, T89, T8e, T8o, T8L, T8n, T99, Ta6, Tai, T9m; | |
1256 E T9E, T9S, Ta2, T9O, T2H, T3E, T3Q, T2U, T3c, T3q, T3A, T3m, T46, T4Z, T59; | |
1257 E T4h, T4m, T4w, T4T, T4v, T5h, T6e, T6q, T5u, T5M, T60, T6a, T5W, T6G, T7z; | |
1258 E T7J, T6R, T6W, T76, T7t, T75, T2O, T3H, T3R, T2Z, T34, T3e, T3B, T3d, T3Z; | |
1259 E T4W, T58, T4c, T4u, T4I, T4S, T4E, T5o, T6h, T6r, T5z, T5E, T5O, T6b, T5N; | |
1260 E T6z, T7w, T7I, T6M, T74, T7i, T7s, T7e; | |
1261 { | |
1262 E T3, Ty, Tj, TY, T6, Tg, TB, TZ; | |
1263 { | |
1264 E T1, T2, Th, Ti; | |
1265 T1 = rio[0]; | |
1266 T2 = rio[WS(rs, 4)]; | |
1267 T3 = T1 + T2; | |
1268 Ty = T1 - T2; | |
1269 Th = iio[0]; | |
1270 Ti = iio[WS(rs, 4)]; | |
1271 Tj = Th - Ti; | |
1272 TY = Th + Ti; | |
1273 } | |
1274 { | |
1275 E T4, T5, Tz, TA; | |
1276 T4 = rio[WS(rs, 2)]; | |
1277 T5 = rio[WS(rs, 6)]; | |
1278 T6 = T4 + T5; | |
1279 Tg = T4 - T5; | |
1280 Tz = iio[WS(rs, 2)]; | |
1281 TA = iio[WS(rs, 6)]; | |
1282 TB = Tz - TA; | |
1283 TZ = Tz + TA; | |
1284 } | |
1285 T7 = T3 + T6; | |
1286 T14 = T3 - T6; | |
1287 T1g = TY + TZ; | |
1288 Tk = Tg + Tj; | |
1289 TC = Ty - TB; | |
1290 TQ = Tj - Tg; | |
1291 T10 = TY - TZ; | |
1292 TM = Ty + TB; | |
1293 } | |
1294 { | |
1295 E T1s, T1I, T1L, T2n, T1v, T1D, T1G, T2o; | |
1296 { | |
1297 E T1q, T1r, T1J, T1K; | |
1298 T1q = rio[WS(vs, 1) + WS(rs, 1)]; | |
1299 T1r = rio[WS(vs, 1) + WS(rs, 5)]; | |
1300 T1s = T1q + T1r; | |
1301 T1I = T1q - T1r; | |
1302 T1J = iio[WS(vs, 1) + WS(rs, 1)]; | |
1303 T1K = iio[WS(vs, 1) + WS(rs, 5)]; | |
1304 T1L = T1J - T1K; | |
1305 T2n = T1J + T1K; | |
1306 } | |
1307 { | |
1308 E T1t, T1u, T1E, T1F; | |
1309 T1t = rio[WS(vs, 1) + WS(rs, 7)]; | |
1310 T1u = rio[WS(vs, 1) + WS(rs, 3)]; | |
1311 T1v = T1t + T1u; | |
1312 T1D = T1t - T1u; | |
1313 T1E = iio[WS(vs, 1) + WS(rs, 7)]; | |
1314 T1F = iio[WS(vs, 1) + WS(rs, 3)]; | |
1315 T1G = T1E - T1F; | |
1316 T2o = T1E + T1F; | |
1317 } | |
1318 T1w = T1s + T1v; | |
1319 T2p = T2n - T2o; | |
1320 T2z = T2n + T2o; | |
1321 T1H = T1D - T1G; | |
1322 T1M = T1I + T1L; | |
1323 T1W = T1D + T1G; | |
1324 T2j = T1v - T1s; | |
1325 T1V = T1L - T1I; | |
1326 } | |
1327 { | |
1328 E T7N, T8i, T83, T8I, T7Q, T80, T8l, T8J; | |
1329 { | |
1330 E T7L, T7M, T81, T82; | |
1331 T7L = rio[WS(vs, 6)]; | |
1332 T7M = rio[WS(vs, 6) + WS(rs, 4)]; | |
1333 T7N = T7L + T7M; | |
1334 T8i = T7L - T7M; | |
1335 T81 = iio[WS(vs, 6)]; | |
1336 T82 = iio[WS(vs, 6) + WS(rs, 4)]; | |
1337 T83 = T81 - T82; | |
1338 T8I = T81 + T82; | |
1339 } | |
1340 { | |
1341 E T7O, T7P, T8j, T8k; | |
1342 T7O = rio[WS(vs, 6) + WS(rs, 2)]; | |
1343 T7P = rio[WS(vs, 6) + WS(rs, 6)]; | |
1344 T7Q = T7O + T7P; | |
1345 T80 = T7O - T7P; | |
1346 T8j = iio[WS(vs, 6) + WS(rs, 2)]; | |
1347 T8k = iio[WS(vs, 6) + WS(rs, 6)]; | |
1348 T8l = T8j - T8k; | |
1349 T8J = T8j + T8k; | |
1350 } | |
1351 T7R = T7N + T7Q; | |
1352 T8O = T7N - T7Q; | |
1353 T90 = T8I + T8J; | |
1354 T84 = T80 + T83; | |
1355 T8m = T8i - T8l; | |
1356 T8A = T83 - T80; | |
1357 T8K = T8I - T8J; | |
1358 T8w = T8i + T8l; | |
1359 } | |
1360 { | |
1361 E T9c, T9s, T9v, Ta7, T9f, T9n, T9q, Ta8; | |
1362 { | |
1363 E T9a, T9b, T9t, T9u; | |
1364 T9a = rio[WS(vs, 7) + WS(rs, 1)]; | |
1365 T9b = rio[WS(vs, 7) + WS(rs, 5)]; | |
1366 T9c = T9a + T9b; | |
1367 T9s = T9a - T9b; | |
1368 T9t = iio[WS(vs, 7) + WS(rs, 1)]; | |
1369 T9u = iio[WS(vs, 7) + WS(rs, 5)]; | |
1370 T9v = T9t - T9u; | |
1371 Ta7 = T9t + T9u; | |
1372 } | |
1373 { | |
1374 E T9d, T9e, T9o, T9p; | |
1375 T9d = rio[WS(vs, 7) + WS(rs, 7)]; | |
1376 T9e = rio[WS(vs, 7) + WS(rs, 3)]; | |
1377 T9f = T9d + T9e; | |
1378 T9n = T9d - T9e; | |
1379 T9o = iio[WS(vs, 7) + WS(rs, 7)]; | |
1380 T9p = iio[WS(vs, 7) + WS(rs, 3)]; | |
1381 T9q = T9o - T9p; | |
1382 Ta8 = T9o + T9p; | |
1383 } | |
1384 T9g = T9c + T9f; | |
1385 Ta9 = Ta7 - Ta8; | |
1386 Taj = Ta7 + Ta8; | |
1387 T9r = T9n - T9q; | |
1388 T9w = T9s + T9v; | |
1389 T9G = T9n + T9q; | |
1390 Ta3 = T9f - T9c; | |
1391 T9F = T9v - T9s; | |
1392 } | |
1393 { | |
1394 E Ta, Tq, Tt, T15, Td, Tl, To, T16; | |
1395 { | |
1396 E T8, T9, Tr, Ts; | |
1397 T8 = rio[WS(rs, 1)]; | |
1398 T9 = rio[WS(rs, 5)]; | |
1399 Ta = T8 + T9; | |
1400 Tq = T8 - T9; | |
1401 Tr = iio[WS(rs, 1)]; | |
1402 Ts = iio[WS(rs, 5)]; | |
1403 Tt = Tr - Ts; | |
1404 T15 = Tr + Ts; | |
1405 } | |
1406 { | |
1407 E Tb, Tc, Tm, Tn; | |
1408 Tb = rio[WS(rs, 7)]; | |
1409 Tc = rio[WS(rs, 3)]; | |
1410 Td = Tb + Tc; | |
1411 Tl = Tb - Tc; | |
1412 Tm = iio[WS(rs, 7)]; | |
1413 Tn = iio[WS(rs, 3)]; | |
1414 To = Tm - Tn; | |
1415 T16 = Tm + Tn; | |
1416 } | |
1417 Te = Ta + Td; | |
1418 T17 = T15 - T16; | |
1419 T1h = T15 + T16; | |
1420 Tp = Tl - To; | |
1421 Tu = Tq + Tt; | |
1422 TE = Tl + To; | |
1423 T11 = Td - Ta; | |
1424 TD = Tt - Tq; | |
1425 } | |
1426 { | |
1427 E T1l, T1Q, T1B, T2g, T1o, T1y, T1T, T2h; | |
1428 { | |
1429 E T1j, T1k, T1z, T1A; | |
1430 T1j = rio[WS(vs, 1)]; | |
1431 T1k = rio[WS(vs, 1) + WS(rs, 4)]; | |
1432 T1l = T1j + T1k; | |
1433 T1Q = T1j - T1k; | |
1434 T1z = iio[WS(vs, 1)]; | |
1435 T1A = iio[WS(vs, 1) + WS(rs, 4)]; | |
1436 T1B = T1z - T1A; | |
1437 T2g = T1z + T1A; | |
1438 } | |
1439 { | |
1440 E T1m, T1n, T1R, T1S; | |
1441 T1m = rio[WS(vs, 1) + WS(rs, 2)]; | |
1442 T1n = rio[WS(vs, 1) + WS(rs, 6)]; | |
1443 T1o = T1m + T1n; | |
1444 T1y = T1m - T1n; | |
1445 T1R = iio[WS(vs, 1) + WS(rs, 2)]; | |
1446 T1S = iio[WS(vs, 1) + WS(rs, 6)]; | |
1447 T1T = T1R - T1S; | |
1448 T2h = T1R + T1S; | |
1449 } | |
1450 T1p = T1l + T1o; | |
1451 T2m = T1l - T1o; | |
1452 T2y = T2g + T2h; | |
1453 T1C = T1y + T1B; | |
1454 T1U = T1Q - T1T; | |
1455 T28 = T1B - T1y; | |
1456 T2i = T2g - T2h; | |
1457 T24 = T1Q + T1T; | |
1458 } | |
1459 { | |
1460 E T7U, T8a, T8d, T8P, T7X, T85, T88, T8Q; | |
1461 { | |
1462 E T7S, T7T, T8b, T8c; | |
1463 T7S = rio[WS(vs, 6) + WS(rs, 1)]; | |
1464 T7T = rio[WS(vs, 6) + WS(rs, 5)]; | |
1465 T7U = T7S + T7T; | |
1466 T8a = T7S - T7T; | |
1467 T8b = iio[WS(vs, 6) + WS(rs, 1)]; | |
1468 T8c = iio[WS(vs, 6) + WS(rs, 5)]; | |
1469 T8d = T8b - T8c; | |
1470 T8P = T8b + T8c; | |
1471 } | |
1472 { | |
1473 E T7V, T7W, T86, T87; | |
1474 T7V = rio[WS(vs, 6) + WS(rs, 7)]; | |
1475 T7W = rio[WS(vs, 6) + WS(rs, 3)]; | |
1476 T7X = T7V + T7W; | |
1477 T85 = T7V - T7W; | |
1478 T86 = iio[WS(vs, 6) + WS(rs, 7)]; | |
1479 T87 = iio[WS(vs, 6) + WS(rs, 3)]; | |
1480 T88 = T86 - T87; | |
1481 T8Q = T86 + T87; | |
1482 } | |
1483 T7Y = T7U + T7X; | |
1484 T8R = T8P - T8Q; | |
1485 T91 = T8P + T8Q; | |
1486 T89 = T85 - T88; | |
1487 T8e = T8a + T8d; | |
1488 T8o = T85 + T88; | |
1489 T8L = T7X - T7U; | |
1490 T8n = T8d - T8a; | |
1491 } | |
1492 { | |
1493 E T95, T9A, T9l, Ta0, T98, T9i, T9D, Ta1; | |
1494 { | |
1495 E T93, T94, T9j, T9k; | |
1496 T93 = rio[WS(vs, 7)]; | |
1497 T94 = rio[WS(vs, 7) + WS(rs, 4)]; | |
1498 T95 = T93 + T94; | |
1499 T9A = T93 - T94; | |
1500 T9j = iio[WS(vs, 7)]; | |
1501 T9k = iio[WS(vs, 7) + WS(rs, 4)]; | |
1502 T9l = T9j - T9k; | |
1503 Ta0 = T9j + T9k; | |
1504 } | |
1505 { | |
1506 E T96, T97, T9B, T9C; | |
1507 T96 = rio[WS(vs, 7) + WS(rs, 2)]; | |
1508 T97 = rio[WS(vs, 7) + WS(rs, 6)]; | |
1509 T98 = T96 + T97; | |
1510 T9i = T96 - T97; | |
1511 T9B = iio[WS(vs, 7) + WS(rs, 2)]; | |
1512 T9C = iio[WS(vs, 7) + WS(rs, 6)]; | |
1513 T9D = T9B - T9C; | |
1514 Ta1 = T9B + T9C; | |
1515 } | |
1516 T99 = T95 + T98; | |
1517 Ta6 = T95 - T98; | |
1518 Tai = Ta0 + Ta1; | |
1519 T9m = T9i + T9l; | |
1520 T9E = T9A - T9D; | |
1521 T9S = T9l - T9i; | |
1522 Ta2 = Ta0 - Ta1; | |
1523 T9O = T9A + T9D; | |
1524 } | |
1525 { | |
1526 E T2D, T38, T2T, T3y, T2G, T2Q, T3b, T3z; | |
1527 { | |
1528 E T2B, T2C, T2R, T2S; | |
1529 T2B = rio[WS(vs, 2)]; | |
1530 T2C = rio[WS(vs, 2) + WS(rs, 4)]; | |
1531 T2D = T2B + T2C; | |
1532 T38 = T2B - T2C; | |
1533 T2R = iio[WS(vs, 2)]; | |
1534 T2S = iio[WS(vs, 2) + WS(rs, 4)]; | |
1535 T2T = T2R - T2S; | |
1536 T3y = T2R + T2S; | |
1537 } | |
1538 { | |
1539 E T2E, T2F, T39, T3a; | |
1540 T2E = rio[WS(vs, 2) + WS(rs, 2)]; | |
1541 T2F = rio[WS(vs, 2) + WS(rs, 6)]; | |
1542 T2G = T2E + T2F; | |
1543 T2Q = T2E - T2F; | |
1544 T39 = iio[WS(vs, 2) + WS(rs, 2)]; | |
1545 T3a = iio[WS(vs, 2) + WS(rs, 6)]; | |
1546 T3b = T39 - T3a; | |
1547 T3z = T39 + T3a; | |
1548 } | |
1549 T2H = T2D + T2G; | |
1550 T3E = T2D - T2G; | |
1551 T3Q = T3y + T3z; | |
1552 T2U = T2Q + T2T; | |
1553 T3c = T38 - T3b; | |
1554 T3q = T2T - T2Q; | |
1555 T3A = T3y - T3z; | |
1556 T3m = T38 + T3b; | |
1557 } | |
1558 { | |
1559 E T42, T4i, T4l, T4X, T45, T4d, T4g, T4Y; | |
1560 { | |
1561 E T40, T41, T4j, T4k; | |
1562 T40 = rio[WS(vs, 3) + WS(rs, 1)]; | |
1563 T41 = rio[WS(vs, 3) + WS(rs, 5)]; | |
1564 T42 = T40 + T41; | |
1565 T4i = T40 - T41; | |
1566 T4j = iio[WS(vs, 3) + WS(rs, 1)]; | |
1567 T4k = iio[WS(vs, 3) + WS(rs, 5)]; | |
1568 T4l = T4j - T4k; | |
1569 T4X = T4j + T4k; | |
1570 } | |
1571 { | |
1572 E T43, T44, T4e, T4f; | |
1573 T43 = rio[WS(vs, 3) + WS(rs, 7)]; | |
1574 T44 = rio[WS(vs, 3) + WS(rs, 3)]; | |
1575 T45 = T43 + T44; | |
1576 T4d = T43 - T44; | |
1577 T4e = iio[WS(vs, 3) + WS(rs, 7)]; | |
1578 T4f = iio[WS(vs, 3) + WS(rs, 3)]; | |
1579 T4g = T4e - T4f; | |
1580 T4Y = T4e + T4f; | |
1581 } | |
1582 T46 = T42 + T45; | |
1583 T4Z = T4X - T4Y; | |
1584 T59 = T4X + T4Y; | |
1585 T4h = T4d - T4g; | |
1586 T4m = T4i + T4l; | |
1587 T4w = T4d + T4g; | |
1588 T4T = T45 - T42; | |
1589 T4v = T4l - T4i; | |
1590 } | |
1591 { | |
1592 E T5d, T5I, T5t, T68, T5g, T5q, T5L, T69; | |
1593 { | |
1594 E T5b, T5c, T5r, T5s; | |
1595 T5b = rio[WS(vs, 4)]; | |
1596 T5c = rio[WS(vs, 4) + WS(rs, 4)]; | |
1597 T5d = T5b + T5c; | |
1598 T5I = T5b - T5c; | |
1599 T5r = iio[WS(vs, 4)]; | |
1600 T5s = iio[WS(vs, 4) + WS(rs, 4)]; | |
1601 T5t = T5r - T5s; | |
1602 T68 = T5r + T5s; | |
1603 } | |
1604 { | |
1605 E T5e, T5f, T5J, T5K; | |
1606 T5e = rio[WS(vs, 4) + WS(rs, 2)]; | |
1607 T5f = rio[WS(vs, 4) + WS(rs, 6)]; | |
1608 T5g = T5e + T5f; | |
1609 T5q = T5e - T5f; | |
1610 T5J = iio[WS(vs, 4) + WS(rs, 2)]; | |
1611 T5K = iio[WS(vs, 4) + WS(rs, 6)]; | |
1612 T5L = T5J - T5K; | |
1613 T69 = T5J + T5K; | |
1614 } | |
1615 T5h = T5d + T5g; | |
1616 T6e = T5d - T5g; | |
1617 T6q = T68 + T69; | |
1618 T5u = T5q + T5t; | |
1619 T5M = T5I - T5L; | |
1620 T60 = T5t - T5q; | |
1621 T6a = T68 - T69; | |
1622 T5W = T5I + T5L; | |
1623 } | |
1624 { | |
1625 E T6C, T6S, T6V, T7x, T6F, T6N, T6Q, T7y; | |
1626 { | |
1627 E T6A, T6B, T6T, T6U; | |
1628 T6A = rio[WS(vs, 5) + WS(rs, 1)]; | |
1629 T6B = rio[WS(vs, 5) + WS(rs, 5)]; | |
1630 T6C = T6A + T6B; | |
1631 T6S = T6A - T6B; | |
1632 T6T = iio[WS(vs, 5) + WS(rs, 1)]; | |
1633 T6U = iio[WS(vs, 5) + WS(rs, 5)]; | |
1634 T6V = T6T - T6U; | |
1635 T7x = T6T + T6U; | |
1636 } | |
1637 { | |
1638 E T6D, T6E, T6O, T6P; | |
1639 T6D = rio[WS(vs, 5) + WS(rs, 7)]; | |
1640 T6E = rio[WS(vs, 5) + WS(rs, 3)]; | |
1641 T6F = T6D + T6E; | |
1642 T6N = T6D - T6E; | |
1643 T6O = iio[WS(vs, 5) + WS(rs, 7)]; | |
1644 T6P = iio[WS(vs, 5) + WS(rs, 3)]; | |
1645 T6Q = T6O - T6P; | |
1646 T7y = T6O + T6P; | |
1647 } | |
1648 T6G = T6C + T6F; | |
1649 T7z = T7x - T7y; | |
1650 T7J = T7x + T7y; | |
1651 T6R = T6N - T6Q; | |
1652 T6W = T6S + T6V; | |
1653 T76 = T6N + T6Q; | |
1654 T7t = T6F - T6C; | |
1655 T75 = T6V - T6S; | |
1656 } | |
1657 { | |
1658 E T2K, T30, T33, T3F, T2N, T2V, T2Y, T3G; | |
1659 { | |
1660 E T2I, T2J, T31, T32; | |
1661 T2I = rio[WS(vs, 2) + WS(rs, 1)]; | |
1662 T2J = rio[WS(vs, 2) + WS(rs, 5)]; | |
1663 T2K = T2I + T2J; | |
1664 T30 = T2I - T2J; | |
1665 T31 = iio[WS(vs, 2) + WS(rs, 1)]; | |
1666 T32 = iio[WS(vs, 2) + WS(rs, 5)]; | |
1667 T33 = T31 - T32; | |
1668 T3F = T31 + T32; | |
1669 } | |
1670 { | |
1671 E T2L, T2M, T2W, T2X; | |
1672 T2L = rio[WS(vs, 2) + WS(rs, 7)]; | |
1673 T2M = rio[WS(vs, 2) + WS(rs, 3)]; | |
1674 T2N = T2L + T2M; | |
1675 T2V = T2L - T2M; | |
1676 T2W = iio[WS(vs, 2) + WS(rs, 7)]; | |
1677 T2X = iio[WS(vs, 2) + WS(rs, 3)]; | |
1678 T2Y = T2W - T2X; | |
1679 T3G = T2W + T2X; | |
1680 } | |
1681 T2O = T2K + T2N; | |
1682 T3H = T3F - T3G; | |
1683 T3R = T3F + T3G; | |
1684 T2Z = T2V - T2Y; | |
1685 T34 = T30 + T33; | |
1686 T3e = T2V + T2Y; | |
1687 T3B = T2N - T2K; | |
1688 T3d = T33 - T30; | |
1689 } | |
1690 { | |
1691 E T3V, T4q, T4b, T4Q, T3Y, T48, T4t, T4R; | |
1692 { | |
1693 E T3T, T3U, T49, T4a; | |
1694 T3T = rio[WS(vs, 3)]; | |
1695 T3U = rio[WS(vs, 3) + WS(rs, 4)]; | |
1696 T3V = T3T + T3U; | |
1697 T4q = T3T - T3U; | |
1698 T49 = iio[WS(vs, 3)]; | |
1699 T4a = iio[WS(vs, 3) + WS(rs, 4)]; | |
1700 T4b = T49 - T4a; | |
1701 T4Q = T49 + T4a; | |
1702 } | |
1703 { | |
1704 E T3W, T3X, T4r, T4s; | |
1705 T3W = rio[WS(vs, 3) + WS(rs, 2)]; | |
1706 T3X = rio[WS(vs, 3) + WS(rs, 6)]; | |
1707 T3Y = T3W + T3X; | |
1708 T48 = T3W - T3X; | |
1709 T4r = iio[WS(vs, 3) + WS(rs, 2)]; | |
1710 T4s = iio[WS(vs, 3) + WS(rs, 6)]; | |
1711 T4t = T4r - T4s; | |
1712 T4R = T4r + T4s; | |
1713 } | |
1714 T3Z = T3V + T3Y; | |
1715 T4W = T3V - T3Y; | |
1716 T58 = T4Q + T4R; | |
1717 T4c = T48 + T4b; | |
1718 T4u = T4q - T4t; | |
1719 T4I = T4b - T48; | |
1720 T4S = T4Q - T4R; | |
1721 T4E = T4q + T4t; | |
1722 } | |
1723 { | |
1724 E T5k, T5A, T5D, T6f, T5n, T5v, T5y, T6g; | |
1725 { | |
1726 E T5i, T5j, T5B, T5C; | |
1727 T5i = rio[WS(vs, 4) + WS(rs, 1)]; | |
1728 T5j = rio[WS(vs, 4) + WS(rs, 5)]; | |
1729 T5k = T5i + T5j; | |
1730 T5A = T5i - T5j; | |
1731 T5B = iio[WS(vs, 4) + WS(rs, 1)]; | |
1732 T5C = iio[WS(vs, 4) + WS(rs, 5)]; | |
1733 T5D = T5B - T5C; | |
1734 T6f = T5B + T5C; | |
1735 } | |
1736 { | |
1737 E T5l, T5m, T5w, T5x; | |
1738 T5l = rio[WS(vs, 4) + WS(rs, 7)]; | |
1739 T5m = rio[WS(vs, 4) + WS(rs, 3)]; | |
1740 T5n = T5l + T5m; | |
1741 T5v = T5l - T5m; | |
1742 T5w = iio[WS(vs, 4) + WS(rs, 7)]; | |
1743 T5x = iio[WS(vs, 4) + WS(rs, 3)]; | |
1744 T5y = T5w - T5x; | |
1745 T6g = T5w + T5x; | |
1746 } | |
1747 T5o = T5k + T5n; | |
1748 T6h = T6f - T6g; | |
1749 T6r = T6f + T6g; | |
1750 T5z = T5v - T5y; | |
1751 T5E = T5A + T5D; | |
1752 T5O = T5v + T5y; | |
1753 T6b = T5n - T5k; | |
1754 T5N = T5D - T5A; | |
1755 } | |
1756 { | |
1757 E T6v, T70, T6L, T7q, T6y, T6I, T73, T7r; | |
1758 { | |
1759 E T6t, T6u, T6J, T6K; | |
1760 T6t = rio[WS(vs, 5)]; | |
1761 T6u = rio[WS(vs, 5) + WS(rs, 4)]; | |
1762 T6v = T6t + T6u; | |
1763 T70 = T6t - T6u; | |
1764 T6J = iio[WS(vs, 5)]; | |
1765 T6K = iio[WS(vs, 5) + WS(rs, 4)]; | |
1766 T6L = T6J - T6K; | |
1767 T7q = T6J + T6K; | |
1768 } | |
1769 { | |
1770 E T6w, T6x, T71, T72; | |
1771 T6w = rio[WS(vs, 5) + WS(rs, 2)]; | |
1772 T6x = rio[WS(vs, 5) + WS(rs, 6)]; | |
1773 T6y = T6w + T6x; | |
1774 T6I = T6w - T6x; | |
1775 T71 = iio[WS(vs, 5) + WS(rs, 2)]; | |
1776 T72 = iio[WS(vs, 5) + WS(rs, 6)]; | |
1777 T73 = T71 - T72; | |
1778 T7r = T71 + T72; | |
1779 } | |
1780 T6z = T6v + T6y; | |
1781 T7w = T6v - T6y; | |
1782 T7I = T7q + T7r; | |
1783 T6M = T6I + T6L; | |
1784 T74 = T70 - T73; | |
1785 T7i = T6L - T6I; | |
1786 T7s = T7q - T7r; | |
1787 T7e = T70 + T73; | |
1788 } | |
1789 rio[0] = T7 + Te; | |
1790 iio[0] = T1g + T1h; | |
1791 rio[WS(rs, 1)] = T1p + T1w; | |
1792 iio[WS(rs, 1)] = T2y + T2z; | |
1793 rio[WS(rs, 3)] = T3Z + T46; | |
1794 rio[WS(rs, 2)] = T2H + T2O; | |
1795 iio[WS(rs, 2)] = T3Q + T3R; | |
1796 iio[WS(rs, 3)] = T58 + T59; | |
1797 rio[WS(rs, 6)] = T7R + T7Y; | |
1798 iio[WS(rs, 6)] = T90 + T91; | |
1799 iio[WS(rs, 5)] = T7I + T7J; | |
1800 rio[WS(rs, 5)] = T6z + T6G; | |
1801 iio[WS(rs, 4)] = T6q + T6r; | |
1802 rio[WS(rs, 4)] = T5h + T5o; | |
1803 rio[WS(rs, 7)] = T99 + T9g; | |
1804 iio[WS(rs, 7)] = Tai + Taj; | |
1805 { | |
1806 E T12, T18, TX, T13; | |
1807 T12 = T10 - T11; | |
1808 T18 = T14 - T17; | |
1809 TX = W[10]; | |
1810 T13 = W[11]; | |
1811 iio[WS(vs, 6)] = FNMS(T13, T18, TX * T12); | |
1812 rio[WS(vs, 6)] = FMA(T13, T12, TX * T18); | |
1813 } | |
1814 { | |
1815 E Tag, Tak, Taf, Tah; | |
1816 Tag = T99 - T9g; | |
1817 Tak = Tai - Taj; | |
1818 Taf = W[6]; | |
1819 Tah = W[7]; | |
1820 rio[WS(vs, 4) + WS(rs, 7)] = FMA(Taf, Tag, Tah * Tak); | |
1821 iio[WS(vs, 4) + WS(rs, 7)] = FNMS(Tah, Tag, Taf * Tak); | |
1822 } | |
1823 { | |
1824 E T8M, T8S, T8H, T8N; | |
1825 T8M = T8K - T8L; | |
1826 T8S = T8O - T8R; | |
1827 T8H = W[10]; | |
1828 T8N = W[11]; | |
1829 iio[WS(vs, 6) + WS(rs, 6)] = FNMS(T8N, T8S, T8H * T8M); | |
1830 rio[WS(vs, 6) + WS(rs, 6)] = FMA(T8N, T8M, T8H * T8S); | |
1831 } | |
1832 { | |
1833 E T2k, T2q, T2f, T2l; | |
1834 T2k = T2i - T2j; | |
1835 T2q = T2m - T2p; | |
1836 T2f = W[10]; | |
1837 T2l = W[11]; | |
1838 iio[WS(vs, 6) + WS(rs, 1)] = FNMS(T2l, T2q, T2f * T2k); | |
1839 rio[WS(vs, 6) + WS(rs, 1)] = FMA(T2l, T2k, T2f * T2q); | |
1840 } | |
1841 { | |
1842 E Ta4, Taa, T9Z, Ta5; | |
1843 Ta4 = Ta2 - Ta3; | |
1844 Taa = Ta6 - Ta9; | |
1845 T9Z = W[10]; | |
1846 Ta5 = W[11]; | |
1847 iio[WS(vs, 6) + WS(rs, 7)] = FNMS(Ta5, Taa, T9Z * Ta4); | |
1848 rio[WS(vs, 6) + WS(rs, 7)] = FMA(Ta5, Ta4, T9Z * Taa); | |
1849 } | |
1850 { | |
1851 E T8Y, T92, T8X, T8Z; | |
1852 T8Y = T7R - T7Y; | |
1853 T92 = T90 - T91; | |
1854 T8X = W[6]; | |
1855 T8Z = W[7]; | |
1856 rio[WS(vs, 4) + WS(rs, 6)] = FMA(T8X, T8Y, T8Z * T92); | |
1857 iio[WS(vs, 4) + WS(rs, 6)] = FNMS(T8Z, T8Y, T8X * T92); | |
1858 } | |
1859 { | |
1860 E T2w, T2A, T2v, T2x; | |
1861 T2w = T1p - T1w; | |
1862 T2A = T2y - T2z; | |
1863 T2v = W[6]; | |
1864 T2x = W[7]; | |
1865 rio[WS(vs, 4) + WS(rs, 1)] = FMA(T2v, T2w, T2x * T2A); | |
1866 iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T2x, T2w, T2v * T2A); | |
1867 } | |
1868 { | |
1869 E Tac, Tae, Tab, Tad; | |
1870 Tac = Ta3 + Ta2; | |
1871 Tae = Ta6 + Ta9; | |
1872 Tab = W[2]; | |
1873 Tad = W[3]; | |
1874 iio[WS(vs, 2) + WS(rs, 7)] = FNMS(Tad, Tae, Tab * Tac); | |
1875 rio[WS(vs, 2) + WS(rs, 7)] = FMA(Tad, Tac, Tab * Tae); | |
1876 } | |
1877 { | |
1878 E T8U, T8W, T8T, T8V; | |
1879 T8U = T8L + T8K; | |
1880 T8W = T8O + T8R; | |
1881 T8T = W[2]; | |
1882 T8V = W[3]; | |
1883 iio[WS(vs, 2) + WS(rs, 6)] = FNMS(T8V, T8W, T8T * T8U); | |
1884 rio[WS(vs, 2) + WS(rs, 6)] = FMA(T8V, T8U, T8T * T8W); | |
1885 } | |
1886 { | |
1887 E T1a, T1c, T19, T1b; | |
1888 T1a = T11 + T10; | |
1889 T1c = T14 + T17; | |
1890 T19 = W[2]; | |
1891 T1b = W[3]; | |
1892 iio[WS(vs, 2)] = FNMS(T1b, T1c, T19 * T1a); | |
1893 rio[WS(vs, 2)] = FMA(T1b, T1a, T19 * T1c); | |
1894 } | |
1895 { | |
1896 E T1e, T1i, T1d, T1f; | |
1897 T1e = T7 - Te; | |
1898 T1i = T1g - T1h; | |
1899 T1d = W[6]; | |
1900 T1f = W[7]; | |
1901 rio[WS(vs, 4)] = FMA(T1d, T1e, T1f * T1i); | |
1902 iio[WS(vs, 4)] = FNMS(T1f, T1e, T1d * T1i); | |
1903 } | |
1904 { | |
1905 E T2s, T2u, T2r, T2t; | |
1906 T2s = T2j + T2i; | |
1907 T2u = T2m + T2p; | |
1908 T2r = W[2]; | |
1909 T2t = W[3]; | |
1910 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T2t, T2u, T2r * T2s); | |
1911 rio[WS(vs, 2) + WS(rs, 1)] = FMA(T2t, T2s, T2r * T2u); | |
1912 } | |
1913 { | |
1914 E T3C, T3I, T3x, T3D; | |
1915 T3C = T3A - T3B; | |
1916 T3I = T3E - T3H; | |
1917 T3x = W[10]; | |
1918 T3D = W[11]; | |
1919 iio[WS(vs, 6) + WS(rs, 2)] = FNMS(T3D, T3I, T3x * T3C); | |
1920 rio[WS(vs, 6) + WS(rs, 2)] = FMA(T3D, T3C, T3x * T3I); | |
1921 } | |
1922 { | |
1923 E T4U, T50, T4P, T4V; | |
1924 T4U = T4S - T4T; | |
1925 T50 = T4W - T4Z; | |
1926 T4P = W[10]; | |
1927 T4V = W[11]; | |
1928 iio[WS(vs, 6) + WS(rs, 3)] = FNMS(T4V, T50, T4P * T4U); | |
1929 rio[WS(vs, 6) + WS(rs, 3)] = FMA(T4V, T4U, T4P * T50); | |
1930 } | |
1931 { | |
1932 E T56, T5a, T55, T57; | |
1933 T56 = T3Z - T46; | |
1934 T5a = T58 - T59; | |
1935 T55 = W[6]; | |
1936 T57 = W[7]; | |
1937 rio[WS(vs, 4) + WS(rs, 3)] = FMA(T55, T56, T57 * T5a); | |
1938 iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T57, T56, T55 * T5a); | |
1939 } | |
1940 { | |
1941 E T6o, T6s, T6n, T6p; | |
1942 T6o = T5h - T5o; | |
1943 T6s = T6q - T6r; | |
1944 T6n = W[6]; | |
1945 T6p = W[7]; | |
1946 rio[WS(vs, 4) + WS(rs, 4)] = FMA(T6n, T6o, T6p * T6s); | |
1947 iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T6p, T6o, T6n * T6s); | |
1948 } | |
1949 { | |
1950 E T7u, T7A, T7p, T7v; | |
1951 T7u = T7s - T7t; | |
1952 T7A = T7w - T7z; | |
1953 T7p = W[10]; | |
1954 T7v = W[11]; | |
1955 iio[WS(vs, 6) + WS(rs, 5)] = FNMS(T7v, T7A, T7p * T7u); | |
1956 rio[WS(vs, 6) + WS(rs, 5)] = FMA(T7v, T7u, T7p * T7A); | |
1957 } | |
1958 { | |
1959 E T6c, T6i, T67, T6d; | |
1960 T6c = T6a - T6b; | |
1961 T6i = T6e - T6h; | |
1962 T67 = W[10]; | |
1963 T6d = W[11]; | |
1964 iio[WS(vs, 6) + WS(rs, 4)] = FNMS(T6d, T6i, T67 * T6c); | |
1965 rio[WS(vs, 6) + WS(rs, 4)] = FMA(T6d, T6c, T67 * T6i); | |
1966 } | |
1967 { | |
1968 E T7G, T7K, T7F, T7H; | |
1969 T7G = T6z - T6G; | |
1970 T7K = T7I - T7J; | |
1971 T7F = W[6]; | |
1972 T7H = W[7]; | |
1973 rio[WS(vs, 4) + WS(rs, 5)] = FMA(T7F, T7G, T7H * T7K); | |
1974 iio[WS(vs, 4) + WS(rs, 5)] = FNMS(T7H, T7G, T7F * T7K); | |
1975 } | |
1976 { | |
1977 E T3O, T3S, T3N, T3P; | |
1978 T3O = T2H - T2O; | |
1979 T3S = T3Q - T3R; | |
1980 T3N = W[6]; | |
1981 T3P = W[7]; | |
1982 rio[WS(vs, 4) + WS(rs, 2)] = FMA(T3N, T3O, T3P * T3S); | |
1983 iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T3P, T3O, T3N * T3S); | |
1984 } | |
1985 { | |
1986 E T3K, T3M, T3J, T3L; | |
1987 T3K = T3B + T3A; | |
1988 T3M = T3E + T3H; | |
1989 T3J = W[2]; | |
1990 T3L = W[3]; | |
1991 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T3L, T3M, T3J * T3K); | |
1992 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T3L, T3K, T3J * T3M); | |
1993 } | |
1994 { | |
1995 E T7C, T7E, T7B, T7D; | |
1996 T7C = T7t + T7s; | |
1997 T7E = T7w + T7z; | |
1998 T7B = W[2]; | |
1999 T7D = W[3]; | |
2000 iio[WS(vs, 2) + WS(rs, 5)] = FNMS(T7D, T7E, T7B * T7C); | |
2001 rio[WS(vs, 2) + WS(rs, 5)] = FMA(T7D, T7C, T7B * T7E); | |
2002 } | |
2003 { | |
2004 E T6k, T6m, T6j, T6l; | |
2005 T6k = T6b + T6a; | |
2006 T6m = T6e + T6h; | |
2007 T6j = W[2]; | |
2008 T6l = W[3]; | |
2009 iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T6l, T6m, T6j * T6k); | |
2010 rio[WS(vs, 2) + WS(rs, 4)] = FMA(T6l, T6k, T6j * T6m); | |
2011 } | |
2012 { | |
2013 E T52, T54, T51, T53; | |
2014 T52 = T4T + T4S; | |
2015 T54 = T4W + T4Z; | |
2016 T51 = W[2]; | |
2017 T53 = W[3]; | |
2018 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T53, T54, T51 * T52); | |
2019 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T53, T52, T51 * T54); | |
2020 } | |
2021 { | |
2022 E T5G, T5S, T5Q, T5U, T5F, T5P; | |
2023 T5F = KP707106781 * (T5z - T5E); | |
2024 T5G = T5u - T5F; | |
2025 T5S = T5u + T5F; | |
2026 T5P = KP707106781 * (T5N - T5O); | |
2027 T5Q = T5M - T5P; | |
2028 T5U = T5M + T5P; | |
2029 { | |
2030 E T5p, T5H, T5R, T5T; | |
2031 T5p = W[12]; | |
2032 T5H = W[13]; | |
2033 iio[WS(vs, 7) + WS(rs, 4)] = FNMS(T5H, T5Q, T5p * T5G); | |
2034 rio[WS(vs, 7) + WS(rs, 4)] = FMA(T5H, T5G, T5p * T5Q); | |
2035 T5R = W[4]; | |
2036 T5T = W[5]; | |
2037 iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T5T, T5U, T5R * T5S); | |
2038 rio[WS(vs, 3) + WS(rs, 4)] = FMA(T5T, T5S, T5R * T5U); | |
2039 } | |
2040 } | |
2041 { | |
2042 E Tw, TI, TG, TK, Tv, TF; | |
2043 Tv = KP707106781 * (Tp - Tu); | |
2044 Tw = Tk - Tv; | |
2045 TI = Tk + Tv; | |
2046 TF = KP707106781 * (TD - TE); | |
2047 TG = TC - TF; | |
2048 TK = TC + TF; | |
2049 { | |
2050 E Tf, Tx, TH, TJ; | |
2051 Tf = W[12]; | |
2052 Tx = W[13]; | |
2053 iio[WS(vs, 7)] = FNMS(Tx, TG, Tf * Tw); | |
2054 rio[WS(vs, 7)] = FMA(Tx, Tw, Tf * TG); | |
2055 TH = W[4]; | |
2056 TJ = W[5]; | |
2057 iio[WS(vs, 3)] = FNMS(TJ, TK, TH * TI); | |
2058 rio[WS(vs, 3)] = FMA(TJ, TI, TH * TK); | |
2059 } | |
2060 } | |
2061 { | |
2062 E T9Q, T9W, T9U, T9Y, T9P, T9T; | |
2063 T9P = KP707106781 * (T9w + T9r); | |
2064 T9Q = T9O - T9P; | |
2065 T9W = T9O + T9P; | |
2066 T9T = KP707106781 * (T9F + T9G); | |
2067 T9U = T9S - T9T; | |
2068 T9Y = T9S + T9T; | |
2069 { | |
2070 E T9N, T9R, T9V, T9X; | |
2071 T9N = W[8]; | |
2072 T9R = W[9]; | |
2073 rio[WS(vs, 5) + WS(rs, 7)] = FMA(T9N, T9Q, T9R * T9U); | |
2074 iio[WS(vs, 5) + WS(rs, 7)] = FNMS(T9R, T9Q, T9N * T9U); | |
2075 T9V = W[0]; | |
2076 T9X = W[1]; | |
2077 rio[WS(vs, 1) + WS(rs, 7)] = FMA(T9V, T9W, T9X * T9Y); | |
2078 iio[WS(vs, 1) + WS(rs, 7)] = FNMS(T9X, T9W, T9V * T9Y); | |
2079 } | |
2080 } | |
2081 { | |
2082 E T36, T3i, T3g, T3k, T35, T3f; | |
2083 T35 = KP707106781 * (T2Z - T34); | |
2084 T36 = T2U - T35; | |
2085 T3i = T2U + T35; | |
2086 T3f = KP707106781 * (T3d - T3e); | |
2087 T3g = T3c - T3f; | |
2088 T3k = T3c + T3f; | |
2089 { | |
2090 E T2P, T37, T3h, T3j; | |
2091 T2P = W[12]; | |
2092 T37 = W[13]; | |
2093 iio[WS(vs, 7) + WS(rs, 2)] = FNMS(T37, T3g, T2P * T36); | |
2094 rio[WS(vs, 7) + WS(rs, 2)] = FMA(T37, T36, T2P * T3g); | |
2095 T3h = W[4]; | |
2096 T3j = W[5]; | |
2097 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T3j, T3k, T3h * T3i); | |
2098 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T3j, T3i, T3h * T3k); | |
2099 } | |
2100 } | |
2101 { | |
2102 E T5Y, T64, T62, T66, T5X, T61; | |
2103 T5X = KP707106781 * (T5E + T5z); | |
2104 T5Y = T5W - T5X; | |
2105 T64 = T5W + T5X; | |
2106 T61 = KP707106781 * (T5N + T5O); | |
2107 T62 = T60 - T61; | |
2108 T66 = T60 + T61; | |
2109 { | |
2110 E T5V, T5Z, T63, T65; | |
2111 T5V = W[8]; | |
2112 T5Z = W[9]; | |
2113 rio[WS(vs, 5) + WS(rs, 4)] = FMA(T5V, T5Y, T5Z * T62); | |
2114 iio[WS(vs, 5) + WS(rs, 4)] = FNMS(T5Z, T5Y, T5V * T62); | |
2115 T63 = W[0]; | |
2116 T65 = W[1]; | |
2117 rio[WS(vs, 1) + WS(rs, 4)] = FMA(T63, T64, T65 * T66); | |
2118 iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T65, T64, T63 * T66); | |
2119 } | |
2120 } | |
2121 { | |
2122 E T7g, T7m, T7k, T7o, T7f, T7j; | |
2123 T7f = KP707106781 * (T6W + T6R); | |
2124 T7g = T7e - T7f; | |
2125 T7m = T7e + T7f; | |
2126 T7j = KP707106781 * (T75 + T76); | |
2127 T7k = T7i - T7j; | |
2128 T7o = T7i + T7j; | |
2129 { | |
2130 E T7d, T7h, T7l, T7n; | |
2131 T7d = W[8]; | |
2132 T7h = W[9]; | |
2133 rio[WS(vs, 5) + WS(rs, 5)] = FMA(T7d, T7g, T7h * T7k); | |
2134 iio[WS(vs, 5) + WS(rs, 5)] = FNMS(T7h, T7g, T7d * T7k); | |
2135 T7l = W[0]; | |
2136 T7n = W[1]; | |
2137 rio[WS(vs, 1) + WS(rs, 5)] = FMA(T7l, T7m, T7n * T7o); | |
2138 iio[WS(vs, 1) + WS(rs, 5)] = FNMS(T7n, T7m, T7l * T7o); | |
2139 } | |
2140 } | |
2141 { | |
2142 E T8g, T8s, T8q, T8u, T8f, T8p; | |
2143 T8f = KP707106781 * (T89 - T8e); | |
2144 T8g = T84 - T8f; | |
2145 T8s = T84 + T8f; | |
2146 T8p = KP707106781 * (T8n - T8o); | |
2147 T8q = T8m - T8p; | |
2148 T8u = T8m + T8p; | |
2149 { | |
2150 E T7Z, T8h, T8r, T8t; | |
2151 T7Z = W[12]; | |
2152 T8h = W[13]; | |
2153 iio[WS(vs, 7) + WS(rs, 6)] = FNMS(T8h, T8q, T7Z * T8g); | |
2154 rio[WS(vs, 7) + WS(rs, 6)] = FMA(T8h, T8g, T7Z * T8q); | |
2155 T8r = W[4]; | |
2156 T8t = W[5]; | |
2157 iio[WS(vs, 3) + WS(rs, 6)] = FNMS(T8t, T8u, T8r * T8s); | |
2158 rio[WS(vs, 3) + WS(rs, 6)] = FMA(T8t, T8s, T8r * T8u); | |
2159 } | |
2160 } | |
2161 { | |
2162 E T4G, T4M, T4K, T4O, T4F, T4J; | |
2163 T4F = KP707106781 * (T4m + T4h); | |
2164 T4G = T4E - T4F; | |
2165 T4M = T4E + T4F; | |
2166 T4J = KP707106781 * (T4v + T4w); | |
2167 T4K = T4I - T4J; | |
2168 T4O = T4I + T4J; | |
2169 { | |
2170 E T4D, T4H, T4L, T4N; | |
2171 T4D = W[8]; | |
2172 T4H = W[9]; | |
2173 rio[WS(vs, 5) + WS(rs, 3)] = FMA(T4D, T4G, T4H * T4K); | |
2174 iio[WS(vs, 5) + WS(rs, 3)] = FNMS(T4H, T4G, T4D * T4K); | |
2175 T4L = W[0]; | |
2176 T4N = W[1]; | |
2177 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T4L, T4M, T4N * T4O); | |
2178 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T4N, T4M, T4L * T4O); | |
2179 } | |
2180 } | |
2181 { | |
2182 E TO, TU, TS, TW, TN, TR; | |
2183 TN = KP707106781 * (Tu + Tp); | |
2184 TO = TM - TN; | |
2185 TU = TM + TN; | |
2186 TR = KP707106781 * (TD + TE); | |
2187 TS = TQ - TR; | |
2188 TW = TQ + TR; | |
2189 { | |
2190 E TL, TP, TT, TV; | |
2191 TL = W[8]; | |
2192 TP = W[9]; | |
2193 rio[WS(vs, 5)] = FMA(TL, TO, TP * TS); | |
2194 iio[WS(vs, 5)] = FNMS(TP, TO, TL * TS); | |
2195 TT = W[0]; | |
2196 TV = W[1]; | |
2197 rio[WS(vs, 1)] = FMA(TT, TU, TV * TW); | |
2198 iio[WS(vs, 1)] = FNMS(TV, TU, TT * TW); | |
2199 } | |
2200 } | |
2201 { | |
2202 E T26, T2c, T2a, T2e, T25, T29; | |
2203 T25 = KP707106781 * (T1M + T1H); | |
2204 T26 = T24 - T25; | |
2205 T2c = T24 + T25; | |
2206 T29 = KP707106781 * (T1V + T1W); | |
2207 T2a = T28 - T29; | |
2208 T2e = T28 + T29; | |
2209 { | |
2210 E T23, T27, T2b, T2d; | |
2211 T23 = W[8]; | |
2212 T27 = W[9]; | |
2213 rio[WS(vs, 5) + WS(rs, 1)] = FMA(T23, T26, T27 * T2a); | |
2214 iio[WS(vs, 5) + WS(rs, 1)] = FNMS(T27, T26, T23 * T2a); | |
2215 T2b = W[0]; | |
2216 T2d = W[1]; | |
2217 rio[WS(vs, 1) + WS(rs, 1)] = FMA(T2b, T2c, T2d * T2e); | |
2218 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T2d, T2c, T2b * T2e); | |
2219 } | |
2220 } | |
2221 { | |
2222 E T9y, T9K, T9I, T9M, T9x, T9H; | |
2223 T9x = KP707106781 * (T9r - T9w); | |
2224 T9y = T9m - T9x; | |
2225 T9K = T9m + T9x; | |
2226 T9H = KP707106781 * (T9F - T9G); | |
2227 T9I = T9E - T9H; | |
2228 T9M = T9E + T9H; | |
2229 { | |
2230 E T9h, T9z, T9J, T9L; | |
2231 T9h = W[12]; | |
2232 T9z = W[13]; | |
2233 iio[WS(vs, 7) + WS(rs, 7)] = FNMS(T9z, T9I, T9h * T9y); | |
2234 rio[WS(vs, 7) + WS(rs, 7)] = FMA(T9z, T9y, T9h * T9I); | |
2235 T9J = W[4]; | |
2236 T9L = W[5]; | |
2237 iio[WS(vs, 3) + WS(rs, 7)] = FNMS(T9L, T9M, T9J * T9K); | |
2238 rio[WS(vs, 3) + WS(rs, 7)] = FMA(T9L, T9K, T9J * T9M); | |
2239 } | |
2240 } | |
2241 { | |
2242 E T6Y, T7a, T78, T7c, T6X, T77; | |
2243 T6X = KP707106781 * (T6R - T6W); | |
2244 T6Y = T6M - T6X; | |
2245 T7a = T6M + T6X; | |
2246 T77 = KP707106781 * (T75 - T76); | |
2247 T78 = T74 - T77; | |
2248 T7c = T74 + T77; | |
2249 { | |
2250 E T6H, T6Z, T79, T7b; | |
2251 T6H = W[12]; | |
2252 T6Z = W[13]; | |
2253 iio[WS(vs, 7) + WS(rs, 5)] = FNMS(T6Z, T78, T6H * T6Y); | |
2254 rio[WS(vs, 7) + WS(rs, 5)] = FMA(T6Z, T6Y, T6H * T78); | |
2255 T79 = W[4]; | |
2256 T7b = W[5]; | |
2257 iio[WS(vs, 3) + WS(rs, 5)] = FNMS(T7b, T7c, T79 * T7a); | |
2258 rio[WS(vs, 3) + WS(rs, 5)] = FMA(T7b, T7a, T79 * T7c); | |
2259 } | |
2260 } | |
2261 { | |
2262 E T1O, T20, T1Y, T22, T1N, T1X; | |
2263 T1N = KP707106781 * (T1H - T1M); | |
2264 T1O = T1C - T1N; | |
2265 T20 = T1C + T1N; | |
2266 T1X = KP707106781 * (T1V - T1W); | |
2267 T1Y = T1U - T1X; | |
2268 T22 = T1U + T1X; | |
2269 { | |
2270 E T1x, T1P, T1Z, T21; | |
2271 T1x = W[12]; | |
2272 T1P = W[13]; | |
2273 iio[WS(vs, 7) + WS(rs, 1)] = FNMS(T1P, T1Y, T1x * T1O); | |
2274 rio[WS(vs, 7) + WS(rs, 1)] = FMA(T1P, T1O, T1x * T1Y); | |
2275 T1Z = W[4]; | |
2276 T21 = W[5]; | |
2277 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T21, T22, T1Z * T20); | |
2278 rio[WS(vs, 3) + WS(rs, 1)] = FMA(T21, T20, T1Z * T22); | |
2279 } | |
2280 } | |
2281 { | |
2282 E T4o, T4A, T4y, T4C, T4n, T4x; | |
2283 T4n = KP707106781 * (T4h - T4m); | |
2284 T4o = T4c - T4n; | |
2285 T4A = T4c + T4n; | |
2286 T4x = KP707106781 * (T4v - T4w); | |
2287 T4y = T4u - T4x; | |
2288 T4C = T4u + T4x; | |
2289 { | |
2290 E T47, T4p, T4z, T4B; | |
2291 T47 = W[12]; | |
2292 T4p = W[13]; | |
2293 iio[WS(vs, 7) + WS(rs, 3)] = FNMS(T4p, T4y, T47 * T4o); | |
2294 rio[WS(vs, 7) + WS(rs, 3)] = FMA(T4p, T4o, T47 * T4y); | |
2295 T4z = W[4]; | |
2296 T4B = W[5]; | |
2297 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T4B, T4C, T4z * T4A); | |
2298 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T4B, T4A, T4z * T4C); | |
2299 } | |
2300 } | |
2301 { | |
2302 E T3o, T3u, T3s, T3w, T3n, T3r; | |
2303 T3n = KP707106781 * (T34 + T2Z); | |
2304 T3o = T3m - T3n; | |
2305 T3u = T3m + T3n; | |
2306 T3r = KP707106781 * (T3d + T3e); | |
2307 T3s = T3q - T3r; | |
2308 T3w = T3q + T3r; | |
2309 { | |
2310 E T3l, T3p, T3t, T3v; | |
2311 T3l = W[8]; | |
2312 T3p = W[9]; | |
2313 rio[WS(vs, 5) + WS(rs, 2)] = FMA(T3l, T3o, T3p * T3s); | |
2314 iio[WS(vs, 5) + WS(rs, 2)] = FNMS(T3p, T3o, T3l * T3s); | |
2315 T3t = W[0]; | |
2316 T3v = W[1]; | |
2317 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T3t, T3u, T3v * T3w); | |
2318 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T3v, T3u, T3t * T3w); | |
2319 } | |
2320 } | |
2321 { | |
2322 E T8y, T8E, T8C, T8G, T8x, T8B; | |
2323 T8x = KP707106781 * (T8e + T89); | |
2324 T8y = T8w - T8x; | |
2325 T8E = T8w + T8x; | |
2326 T8B = KP707106781 * (T8n + T8o); | |
2327 T8C = T8A - T8B; | |
2328 T8G = T8A + T8B; | |
2329 { | |
2330 E T8v, T8z, T8D, T8F; | |
2331 T8v = W[8]; | |
2332 T8z = W[9]; | |
2333 rio[WS(vs, 5) + WS(rs, 6)] = FMA(T8v, T8y, T8z * T8C); | |
2334 iio[WS(vs, 5) + WS(rs, 6)] = FNMS(T8z, T8y, T8v * T8C); | |
2335 T8D = W[0]; | |
2336 T8F = W[1]; | |
2337 rio[WS(vs, 1) + WS(rs, 6)] = FMA(T8D, T8E, T8F * T8G); | |
2338 iio[WS(vs, 1) + WS(rs, 6)] = FNMS(T8F, T8E, T8D * T8G); | |
2339 } | |
2340 } | |
2341 } | |
2342 } | |
2343 } | |
2344 | |
2345 static const tw_instr twinstr[] = { | |
2346 {TW_FULL, 0, 8}, | |
2347 {TW_NEXT, 1, 0} | |
2348 }; | |
2349 | |
2350 static const ct_desc desc = { 8, "q1_8", twinstr, &GENUS, {416, 144, 112, 0}, 0, 0, 0 }; | |
2351 | |
2352 void X(codelet_q1_8) (planner *p) { | |
2353 X(kdft_difsq_register) (p, q1_8, &desc); | |
2354 } | |
2355 #endif |