comparison src/fftw-3.3.8/dft/scalar/codelets/q1_8.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:04:30 EDT 2018 */
23
24 #include "dft/codelet-dft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 8 -name q1_8 -include dft/scalar/q.h */
29
30 /*
31 * This function contains 528 FP additions, 288 FP multiplications,
32 * (or, 352 additions, 112 multiplications, 176 fused multiply/add),
33 * 152 stack variables, 1 constants, and 256 memory accesses
34 */
35 #include "dft/scalar/q.h"
36
37 static void q1_8(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
38 {
39 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
40 {
41 INT m;
42 for (m = mb, W = W + (mb * 14); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 14, MAKE_VOLATILE_STRIDE(16, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
43 E T7, T1d, T1t, Tk, TD, TV, T18, TQ, T4F, T5L, T61, T4S, T5b, T5t, T5G;
44 E T5o, T6b, T7h, T7x, T6o, T6H, T6Z, T7c, T6U, TaJ, TbP, Tc5, TaW, Tbf, Tbx;
45 E TbK, Tbs, T1D, T2J, T2Z, T1Q, T29, T2r, T2E, T2m, T39, T4f, T4v, T3m, T3F;
46 E T3X, T4a, T3S, T7H, T8N, T93, T7U, T8d, T8v, T8I, T8q, T9d, Taj, Taz, T9q;
47 E T9J, Ta1, Tae, T9W, Te, T19, T1u, T1g, TE, TF, TW, Tv, TR, T4M, T5H;
48 E T62, T5O, T5c, T5d, T5u, T53, T5p, T6i, T7d, T7y, T7k, T6I, T6J, T70, T6z;
49 E T6V, TaQ, TbL, Tc6, TbS, Tbg, Tbh, Tby, Tb7, Tbt, T1K, T2F, T30, T2M, T2a;
50 E T2b, T2s, T21, T2n, T3g, T4b, T4w, T4i, T3G, T3H, T3Y, T3x, T3T, T7O, T8J;
51 E T94, T8Q, T8e, T8f, T8w, T85, T8r, T9k, Taf, TaA, Tam, T9K, T9L, Ta2, T9B;
52 E T9X;
53 {
54 E T3, Tz, Tj, T16, T6, Tg, TC, T17;
55 {
56 E T1, T2, Th, Ti;
57 T1 = rio[0];
58 T2 = rio[WS(rs, 4)];
59 T3 = T1 + T2;
60 Tz = T1 - T2;
61 Th = iio[0];
62 Ti = iio[WS(rs, 4)];
63 Tj = Th - Ti;
64 T16 = Th + Ti;
65 }
66 {
67 E T4, T5, TA, TB;
68 T4 = rio[WS(rs, 2)];
69 T5 = rio[WS(rs, 6)];
70 T6 = T4 + T5;
71 Tg = T4 - T5;
72 TA = iio[WS(rs, 2)];
73 TB = iio[WS(rs, 6)];
74 TC = TA - TB;
75 T17 = TA + TB;
76 }
77 T7 = T3 + T6;
78 T1d = T3 - T6;
79 T1t = T16 + T17;
80 Tk = Tg + Tj;
81 TD = Tz - TC;
82 TV = Tj - Tg;
83 T18 = T16 - T17;
84 TQ = Tz + TC;
85 }
86 {
87 E T4B, T57, T4R, T5E, T4E, T4O, T5a, T5F;
88 {
89 E T4z, T4A, T4P, T4Q;
90 T4z = rio[WS(vs, 3)];
91 T4A = rio[WS(vs, 3) + WS(rs, 4)];
92 T4B = T4z + T4A;
93 T57 = T4z - T4A;
94 T4P = iio[WS(vs, 3)];
95 T4Q = iio[WS(vs, 3) + WS(rs, 4)];
96 T4R = T4P - T4Q;
97 T5E = T4P + T4Q;
98 }
99 {
100 E T4C, T4D, T58, T59;
101 T4C = rio[WS(vs, 3) + WS(rs, 2)];
102 T4D = rio[WS(vs, 3) + WS(rs, 6)];
103 T4E = T4C + T4D;
104 T4O = T4C - T4D;
105 T58 = iio[WS(vs, 3) + WS(rs, 2)];
106 T59 = iio[WS(vs, 3) + WS(rs, 6)];
107 T5a = T58 - T59;
108 T5F = T58 + T59;
109 }
110 T4F = T4B + T4E;
111 T5L = T4B - T4E;
112 T61 = T5E + T5F;
113 T4S = T4O + T4R;
114 T5b = T57 - T5a;
115 T5t = T4R - T4O;
116 T5G = T5E - T5F;
117 T5o = T57 + T5a;
118 }
119 {
120 E T67, T6D, T6n, T7a, T6a, T6k, T6G, T7b;
121 {
122 E T65, T66, T6l, T6m;
123 T65 = rio[WS(vs, 4)];
124 T66 = rio[WS(vs, 4) + WS(rs, 4)];
125 T67 = T65 + T66;
126 T6D = T65 - T66;
127 T6l = iio[WS(vs, 4)];
128 T6m = iio[WS(vs, 4) + WS(rs, 4)];
129 T6n = T6l - T6m;
130 T7a = T6l + T6m;
131 }
132 {
133 E T68, T69, T6E, T6F;
134 T68 = rio[WS(vs, 4) + WS(rs, 2)];
135 T69 = rio[WS(vs, 4) + WS(rs, 6)];
136 T6a = T68 + T69;
137 T6k = T68 - T69;
138 T6E = iio[WS(vs, 4) + WS(rs, 2)];
139 T6F = iio[WS(vs, 4) + WS(rs, 6)];
140 T6G = T6E - T6F;
141 T7b = T6E + T6F;
142 }
143 T6b = T67 + T6a;
144 T7h = T67 - T6a;
145 T7x = T7a + T7b;
146 T6o = T6k + T6n;
147 T6H = T6D - T6G;
148 T6Z = T6n - T6k;
149 T7c = T7a - T7b;
150 T6U = T6D + T6G;
151 }
152 {
153 E TaF, Tbb, TaV, TbI, TaI, TaS, Tbe, TbJ;
154 {
155 E TaD, TaE, TaT, TaU;
156 TaD = rio[WS(vs, 7)];
157 TaE = rio[WS(vs, 7) + WS(rs, 4)];
158 TaF = TaD + TaE;
159 Tbb = TaD - TaE;
160 TaT = iio[WS(vs, 7)];
161 TaU = iio[WS(vs, 7) + WS(rs, 4)];
162 TaV = TaT - TaU;
163 TbI = TaT + TaU;
164 }
165 {
166 E TaG, TaH, Tbc, Tbd;
167 TaG = rio[WS(vs, 7) + WS(rs, 2)];
168 TaH = rio[WS(vs, 7) + WS(rs, 6)];
169 TaI = TaG + TaH;
170 TaS = TaG - TaH;
171 Tbc = iio[WS(vs, 7) + WS(rs, 2)];
172 Tbd = iio[WS(vs, 7) + WS(rs, 6)];
173 Tbe = Tbc - Tbd;
174 TbJ = Tbc + Tbd;
175 }
176 TaJ = TaF + TaI;
177 TbP = TaF - TaI;
178 Tc5 = TbI + TbJ;
179 TaW = TaS + TaV;
180 Tbf = Tbb - Tbe;
181 Tbx = TaV - TaS;
182 TbK = TbI - TbJ;
183 Tbs = Tbb + Tbe;
184 }
185 {
186 E T1z, T25, T1P, T2C, T1C, T1M, T28, T2D;
187 {
188 E T1x, T1y, T1N, T1O;
189 T1x = rio[WS(vs, 1)];
190 T1y = rio[WS(vs, 1) + WS(rs, 4)];
191 T1z = T1x + T1y;
192 T25 = T1x - T1y;
193 T1N = iio[WS(vs, 1)];
194 T1O = iio[WS(vs, 1) + WS(rs, 4)];
195 T1P = T1N - T1O;
196 T2C = T1N + T1O;
197 }
198 {
199 E T1A, T1B, T26, T27;
200 T1A = rio[WS(vs, 1) + WS(rs, 2)];
201 T1B = rio[WS(vs, 1) + WS(rs, 6)];
202 T1C = T1A + T1B;
203 T1M = T1A - T1B;
204 T26 = iio[WS(vs, 1) + WS(rs, 2)];
205 T27 = iio[WS(vs, 1) + WS(rs, 6)];
206 T28 = T26 - T27;
207 T2D = T26 + T27;
208 }
209 T1D = T1z + T1C;
210 T2J = T1z - T1C;
211 T2Z = T2C + T2D;
212 T1Q = T1M + T1P;
213 T29 = T25 - T28;
214 T2r = T1P - T1M;
215 T2E = T2C - T2D;
216 T2m = T25 + T28;
217 }
218 {
219 E T35, T3B, T3l, T48, T38, T3i, T3E, T49;
220 {
221 E T33, T34, T3j, T3k;
222 T33 = rio[WS(vs, 2)];
223 T34 = rio[WS(vs, 2) + WS(rs, 4)];
224 T35 = T33 + T34;
225 T3B = T33 - T34;
226 T3j = iio[WS(vs, 2)];
227 T3k = iio[WS(vs, 2) + WS(rs, 4)];
228 T3l = T3j - T3k;
229 T48 = T3j + T3k;
230 }
231 {
232 E T36, T37, T3C, T3D;
233 T36 = rio[WS(vs, 2) + WS(rs, 2)];
234 T37 = rio[WS(vs, 2) + WS(rs, 6)];
235 T38 = T36 + T37;
236 T3i = T36 - T37;
237 T3C = iio[WS(vs, 2) + WS(rs, 2)];
238 T3D = iio[WS(vs, 2) + WS(rs, 6)];
239 T3E = T3C - T3D;
240 T49 = T3C + T3D;
241 }
242 T39 = T35 + T38;
243 T4f = T35 - T38;
244 T4v = T48 + T49;
245 T3m = T3i + T3l;
246 T3F = T3B - T3E;
247 T3X = T3l - T3i;
248 T4a = T48 - T49;
249 T3S = T3B + T3E;
250 }
251 {
252 E T7D, T89, T7T, T8G, T7G, T7Q, T8c, T8H;
253 {
254 E T7B, T7C, T7R, T7S;
255 T7B = rio[WS(vs, 5)];
256 T7C = rio[WS(vs, 5) + WS(rs, 4)];
257 T7D = T7B + T7C;
258 T89 = T7B - T7C;
259 T7R = iio[WS(vs, 5)];
260 T7S = iio[WS(vs, 5) + WS(rs, 4)];
261 T7T = T7R - T7S;
262 T8G = T7R + T7S;
263 }
264 {
265 E T7E, T7F, T8a, T8b;
266 T7E = rio[WS(vs, 5) + WS(rs, 2)];
267 T7F = rio[WS(vs, 5) + WS(rs, 6)];
268 T7G = T7E + T7F;
269 T7Q = T7E - T7F;
270 T8a = iio[WS(vs, 5) + WS(rs, 2)];
271 T8b = iio[WS(vs, 5) + WS(rs, 6)];
272 T8c = T8a - T8b;
273 T8H = T8a + T8b;
274 }
275 T7H = T7D + T7G;
276 T8N = T7D - T7G;
277 T93 = T8G + T8H;
278 T7U = T7Q + T7T;
279 T8d = T89 - T8c;
280 T8v = T7T - T7Q;
281 T8I = T8G - T8H;
282 T8q = T89 + T8c;
283 }
284 {
285 E T99, T9F, T9p, Tac, T9c, T9m, T9I, Tad;
286 {
287 E T97, T98, T9n, T9o;
288 T97 = rio[WS(vs, 6)];
289 T98 = rio[WS(vs, 6) + WS(rs, 4)];
290 T99 = T97 + T98;
291 T9F = T97 - T98;
292 T9n = iio[WS(vs, 6)];
293 T9o = iio[WS(vs, 6) + WS(rs, 4)];
294 T9p = T9n - T9o;
295 Tac = T9n + T9o;
296 }
297 {
298 E T9a, T9b, T9G, T9H;
299 T9a = rio[WS(vs, 6) + WS(rs, 2)];
300 T9b = rio[WS(vs, 6) + WS(rs, 6)];
301 T9c = T9a + T9b;
302 T9m = T9a - T9b;
303 T9G = iio[WS(vs, 6) + WS(rs, 2)];
304 T9H = iio[WS(vs, 6) + WS(rs, 6)];
305 T9I = T9G - T9H;
306 Tad = T9G + T9H;
307 }
308 T9d = T99 + T9c;
309 Taj = T99 - T9c;
310 Taz = Tac + Tad;
311 T9q = T9m + T9p;
312 T9J = T9F - T9I;
313 Ta1 = T9p - T9m;
314 Tae = Tac - Tad;
315 T9W = T9F + T9I;
316 }
317 {
318 E Ta, Tq, Tt, T1e, Td, Tl, To, T1f, Tp, Tu;
319 {
320 E T8, T9, Tr, Ts;
321 T8 = rio[WS(rs, 1)];
322 T9 = rio[WS(rs, 5)];
323 Ta = T8 + T9;
324 Tq = T8 - T9;
325 Tr = iio[WS(rs, 1)];
326 Ts = iio[WS(rs, 5)];
327 Tt = Tr - Ts;
328 T1e = Tr + Ts;
329 }
330 {
331 E Tb, Tc, Tm, Tn;
332 Tb = rio[WS(rs, 7)];
333 Tc = rio[WS(rs, 3)];
334 Td = Tb + Tc;
335 Tl = Tb - Tc;
336 Tm = iio[WS(rs, 7)];
337 Tn = iio[WS(rs, 3)];
338 To = Tm - Tn;
339 T1f = Tm + Tn;
340 }
341 Te = Ta + Td;
342 T19 = Td - Ta;
343 T1u = T1e + T1f;
344 T1g = T1e - T1f;
345 TE = Tt - Tq;
346 TF = Tl + To;
347 TW = TE + TF;
348 Tp = Tl - To;
349 Tu = Tq + Tt;
350 Tv = Tp - Tu;
351 TR = Tu + Tp;
352 }
353 {
354 E T4I, T4Y, T51, T5M, T4L, T4T, T4W, T5N, T4X, T52;
355 {
356 E T4G, T4H, T4Z, T50;
357 T4G = rio[WS(vs, 3) + WS(rs, 1)];
358 T4H = rio[WS(vs, 3) + WS(rs, 5)];
359 T4I = T4G + T4H;
360 T4Y = T4G - T4H;
361 T4Z = iio[WS(vs, 3) + WS(rs, 1)];
362 T50 = iio[WS(vs, 3) + WS(rs, 5)];
363 T51 = T4Z - T50;
364 T5M = T4Z + T50;
365 }
366 {
367 E T4J, T4K, T4U, T4V;
368 T4J = rio[WS(vs, 3) + WS(rs, 7)];
369 T4K = rio[WS(vs, 3) + WS(rs, 3)];
370 T4L = T4J + T4K;
371 T4T = T4J - T4K;
372 T4U = iio[WS(vs, 3) + WS(rs, 7)];
373 T4V = iio[WS(vs, 3) + WS(rs, 3)];
374 T4W = T4U - T4V;
375 T5N = T4U + T4V;
376 }
377 T4M = T4I + T4L;
378 T5H = T4L - T4I;
379 T62 = T5M + T5N;
380 T5O = T5M - T5N;
381 T5c = T51 - T4Y;
382 T5d = T4T + T4W;
383 T5u = T5c + T5d;
384 T4X = T4T - T4W;
385 T52 = T4Y + T51;
386 T53 = T4X - T52;
387 T5p = T52 + T4X;
388 }
389 {
390 E T6e, T6u, T6x, T7i, T6h, T6p, T6s, T7j, T6t, T6y;
391 {
392 E T6c, T6d, T6v, T6w;
393 T6c = rio[WS(vs, 4) + WS(rs, 1)];
394 T6d = rio[WS(vs, 4) + WS(rs, 5)];
395 T6e = T6c + T6d;
396 T6u = T6c - T6d;
397 T6v = iio[WS(vs, 4) + WS(rs, 1)];
398 T6w = iio[WS(vs, 4) + WS(rs, 5)];
399 T6x = T6v - T6w;
400 T7i = T6v + T6w;
401 }
402 {
403 E T6f, T6g, T6q, T6r;
404 T6f = rio[WS(vs, 4) + WS(rs, 7)];
405 T6g = rio[WS(vs, 4) + WS(rs, 3)];
406 T6h = T6f + T6g;
407 T6p = T6f - T6g;
408 T6q = iio[WS(vs, 4) + WS(rs, 7)];
409 T6r = iio[WS(vs, 4) + WS(rs, 3)];
410 T6s = T6q - T6r;
411 T7j = T6q + T6r;
412 }
413 T6i = T6e + T6h;
414 T7d = T6h - T6e;
415 T7y = T7i + T7j;
416 T7k = T7i - T7j;
417 T6I = T6x - T6u;
418 T6J = T6p + T6s;
419 T70 = T6I + T6J;
420 T6t = T6p - T6s;
421 T6y = T6u + T6x;
422 T6z = T6t - T6y;
423 T6V = T6y + T6t;
424 }
425 {
426 E TaM, Tb2, Tb5, TbQ, TaP, TaX, Tb0, TbR, Tb1, Tb6;
427 {
428 E TaK, TaL, Tb3, Tb4;
429 TaK = rio[WS(vs, 7) + WS(rs, 1)];
430 TaL = rio[WS(vs, 7) + WS(rs, 5)];
431 TaM = TaK + TaL;
432 Tb2 = TaK - TaL;
433 Tb3 = iio[WS(vs, 7) + WS(rs, 1)];
434 Tb4 = iio[WS(vs, 7) + WS(rs, 5)];
435 Tb5 = Tb3 - Tb4;
436 TbQ = Tb3 + Tb4;
437 }
438 {
439 E TaN, TaO, TaY, TaZ;
440 TaN = rio[WS(vs, 7) + WS(rs, 7)];
441 TaO = rio[WS(vs, 7) + WS(rs, 3)];
442 TaP = TaN + TaO;
443 TaX = TaN - TaO;
444 TaY = iio[WS(vs, 7) + WS(rs, 7)];
445 TaZ = iio[WS(vs, 7) + WS(rs, 3)];
446 Tb0 = TaY - TaZ;
447 TbR = TaY + TaZ;
448 }
449 TaQ = TaM + TaP;
450 TbL = TaP - TaM;
451 Tc6 = TbQ + TbR;
452 TbS = TbQ - TbR;
453 Tbg = Tb5 - Tb2;
454 Tbh = TaX + Tb0;
455 Tby = Tbg + Tbh;
456 Tb1 = TaX - Tb0;
457 Tb6 = Tb2 + Tb5;
458 Tb7 = Tb1 - Tb6;
459 Tbt = Tb6 + Tb1;
460 }
461 {
462 E T1G, T1W, T1Z, T2K, T1J, T1R, T1U, T2L, T1V, T20;
463 {
464 E T1E, T1F, T1X, T1Y;
465 T1E = rio[WS(vs, 1) + WS(rs, 1)];
466 T1F = rio[WS(vs, 1) + WS(rs, 5)];
467 T1G = T1E + T1F;
468 T1W = T1E - T1F;
469 T1X = iio[WS(vs, 1) + WS(rs, 1)];
470 T1Y = iio[WS(vs, 1) + WS(rs, 5)];
471 T1Z = T1X - T1Y;
472 T2K = T1X + T1Y;
473 }
474 {
475 E T1H, T1I, T1S, T1T;
476 T1H = rio[WS(vs, 1) + WS(rs, 7)];
477 T1I = rio[WS(vs, 1) + WS(rs, 3)];
478 T1J = T1H + T1I;
479 T1R = T1H - T1I;
480 T1S = iio[WS(vs, 1) + WS(rs, 7)];
481 T1T = iio[WS(vs, 1) + WS(rs, 3)];
482 T1U = T1S - T1T;
483 T2L = T1S + T1T;
484 }
485 T1K = T1G + T1J;
486 T2F = T1J - T1G;
487 T30 = T2K + T2L;
488 T2M = T2K - T2L;
489 T2a = T1Z - T1W;
490 T2b = T1R + T1U;
491 T2s = T2a + T2b;
492 T1V = T1R - T1U;
493 T20 = T1W + T1Z;
494 T21 = T1V - T20;
495 T2n = T20 + T1V;
496 }
497 {
498 E T3c, T3s, T3v, T4g, T3f, T3n, T3q, T4h, T3r, T3w;
499 {
500 E T3a, T3b, T3t, T3u;
501 T3a = rio[WS(vs, 2) + WS(rs, 1)];
502 T3b = rio[WS(vs, 2) + WS(rs, 5)];
503 T3c = T3a + T3b;
504 T3s = T3a - T3b;
505 T3t = iio[WS(vs, 2) + WS(rs, 1)];
506 T3u = iio[WS(vs, 2) + WS(rs, 5)];
507 T3v = T3t - T3u;
508 T4g = T3t + T3u;
509 }
510 {
511 E T3d, T3e, T3o, T3p;
512 T3d = rio[WS(vs, 2) + WS(rs, 7)];
513 T3e = rio[WS(vs, 2) + WS(rs, 3)];
514 T3f = T3d + T3e;
515 T3n = T3d - T3e;
516 T3o = iio[WS(vs, 2) + WS(rs, 7)];
517 T3p = iio[WS(vs, 2) + WS(rs, 3)];
518 T3q = T3o - T3p;
519 T4h = T3o + T3p;
520 }
521 T3g = T3c + T3f;
522 T4b = T3f - T3c;
523 T4w = T4g + T4h;
524 T4i = T4g - T4h;
525 T3G = T3v - T3s;
526 T3H = T3n + T3q;
527 T3Y = T3G + T3H;
528 T3r = T3n - T3q;
529 T3w = T3s + T3v;
530 T3x = T3r - T3w;
531 T3T = T3w + T3r;
532 }
533 {
534 E T7K, T80, T83, T8O, T7N, T7V, T7Y, T8P, T7Z, T84;
535 {
536 E T7I, T7J, T81, T82;
537 T7I = rio[WS(vs, 5) + WS(rs, 1)];
538 T7J = rio[WS(vs, 5) + WS(rs, 5)];
539 T7K = T7I + T7J;
540 T80 = T7I - T7J;
541 T81 = iio[WS(vs, 5) + WS(rs, 1)];
542 T82 = iio[WS(vs, 5) + WS(rs, 5)];
543 T83 = T81 - T82;
544 T8O = T81 + T82;
545 }
546 {
547 E T7L, T7M, T7W, T7X;
548 T7L = rio[WS(vs, 5) + WS(rs, 7)];
549 T7M = rio[WS(vs, 5) + WS(rs, 3)];
550 T7N = T7L + T7M;
551 T7V = T7L - T7M;
552 T7W = iio[WS(vs, 5) + WS(rs, 7)];
553 T7X = iio[WS(vs, 5) + WS(rs, 3)];
554 T7Y = T7W - T7X;
555 T8P = T7W + T7X;
556 }
557 T7O = T7K + T7N;
558 T8J = T7N - T7K;
559 T94 = T8O + T8P;
560 T8Q = T8O - T8P;
561 T8e = T83 - T80;
562 T8f = T7V + T7Y;
563 T8w = T8e + T8f;
564 T7Z = T7V - T7Y;
565 T84 = T80 + T83;
566 T85 = T7Z - T84;
567 T8r = T84 + T7Z;
568 }
569 {
570 E T9g, T9w, T9z, Tak, T9j, T9r, T9u, Tal, T9v, T9A;
571 {
572 E T9e, T9f, T9x, T9y;
573 T9e = rio[WS(vs, 6) + WS(rs, 1)];
574 T9f = rio[WS(vs, 6) + WS(rs, 5)];
575 T9g = T9e + T9f;
576 T9w = T9e - T9f;
577 T9x = iio[WS(vs, 6) + WS(rs, 1)];
578 T9y = iio[WS(vs, 6) + WS(rs, 5)];
579 T9z = T9x - T9y;
580 Tak = T9x + T9y;
581 }
582 {
583 E T9h, T9i, T9s, T9t;
584 T9h = rio[WS(vs, 6) + WS(rs, 7)];
585 T9i = rio[WS(vs, 6) + WS(rs, 3)];
586 T9j = T9h + T9i;
587 T9r = T9h - T9i;
588 T9s = iio[WS(vs, 6) + WS(rs, 7)];
589 T9t = iio[WS(vs, 6) + WS(rs, 3)];
590 T9u = T9s - T9t;
591 Tal = T9s + T9t;
592 }
593 T9k = T9g + T9j;
594 Taf = T9j - T9g;
595 TaA = Tak + Tal;
596 Tam = Tak - Tal;
597 T9K = T9z - T9w;
598 T9L = T9r + T9u;
599 Ta2 = T9K + T9L;
600 T9v = T9r - T9u;
601 T9A = T9w + T9z;
602 T9B = T9v - T9A;
603 T9X = T9A + T9v;
604 }
605 rio[0] = T7 + Te;
606 iio[0] = T1t + T1u;
607 rio[WS(rs, 1)] = T1D + T1K;
608 iio[WS(rs, 1)] = T2Z + T30;
609 rio[WS(rs, 2)] = T39 + T3g;
610 iio[WS(rs, 2)] = T4v + T4w;
611 rio[WS(rs, 3)] = T4F + T4M;
612 iio[WS(rs, 3)] = T61 + T62;
613 rio[WS(rs, 4)] = T6b + T6i;
614 iio[WS(rs, 4)] = T7x + T7y;
615 rio[WS(rs, 5)] = T7H + T7O;
616 iio[WS(rs, 5)] = T93 + T94;
617 rio[WS(rs, 6)] = T9d + T9k;
618 iio[WS(rs, 6)] = Taz + TaA;
619 rio[WS(rs, 7)] = TaJ + TaQ;
620 iio[WS(rs, 7)] = Tc5 + Tc6;
621 {
622 E TS, TX, TT, TY, TP, TU;
623 TS = FNMS(KP707106781, TR, TQ);
624 TX = FNMS(KP707106781, TW, TV);
625 TP = W[8];
626 TT = TP * TS;
627 TY = TP * TX;
628 TU = W[9];
629 rio[WS(vs, 5)] = FMA(TU, TX, TT);
630 iio[WS(vs, 5)] = FNMS(TU, TS, TY);
631 }
632 {
633 E T2N, T2B, T2H, T2I, T2O, T2G;
634 T2N = T2J - T2M;
635 T2G = T2E - T2F;
636 T2B = W[10];
637 T2H = T2B * T2G;
638 T2I = W[11];
639 T2O = T2I * T2G;
640 iio[WS(vs, 6) + WS(rs, 1)] = FNMS(T2I, T2N, T2H);
641 rio[WS(vs, 6) + WS(rs, 1)] = FMA(T2B, T2N, T2O);
642 }
643 {
644 E T1n, T1j, T1l, T1m, T1o, T1k;
645 T1n = T1d + T1g;
646 T1k = T19 + T18;
647 T1j = W[2];
648 T1l = T1j * T1k;
649 T1m = W[3];
650 T1o = T1m * T1k;
651 iio[WS(vs, 2)] = FNMS(T1m, T1n, T1l);
652 rio[WS(vs, 2)] = FMA(T1j, T1n, T1o);
653 }
654 {
655 E T1q, T1v, T1r, T1w, T1p, T1s;
656 T1q = T7 - Te;
657 T1v = T1t - T1u;
658 T1p = W[6];
659 T1r = T1p * T1q;
660 T1w = T1p * T1v;
661 T1s = W[7];
662 rio[WS(vs, 4)] = FMA(T1s, T1v, T1r);
663 iio[WS(vs, 4)] = FNMS(T1s, T1q, T1w);
664 }
665 {
666 E Tan, Tab, Tah, Tai, Tao, Tag;
667 Tan = Taj - Tam;
668 Tag = Tae - Taf;
669 Tab = W[10];
670 Tah = Tab * Tag;
671 Tai = W[11];
672 Tao = Tai * Tag;
673 iio[WS(vs, 6) + WS(rs, 6)] = FNMS(Tai, Tan, Tah);
674 rio[WS(vs, 6) + WS(rs, 6)] = FMA(Tab, Tan, Tao);
675 }
676 {
677 E Tc2, Tc7, Tc3, Tc8, Tc1, Tc4;
678 Tc2 = TaJ - TaQ;
679 Tc7 = Tc5 - Tc6;
680 Tc1 = W[6];
681 Tc3 = Tc1 * Tc2;
682 Tc8 = Tc1 * Tc7;
683 Tc4 = W[7];
684 rio[WS(vs, 4) + WS(rs, 7)] = FMA(Tc4, Tc7, Tc3);
685 iio[WS(vs, 4) + WS(rs, 7)] = FNMS(Tc4, Tc2, Tc8);
686 }
687 {
688 E Tbu, Tbz, Tbv, TbA, Tbr, Tbw;
689 Tbu = FNMS(KP707106781, Tbt, Tbs);
690 Tbz = FNMS(KP707106781, Tby, Tbx);
691 Tbr = W[8];
692 Tbv = Tbr * Tbu;
693 TbA = Tbr * Tbz;
694 Tbw = W[9];
695 rio[WS(vs, 5) + WS(rs, 7)] = FMA(Tbw, Tbz, Tbv);
696 iio[WS(vs, 5) + WS(rs, 7)] = FNMS(Tbw, Tbu, TbA);
697 }
698 {
699 E TbC, TbF, TbD, TbG, TbB, TbE;
700 TbC = FMA(KP707106781, Tbt, Tbs);
701 TbF = FMA(KP707106781, Tby, Tbx);
702 TbB = W[0];
703 TbD = TbB * TbC;
704 TbG = TbB * TbF;
705 TbE = W[1];
706 rio[WS(vs, 1) + WS(rs, 7)] = FMA(TbE, TbF, TbD);
707 iio[WS(vs, 1) + WS(rs, 7)] = FNMS(TbE, TbC, TbG);
708 }
709 {
710 E T10, T13, T11, T14, TZ, T12;
711 T10 = FMA(KP707106781, TR, TQ);
712 T13 = FMA(KP707106781, TW, TV);
713 TZ = W[0];
714 T11 = TZ * T10;
715 T14 = TZ * T13;
716 T12 = W[1];
717 rio[WS(vs, 1)] = FMA(T12, T13, T11);
718 iio[WS(vs, 1)] = FNMS(T12, T10, T14);
719 }
720 {
721 E T2w, T2z, T2x, T2A, T2v, T2y;
722 T2w = FMA(KP707106781, T2n, T2m);
723 T2z = FMA(KP707106781, T2s, T2r);
724 T2v = W[0];
725 T2x = T2v * T2w;
726 T2A = T2v * T2z;
727 T2y = W[1];
728 rio[WS(vs, 1) + WS(rs, 1)] = FMA(T2y, T2z, T2x);
729 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T2y, T2w, T2A);
730 }
731 {
732 E T1h, T15, T1b, T1c, T1i, T1a;
733 T1h = T1d - T1g;
734 T1a = T18 - T19;
735 T15 = W[10];
736 T1b = T15 * T1a;
737 T1c = W[11];
738 T1i = T1c * T1a;
739 iio[WS(vs, 6)] = FNMS(T1c, T1h, T1b);
740 rio[WS(vs, 6)] = FMA(T15, T1h, T1i);
741 }
742 {
743 E T2o, T2t, T2p, T2u, T2l, T2q;
744 T2o = FNMS(KP707106781, T2n, T2m);
745 T2t = FNMS(KP707106781, T2s, T2r);
746 T2l = W[8];
747 T2p = T2l * T2o;
748 T2u = T2l * T2t;
749 T2q = W[9];
750 rio[WS(vs, 5) + WS(rs, 1)] = FMA(T2q, T2t, T2p);
751 iio[WS(vs, 5) + WS(rs, 1)] = FNMS(T2q, T2o, T2u);
752 }
753 {
754 E Tat, Tap, Tar, Tas, Tau, Taq;
755 Tat = Taj + Tam;
756 Taq = Taf + Tae;
757 Tap = W[2];
758 Tar = Tap * Taq;
759 Tas = W[3];
760 Tau = Tas * Taq;
761 iio[WS(vs, 2) + WS(rs, 6)] = FNMS(Tas, Tat, Tar);
762 rio[WS(vs, 2) + WS(rs, 6)] = FMA(Tap, Tat, Tau);
763 }
764 {
765 E TbZ, TbV, TbX, TbY, Tc0, TbW;
766 TbZ = TbP + TbS;
767 TbW = TbL + TbK;
768 TbV = W[2];
769 TbX = TbV * TbW;
770 TbY = W[3];
771 Tc0 = TbY * TbW;
772 iio[WS(vs, 2) + WS(rs, 7)] = FNMS(TbY, TbZ, TbX);
773 rio[WS(vs, 2) + WS(rs, 7)] = FMA(TbV, TbZ, Tc0);
774 }
775 {
776 E Taw, TaB, Tax, TaC, Tav, Tay;
777 Taw = T9d - T9k;
778 TaB = Taz - TaA;
779 Tav = W[6];
780 Tax = Tav * Taw;
781 TaC = Tav * TaB;
782 Tay = W[7];
783 rio[WS(vs, 4) + WS(rs, 6)] = FMA(Tay, TaB, Tax);
784 iio[WS(vs, 4) + WS(rs, 6)] = FNMS(Tay, Taw, TaC);
785 }
786 {
787 E TbT, TbH, TbN, TbO, TbU, TbM;
788 TbT = TbP - TbS;
789 TbM = TbK - TbL;
790 TbH = W[10];
791 TbN = TbH * TbM;
792 TbO = W[11];
793 TbU = TbO * TbM;
794 iio[WS(vs, 6) + WS(rs, 7)] = FNMS(TbO, TbT, TbN);
795 rio[WS(vs, 6) + WS(rs, 7)] = FMA(TbH, TbT, TbU);
796 }
797 {
798 E T2T, T2P, T2R, T2S, T2U, T2Q;
799 T2T = T2J + T2M;
800 T2Q = T2F + T2E;
801 T2P = W[2];
802 T2R = T2P * T2Q;
803 T2S = W[3];
804 T2U = T2S * T2Q;
805 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T2S, T2T, T2R);
806 rio[WS(vs, 2) + WS(rs, 1)] = FMA(T2P, T2T, T2U);
807 }
808 {
809 E T5Y, T63, T5Z, T64, T5X, T60;
810 T5Y = T4F - T4M;
811 T63 = T61 - T62;
812 T5X = W[6];
813 T5Z = T5X * T5Y;
814 T64 = T5X * T63;
815 T60 = W[7];
816 rio[WS(vs, 4) + WS(rs, 3)] = FMA(T60, T63, T5Z);
817 iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T60, T5Y, T64);
818 }
819 {
820 E T42, T45, T43, T46, T41, T44;
821 T42 = FMA(KP707106781, T3T, T3S);
822 T45 = FMA(KP707106781, T3Y, T3X);
823 T41 = W[0];
824 T43 = T41 * T42;
825 T46 = T41 * T45;
826 T44 = W[1];
827 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T44, T45, T43);
828 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T44, T42, T46);
829 }
830 {
831 E T5y, T5B, T5z, T5C, T5x, T5A;
832 T5y = FMA(KP707106781, T5p, T5o);
833 T5B = FMA(KP707106781, T5u, T5t);
834 T5x = W[0];
835 T5z = T5x * T5y;
836 T5C = T5x * T5B;
837 T5A = W[1];
838 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T5A, T5B, T5z);
839 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T5A, T5y, T5C);
840 }
841 {
842 E T6W, T71, T6X, T72, T6T, T6Y;
843 T6W = FNMS(KP707106781, T6V, T6U);
844 T71 = FNMS(KP707106781, T70, T6Z);
845 T6T = W[8];
846 T6X = T6T * T6W;
847 T72 = T6T * T71;
848 T6Y = W[9];
849 rio[WS(vs, 5) + WS(rs, 4)] = FMA(T6Y, T71, T6X);
850 iio[WS(vs, 5) + WS(rs, 4)] = FNMS(T6Y, T6W, T72);
851 }
852 {
853 E Ta6, Ta9, Ta7, Taa, Ta5, Ta8;
854 Ta6 = FMA(KP707106781, T9X, T9W);
855 Ta9 = FMA(KP707106781, Ta2, Ta1);
856 Ta5 = W[0];
857 Ta7 = Ta5 * Ta6;
858 Taa = Ta5 * Ta9;
859 Ta8 = W[1];
860 rio[WS(vs, 1) + WS(rs, 6)] = FMA(Ta8, Ta9, Ta7);
861 iio[WS(vs, 1) + WS(rs, 6)] = FNMS(Ta8, Ta6, Taa);
862 }
863 {
864 E T7r, T7n, T7p, T7q, T7s, T7o;
865 T7r = T7h + T7k;
866 T7o = T7d + T7c;
867 T7n = W[2];
868 T7p = T7n * T7o;
869 T7q = W[3];
870 T7s = T7q * T7o;
871 iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T7q, T7r, T7p);
872 rio[WS(vs, 2) + WS(rs, 4)] = FMA(T7n, T7r, T7s);
873 }
874 {
875 E T8X, T8T, T8V, T8W, T8Y, T8U;
876 T8X = T8N + T8Q;
877 T8U = T8J + T8I;
878 T8T = W[2];
879 T8V = T8T * T8U;
880 T8W = W[3];
881 T8Y = T8W * T8U;
882 iio[WS(vs, 2) + WS(rs, 5)] = FNMS(T8W, T8X, T8V);
883 rio[WS(vs, 2) + WS(rs, 5)] = FMA(T8T, T8X, T8Y);
884 }
885 {
886 E T2W, T31, T2X, T32, T2V, T2Y;
887 T2W = T1D - T1K;
888 T31 = T2Z - T30;
889 T2V = W[6];
890 T2X = T2V * T2W;
891 T32 = T2V * T31;
892 T2Y = W[7];
893 rio[WS(vs, 4) + WS(rs, 1)] = FMA(T2Y, T31, T2X);
894 iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T2Y, T2W, T32);
895 }
896 {
897 E T5V, T5R, T5T, T5U, T5W, T5S;
898 T5V = T5L + T5O;
899 T5S = T5H + T5G;
900 T5R = W[2];
901 T5T = T5R * T5S;
902 T5U = W[3];
903 T5W = T5U * T5S;
904 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T5U, T5V, T5T);
905 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T5R, T5V, T5W);
906 }
907 {
908 E T3U, T3Z, T3V, T40, T3R, T3W;
909 T3U = FNMS(KP707106781, T3T, T3S);
910 T3Z = FNMS(KP707106781, T3Y, T3X);
911 T3R = W[8];
912 T3V = T3R * T3U;
913 T40 = T3R * T3Z;
914 T3W = W[9];
915 rio[WS(vs, 5) + WS(rs, 2)] = FMA(T3W, T3Z, T3V);
916 iio[WS(vs, 5) + WS(rs, 2)] = FNMS(T3W, T3U, T40);
917 }
918 {
919 E T5P, T5D, T5J, T5K, T5Q, T5I;
920 T5P = T5L - T5O;
921 T5I = T5G - T5H;
922 T5D = W[10];
923 T5J = T5D * T5I;
924 T5K = W[11];
925 T5Q = T5K * T5I;
926 iio[WS(vs, 6) + WS(rs, 3)] = FNMS(T5K, T5P, T5J);
927 rio[WS(vs, 6) + WS(rs, 3)] = FMA(T5D, T5P, T5Q);
928 }
929 {
930 E T74, T77, T75, T78, T73, T76;
931 T74 = FMA(KP707106781, T6V, T6U);
932 T77 = FMA(KP707106781, T70, T6Z);
933 T73 = W[0];
934 T75 = T73 * T74;
935 T78 = T73 * T77;
936 T76 = W[1];
937 rio[WS(vs, 1) + WS(rs, 4)] = FMA(T76, T77, T75);
938 iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T76, T74, T78);
939 }
940 {
941 E T9Y, Ta3, T9Z, Ta4, T9V, Ta0;
942 T9Y = FNMS(KP707106781, T9X, T9W);
943 Ta3 = FNMS(KP707106781, Ta2, Ta1);
944 T9V = W[8];
945 T9Z = T9V * T9Y;
946 Ta4 = T9V * Ta3;
947 Ta0 = W[9];
948 rio[WS(vs, 5) + WS(rs, 6)] = FMA(Ta0, Ta3, T9Z);
949 iio[WS(vs, 5) + WS(rs, 6)] = FNMS(Ta0, T9Y, Ta4);
950 }
951 {
952 E T7l, T79, T7f, T7g, T7m, T7e;
953 T7l = T7h - T7k;
954 T7e = T7c - T7d;
955 T79 = W[10];
956 T7f = T79 * T7e;
957 T7g = W[11];
958 T7m = T7g * T7e;
959 iio[WS(vs, 6) + WS(rs, 4)] = FNMS(T7g, T7l, T7f);
960 rio[WS(vs, 6) + WS(rs, 4)] = FMA(T79, T7l, T7m);
961 }
962 {
963 E T90, T95, T91, T96, T8Z, T92;
964 T90 = T7H - T7O;
965 T95 = T93 - T94;
966 T8Z = W[6];
967 T91 = T8Z * T90;
968 T96 = T8Z * T95;
969 T92 = W[7];
970 rio[WS(vs, 4) + WS(rs, 5)] = FMA(T92, T95, T91);
971 iio[WS(vs, 4) + WS(rs, 5)] = FNMS(T92, T90, T96);
972 }
973 {
974 E T4j, T47, T4d, T4e, T4k, T4c;
975 T4j = T4f - T4i;
976 T4c = T4a - T4b;
977 T47 = W[10];
978 T4d = T47 * T4c;
979 T4e = W[11];
980 T4k = T4e * T4c;
981 iio[WS(vs, 6) + WS(rs, 2)] = FNMS(T4e, T4j, T4d);
982 rio[WS(vs, 6) + WS(rs, 2)] = FMA(T47, T4j, T4k);
983 }
984 {
985 E T5q, T5v, T5r, T5w, T5n, T5s;
986 T5q = FNMS(KP707106781, T5p, T5o);
987 T5v = FNMS(KP707106781, T5u, T5t);
988 T5n = W[8];
989 T5r = T5n * T5q;
990 T5w = T5n * T5v;
991 T5s = W[9];
992 rio[WS(vs, 5) + WS(rs, 3)] = FMA(T5s, T5v, T5r);
993 iio[WS(vs, 5) + WS(rs, 3)] = FNMS(T5s, T5q, T5w);
994 }
995 {
996 E T4p, T4l, T4n, T4o, T4q, T4m;
997 T4p = T4f + T4i;
998 T4m = T4b + T4a;
999 T4l = W[2];
1000 T4n = T4l * T4m;
1001 T4o = W[3];
1002 T4q = T4o * T4m;
1003 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T4o, T4p, T4n);
1004 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T4l, T4p, T4q);
1005 }
1006 {
1007 E T4s, T4x, T4t, T4y, T4r, T4u;
1008 T4s = T39 - T3g;
1009 T4x = T4v - T4w;
1010 T4r = W[6];
1011 T4t = T4r * T4s;
1012 T4y = T4r * T4x;
1013 T4u = W[7];
1014 rio[WS(vs, 4) + WS(rs, 2)] = FMA(T4u, T4x, T4t);
1015 iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T4u, T4s, T4y);
1016 }
1017 {
1018 E T7u, T7z, T7v, T7A, T7t, T7w;
1019 T7u = T6b - T6i;
1020 T7z = T7x - T7y;
1021 T7t = W[6];
1022 T7v = T7t * T7u;
1023 T7A = T7t * T7z;
1024 T7w = W[7];
1025 rio[WS(vs, 4) + WS(rs, 4)] = FMA(T7w, T7z, T7v);
1026 iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T7w, T7u, T7A);
1027 }
1028 {
1029 E T8R, T8F, T8L, T8M, T8S, T8K;
1030 T8R = T8N - T8Q;
1031 T8K = T8I - T8J;
1032 T8F = W[10];
1033 T8L = T8F * T8K;
1034 T8M = W[11];
1035 T8S = T8M * T8K;
1036 iio[WS(vs, 6) + WS(rs, 5)] = FNMS(T8M, T8R, T8L);
1037 rio[WS(vs, 6) + WS(rs, 5)] = FMA(T8F, T8R, T8S);
1038 }
1039 {
1040 E T8s, T8x, T8t, T8y, T8p, T8u;
1041 T8s = FNMS(KP707106781, T8r, T8q);
1042 T8x = FNMS(KP707106781, T8w, T8v);
1043 T8p = W[8];
1044 T8t = T8p * T8s;
1045 T8y = T8p * T8x;
1046 T8u = W[9];
1047 rio[WS(vs, 5) + WS(rs, 5)] = FMA(T8u, T8x, T8t);
1048 iio[WS(vs, 5) + WS(rs, 5)] = FNMS(T8u, T8s, T8y);
1049 }
1050 {
1051 E T8A, T8D, T8B, T8E, T8z, T8C;
1052 T8A = FMA(KP707106781, T8r, T8q);
1053 T8D = FMA(KP707106781, T8w, T8v);
1054 T8z = W[0];
1055 T8B = T8z * T8A;
1056 T8E = T8z * T8D;
1057 T8C = W[1];
1058 rio[WS(vs, 1) + WS(rs, 5)] = FMA(T8C, T8D, T8B);
1059 iio[WS(vs, 1) + WS(rs, 5)] = FNMS(T8C, T8A, T8E);
1060 }
1061 {
1062 E TH, TN, TJ, TL, TM, TO, Tf, Tx, Ty, TI, TG, TK, Tw;
1063 TG = TE - TF;
1064 TH = FNMS(KP707106781, TG, TD);
1065 TN = FMA(KP707106781, TG, TD);
1066 TK = FMA(KP707106781, Tv, Tk);
1067 TJ = W[4];
1068 TL = TJ * TK;
1069 TM = W[5];
1070 TO = TM * TK;
1071 Tw = FNMS(KP707106781, Tv, Tk);
1072 Tf = W[12];
1073 Tx = Tf * Tw;
1074 Ty = W[13];
1075 TI = Ty * Tw;
1076 iio[WS(vs, 7)] = FNMS(Ty, TH, Tx);
1077 rio[WS(vs, 7)] = FMA(Tf, TH, TI);
1078 iio[WS(vs, 3)] = FNMS(TM, TN, TL);
1079 rio[WS(vs, 3)] = FMA(TJ, TN, TO);
1080 }
1081 {
1082 E T5f, T5l, T5h, T5j, T5k, T5m, T4N, T55, T56, T5g, T5e, T5i, T54;
1083 T5e = T5c - T5d;
1084 T5f = FNMS(KP707106781, T5e, T5b);
1085 T5l = FMA(KP707106781, T5e, T5b);
1086 T5i = FMA(KP707106781, T53, T4S);
1087 T5h = W[4];
1088 T5j = T5h * T5i;
1089 T5k = W[5];
1090 T5m = T5k * T5i;
1091 T54 = FNMS(KP707106781, T53, T4S);
1092 T4N = W[12];
1093 T55 = T4N * T54;
1094 T56 = W[13];
1095 T5g = T56 * T54;
1096 iio[WS(vs, 7) + WS(rs, 3)] = FNMS(T56, T5f, T55);
1097 rio[WS(vs, 7) + WS(rs, 3)] = FMA(T4N, T5f, T5g);
1098 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T5k, T5l, T5j);
1099 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T5h, T5l, T5m);
1100 }
1101 {
1102 E T2d, T2j, T2f, T2h, T2i, T2k, T1L, T23, T24, T2e, T2c, T2g, T22;
1103 T2c = T2a - T2b;
1104 T2d = FNMS(KP707106781, T2c, T29);
1105 T2j = FMA(KP707106781, T2c, T29);
1106 T2g = FMA(KP707106781, T21, T1Q);
1107 T2f = W[4];
1108 T2h = T2f * T2g;
1109 T2i = W[5];
1110 T2k = T2i * T2g;
1111 T22 = FNMS(KP707106781, T21, T1Q);
1112 T1L = W[12];
1113 T23 = T1L * T22;
1114 T24 = W[13];
1115 T2e = T24 * T22;
1116 iio[WS(vs, 7) + WS(rs, 1)] = FNMS(T24, T2d, T23);
1117 rio[WS(vs, 7) + WS(rs, 1)] = FMA(T1L, T2d, T2e);
1118 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T2i, T2j, T2h);
1119 rio[WS(vs, 3) + WS(rs, 1)] = FMA(T2f, T2j, T2k);
1120 }
1121 {
1122 E T3J, T3P, T3L, T3N, T3O, T3Q, T3h, T3z, T3A, T3K, T3I, T3M, T3y;
1123 T3I = T3G - T3H;
1124 T3J = FNMS(KP707106781, T3I, T3F);
1125 T3P = FMA(KP707106781, T3I, T3F);
1126 T3M = FMA(KP707106781, T3x, T3m);
1127 T3L = W[4];
1128 T3N = T3L * T3M;
1129 T3O = W[5];
1130 T3Q = T3O * T3M;
1131 T3y = FNMS(KP707106781, T3x, T3m);
1132 T3h = W[12];
1133 T3z = T3h * T3y;
1134 T3A = W[13];
1135 T3K = T3A * T3y;
1136 iio[WS(vs, 7) + WS(rs, 2)] = FNMS(T3A, T3J, T3z);
1137 rio[WS(vs, 7) + WS(rs, 2)] = FMA(T3h, T3J, T3K);
1138 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T3O, T3P, T3N);
1139 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T3L, T3P, T3Q);
1140 }
1141 {
1142 E T6L, T6R, T6N, T6P, T6Q, T6S, T6j, T6B, T6C, T6M, T6K, T6O, T6A;
1143 T6K = T6I - T6J;
1144 T6L = FNMS(KP707106781, T6K, T6H);
1145 T6R = FMA(KP707106781, T6K, T6H);
1146 T6O = FMA(KP707106781, T6z, T6o);
1147 T6N = W[4];
1148 T6P = T6N * T6O;
1149 T6Q = W[5];
1150 T6S = T6Q * T6O;
1151 T6A = FNMS(KP707106781, T6z, T6o);
1152 T6j = W[12];
1153 T6B = T6j * T6A;
1154 T6C = W[13];
1155 T6M = T6C * T6A;
1156 iio[WS(vs, 7) + WS(rs, 4)] = FNMS(T6C, T6L, T6B);
1157 rio[WS(vs, 7) + WS(rs, 4)] = FMA(T6j, T6L, T6M);
1158 iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T6Q, T6R, T6P);
1159 rio[WS(vs, 3) + WS(rs, 4)] = FMA(T6N, T6R, T6S);
1160 }
1161 {
1162 E Tbj, Tbp, Tbl, Tbn, Tbo, Tbq, TaR, Tb9, Tba, Tbk, Tbi, Tbm, Tb8;
1163 Tbi = Tbg - Tbh;
1164 Tbj = FNMS(KP707106781, Tbi, Tbf);
1165 Tbp = FMA(KP707106781, Tbi, Tbf);
1166 Tbm = FMA(KP707106781, Tb7, TaW);
1167 Tbl = W[4];
1168 Tbn = Tbl * Tbm;
1169 Tbo = W[5];
1170 Tbq = Tbo * Tbm;
1171 Tb8 = FNMS(KP707106781, Tb7, TaW);
1172 TaR = W[12];
1173 Tb9 = TaR * Tb8;
1174 Tba = W[13];
1175 Tbk = Tba * Tb8;
1176 iio[WS(vs, 7) + WS(rs, 7)] = FNMS(Tba, Tbj, Tb9);
1177 rio[WS(vs, 7) + WS(rs, 7)] = FMA(TaR, Tbj, Tbk);
1178 iio[WS(vs, 3) + WS(rs, 7)] = FNMS(Tbo, Tbp, Tbn);
1179 rio[WS(vs, 3) + WS(rs, 7)] = FMA(Tbl, Tbp, Tbq);
1180 }
1181 {
1182 E T8h, T8n, T8j, T8l, T8m, T8o, T7P, T87, T88, T8i, T8g, T8k, T86;
1183 T8g = T8e - T8f;
1184 T8h = FNMS(KP707106781, T8g, T8d);
1185 T8n = FMA(KP707106781, T8g, T8d);
1186 T8k = FMA(KP707106781, T85, T7U);
1187 T8j = W[4];
1188 T8l = T8j * T8k;
1189 T8m = W[5];
1190 T8o = T8m * T8k;
1191 T86 = FNMS(KP707106781, T85, T7U);
1192 T7P = W[12];
1193 T87 = T7P * T86;
1194 T88 = W[13];
1195 T8i = T88 * T86;
1196 iio[WS(vs, 7) + WS(rs, 5)] = FNMS(T88, T8h, T87);
1197 rio[WS(vs, 7) + WS(rs, 5)] = FMA(T7P, T8h, T8i);
1198 iio[WS(vs, 3) + WS(rs, 5)] = FNMS(T8m, T8n, T8l);
1199 rio[WS(vs, 3) + WS(rs, 5)] = FMA(T8j, T8n, T8o);
1200 }
1201 {
1202 E T9N, T9T, T9P, T9R, T9S, T9U, T9l, T9D, T9E, T9O, T9M, T9Q, T9C;
1203 T9M = T9K - T9L;
1204 T9N = FNMS(KP707106781, T9M, T9J);
1205 T9T = FMA(KP707106781, T9M, T9J);
1206 T9Q = FMA(KP707106781, T9B, T9q);
1207 T9P = W[4];
1208 T9R = T9P * T9Q;
1209 T9S = W[5];
1210 T9U = T9S * T9Q;
1211 T9C = FNMS(KP707106781, T9B, T9q);
1212 T9l = W[12];
1213 T9D = T9l * T9C;
1214 T9E = W[13];
1215 T9O = T9E * T9C;
1216 iio[WS(vs, 7) + WS(rs, 6)] = FNMS(T9E, T9N, T9D);
1217 rio[WS(vs, 7) + WS(rs, 6)] = FMA(T9l, T9N, T9O);
1218 iio[WS(vs, 3) + WS(rs, 6)] = FNMS(T9S, T9T, T9R);
1219 rio[WS(vs, 3) + WS(rs, 6)] = FMA(T9P, T9T, T9U);
1220 }
1221 }
1222 }
1223 }
1224
1225 static const tw_instr twinstr[] = {
1226 {TW_FULL, 0, 8},
1227 {TW_NEXT, 1, 0}
1228 };
1229
1230 static const ct_desc desc = { 8, "q1_8", twinstr, &GENUS, {352, 112, 176, 0}, 0, 0, 0 };
1231
1232 void X(codelet_q1_8) (planner *p) {
1233 X(kdft_difsq_register) (p, q1_8, &desc);
1234 }
1235 #else
1236
1237 /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 8 -name q1_8 -include dft/scalar/q.h */
1238
1239 /*
1240 * This function contains 528 FP additions, 256 FP multiplications,
1241 * (or, 416 additions, 144 multiplications, 112 fused multiply/add),
1242 * 142 stack variables, 1 constants, and 256 memory accesses
1243 */
1244 #include "dft/scalar/q.h"
1245
1246 static void q1_8(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
1247 {
1248 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
1249 {
1250 INT m;
1251 for (m = mb, W = W + (mb * 14); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 14, MAKE_VOLATILE_STRIDE(16, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
1252 E T7, T14, T1g, Tk, TC, TQ, T10, TM, T1w, T2p, T2z, T1H, T1M, T1W, T2j;
1253 E T1V, T7R, T8O, T90, T84, T8m, T8A, T8K, T8w, T9g, Ta9, Taj, T9r, T9w, T9G;
1254 E Ta3, T9F, Te, T17, T1h, Tp, Tu, TE, T11, TD, T1p, T2m, T2y, T1C, T1U;
1255 E T28, T2i, T24, T7Y, T8R, T91, T89, T8e, T8o, T8L, T8n, T99, Ta6, Tai, T9m;
1256 E T9E, T9S, Ta2, T9O, T2H, T3E, T3Q, T2U, T3c, T3q, T3A, T3m, T46, T4Z, T59;
1257 E T4h, T4m, T4w, T4T, T4v, T5h, T6e, T6q, T5u, T5M, T60, T6a, T5W, T6G, T7z;
1258 E T7J, T6R, T6W, T76, T7t, T75, T2O, T3H, T3R, T2Z, T34, T3e, T3B, T3d, T3Z;
1259 E T4W, T58, T4c, T4u, T4I, T4S, T4E, T5o, T6h, T6r, T5z, T5E, T5O, T6b, T5N;
1260 E T6z, T7w, T7I, T6M, T74, T7i, T7s, T7e;
1261 {
1262 E T3, Ty, Tj, TY, T6, Tg, TB, TZ;
1263 {
1264 E T1, T2, Th, Ti;
1265 T1 = rio[0];
1266 T2 = rio[WS(rs, 4)];
1267 T3 = T1 + T2;
1268 Ty = T1 - T2;
1269 Th = iio[0];
1270 Ti = iio[WS(rs, 4)];
1271 Tj = Th - Ti;
1272 TY = Th + Ti;
1273 }
1274 {
1275 E T4, T5, Tz, TA;
1276 T4 = rio[WS(rs, 2)];
1277 T5 = rio[WS(rs, 6)];
1278 T6 = T4 + T5;
1279 Tg = T4 - T5;
1280 Tz = iio[WS(rs, 2)];
1281 TA = iio[WS(rs, 6)];
1282 TB = Tz - TA;
1283 TZ = Tz + TA;
1284 }
1285 T7 = T3 + T6;
1286 T14 = T3 - T6;
1287 T1g = TY + TZ;
1288 Tk = Tg + Tj;
1289 TC = Ty - TB;
1290 TQ = Tj - Tg;
1291 T10 = TY - TZ;
1292 TM = Ty + TB;
1293 }
1294 {
1295 E T1s, T1I, T1L, T2n, T1v, T1D, T1G, T2o;
1296 {
1297 E T1q, T1r, T1J, T1K;
1298 T1q = rio[WS(vs, 1) + WS(rs, 1)];
1299 T1r = rio[WS(vs, 1) + WS(rs, 5)];
1300 T1s = T1q + T1r;
1301 T1I = T1q - T1r;
1302 T1J = iio[WS(vs, 1) + WS(rs, 1)];
1303 T1K = iio[WS(vs, 1) + WS(rs, 5)];
1304 T1L = T1J - T1K;
1305 T2n = T1J + T1K;
1306 }
1307 {
1308 E T1t, T1u, T1E, T1F;
1309 T1t = rio[WS(vs, 1) + WS(rs, 7)];
1310 T1u = rio[WS(vs, 1) + WS(rs, 3)];
1311 T1v = T1t + T1u;
1312 T1D = T1t - T1u;
1313 T1E = iio[WS(vs, 1) + WS(rs, 7)];
1314 T1F = iio[WS(vs, 1) + WS(rs, 3)];
1315 T1G = T1E - T1F;
1316 T2o = T1E + T1F;
1317 }
1318 T1w = T1s + T1v;
1319 T2p = T2n - T2o;
1320 T2z = T2n + T2o;
1321 T1H = T1D - T1G;
1322 T1M = T1I + T1L;
1323 T1W = T1D + T1G;
1324 T2j = T1v - T1s;
1325 T1V = T1L - T1I;
1326 }
1327 {
1328 E T7N, T8i, T83, T8I, T7Q, T80, T8l, T8J;
1329 {
1330 E T7L, T7M, T81, T82;
1331 T7L = rio[WS(vs, 6)];
1332 T7M = rio[WS(vs, 6) + WS(rs, 4)];
1333 T7N = T7L + T7M;
1334 T8i = T7L - T7M;
1335 T81 = iio[WS(vs, 6)];
1336 T82 = iio[WS(vs, 6) + WS(rs, 4)];
1337 T83 = T81 - T82;
1338 T8I = T81 + T82;
1339 }
1340 {
1341 E T7O, T7P, T8j, T8k;
1342 T7O = rio[WS(vs, 6) + WS(rs, 2)];
1343 T7P = rio[WS(vs, 6) + WS(rs, 6)];
1344 T7Q = T7O + T7P;
1345 T80 = T7O - T7P;
1346 T8j = iio[WS(vs, 6) + WS(rs, 2)];
1347 T8k = iio[WS(vs, 6) + WS(rs, 6)];
1348 T8l = T8j - T8k;
1349 T8J = T8j + T8k;
1350 }
1351 T7R = T7N + T7Q;
1352 T8O = T7N - T7Q;
1353 T90 = T8I + T8J;
1354 T84 = T80 + T83;
1355 T8m = T8i - T8l;
1356 T8A = T83 - T80;
1357 T8K = T8I - T8J;
1358 T8w = T8i + T8l;
1359 }
1360 {
1361 E T9c, T9s, T9v, Ta7, T9f, T9n, T9q, Ta8;
1362 {
1363 E T9a, T9b, T9t, T9u;
1364 T9a = rio[WS(vs, 7) + WS(rs, 1)];
1365 T9b = rio[WS(vs, 7) + WS(rs, 5)];
1366 T9c = T9a + T9b;
1367 T9s = T9a - T9b;
1368 T9t = iio[WS(vs, 7) + WS(rs, 1)];
1369 T9u = iio[WS(vs, 7) + WS(rs, 5)];
1370 T9v = T9t - T9u;
1371 Ta7 = T9t + T9u;
1372 }
1373 {
1374 E T9d, T9e, T9o, T9p;
1375 T9d = rio[WS(vs, 7) + WS(rs, 7)];
1376 T9e = rio[WS(vs, 7) + WS(rs, 3)];
1377 T9f = T9d + T9e;
1378 T9n = T9d - T9e;
1379 T9o = iio[WS(vs, 7) + WS(rs, 7)];
1380 T9p = iio[WS(vs, 7) + WS(rs, 3)];
1381 T9q = T9o - T9p;
1382 Ta8 = T9o + T9p;
1383 }
1384 T9g = T9c + T9f;
1385 Ta9 = Ta7 - Ta8;
1386 Taj = Ta7 + Ta8;
1387 T9r = T9n - T9q;
1388 T9w = T9s + T9v;
1389 T9G = T9n + T9q;
1390 Ta3 = T9f - T9c;
1391 T9F = T9v - T9s;
1392 }
1393 {
1394 E Ta, Tq, Tt, T15, Td, Tl, To, T16;
1395 {
1396 E T8, T9, Tr, Ts;
1397 T8 = rio[WS(rs, 1)];
1398 T9 = rio[WS(rs, 5)];
1399 Ta = T8 + T9;
1400 Tq = T8 - T9;
1401 Tr = iio[WS(rs, 1)];
1402 Ts = iio[WS(rs, 5)];
1403 Tt = Tr - Ts;
1404 T15 = Tr + Ts;
1405 }
1406 {
1407 E Tb, Tc, Tm, Tn;
1408 Tb = rio[WS(rs, 7)];
1409 Tc = rio[WS(rs, 3)];
1410 Td = Tb + Tc;
1411 Tl = Tb - Tc;
1412 Tm = iio[WS(rs, 7)];
1413 Tn = iio[WS(rs, 3)];
1414 To = Tm - Tn;
1415 T16 = Tm + Tn;
1416 }
1417 Te = Ta + Td;
1418 T17 = T15 - T16;
1419 T1h = T15 + T16;
1420 Tp = Tl - To;
1421 Tu = Tq + Tt;
1422 TE = Tl + To;
1423 T11 = Td - Ta;
1424 TD = Tt - Tq;
1425 }
1426 {
1427 E T1l, T1Q, T1B, T2g, T1o, T1y, T1T, T2h;
1428 {
1429 E T1j, T1k, T1z, T1A;
1430 T1j = rio[WS(vs, 1)];
1431 T1k = rio[WS(vs, 1) + WS(rs, 4)];
1432 T1l = T1j + T1k;
1433 T1Q = T1j - T1k;
1434 T1z = iio[WS(vs, 1)];
1435 T1A = iio[WS(vs, 1) + WS(rs, 4)];
1436 T1B = T1z - T1A;
1437 T2g = T1z + T1A;
1438 }
1439 {
1440 E T1m, T1n, T1R, T1S;
1441 T1m = rio[WS(vs, 1) + WS(rs, 2)];
1442 T1n = rio[WS(vs, 1) + WS(rs, 6)];
1443 T1o = T1m + T1n;
1444 T1y = T1m - T1n;
1445 T1R = iio[WS(vs, 1) + WS(rs, 2)];
1446 T1S = iio[WS(vs, 1) + WS(rs, 6)];
1447 T1T = T1R - T1S;
1448 T2h = T1R + T1S;
1449 }
1450 T1p = T1l + T1o;
1451 T2m = T1l - T1o;
1452 T2y = T2g + T2h;
1453 T1C = T1y + T1B;
1454 T1U = T1Q - T1T;
1455 T28 = T1B - T1y;
1456 T2i = T2g - T2h;
1457 T24 = T1Q + T1T;
1458 }
1459 {
1460 E T7U, T8a, T8d, T8P, T7X, T85, T88, T8Q;
1461 {
1462 E T7S, T7T, T8b, T8c;
1463 T7S = rio[WS(vs, 6) + WS(rs, 1)];
1464 T7T = rio[WS(vs, 6) + WS(rs, 5)];
1465 T7U = T7S + T7T;
1466 T8a = T7S - T7T;
1467 T8b = iio[WS(vs, 6) + WS(rs, 1)];
1468 T8c = iio[WS(vs, 6) + WS(rs, 5)];
1469 T8d = T8b - T8c;
1470 T8P = T8b + T8c;
1471 }
1472 {
1473 E T7V, T7W, T86, T87;
1474 T7V = rio[WS(vs, 6) + WS(rs, 7)];
1475 T7W = rio[WS(vs, 6) + WS(rs, 3)];
1476 T7X = T7V + T7W;
1477 T85 = T7V - T7W;
1478 T86 = iio[WS(vs, 6) + WS(rs, 7)];
1479 T87 = iio[WS(vs, 6) + WS(rs, 3)];
1480 T88 = T86 - T87;
1481 T8Q = T86 + T87;
1482 }
1483 T7Y = T7U + T7X;
1484 T8R = T8P - T8Q;
1485 T91 = T8P + T8Q;
1486 T89 = T85 - T88;
1487 T8e = T8a + T8d;
1488 T8o = T85 + T88;
1489 T8L = T7X - T7U;
1490 T8n = T8d - T8a;
1491 }
1492 {
1493 E T95, T9A, T9l, Ta0, T98, T9i, T9D, Ta1;
1494 {
1495 E T93, T94, T9j, T9k;
1496 T93 = rio[WS(vs, 7)];
1497 T94 = rio[WS(vs, 7) + WS(rs, 4)];
1498 T95 = T93 + T94;
1499 T9A = T93 - T94;
1500 T9j = iio[WS(vs, 7)];
1501 T9k = iio[WS(vs, 7) + WS(rs, 4)];
1502 T9l = T9j - T9k;
1503 Ta0 = T9j + T9k;
1504 }
1505 {
1506 E T96, T97, T9B, T9C;
1507 T96 = rio[WS(vs, 7) + WS(rs, 2)];
1508 T97 = rio[WS(vs, 7) + WS(rs, 6)];
1509 T98 = T96 + T97;
1510 T9i = T96 - T97;
1511 T9B = iio[WS(vs, 7) + WS(rs, 2)];
1512 T9C = iio[WS(vs, 7) + WS(rs, 6)];
1513 T9D = T9B - T9C;
1514 Ta1 = T9B + T9C;
1515 }
1516 T99 = T95 + T98;
1517 Ta6 = T95 - T98;
1518 Tai = Ta0 + Ta1;
1519 T9m = T9i + T9l;
1520 T9E = T9A - T9D;
1521 T9S = T9l - T9i;
1522 Ta2 = Ta0 - Ta1;
1523 T9O = T9A + T9D;
1524 }
1525 {
1526 E T2D, T38, T2T, T3y, T2G, T2Q, T3b, T3z;
1527 {
1528 E T2B, T2C, T2R, T2S;
1529 T2B = rio[WS(vs, 2)];
1530 T2C = rio[WS(vs, 2) + WS(rs, 4)];
1531 T2D = T2B + T2C;
1532 T38 = T2B - T2C;
1533 T2R = iio[WS(vs, 2)];
1534 T2S = iio[WS(vs, 2) + WS(rs, 4)];
1535 T2T = T2R - T2S;
1536 T3y = T2R + T2S;
1537 }
1538 {
1539 E T2E, T2F, T39, T3a;
1540 T2E = rio[WS(vs, 2) + WS(rs, 2)];
1541 T2F = rio[WS(vs, 2) + WS(rs, 6)];
1542 T2G = T2E + T2F;
1543 T2Q = T2E - T2F;
1544 T39 = iio[WS(vs, 2) + WS(rs, 2)];
1545 T3a = iio[WS(vs, 2) + WS(rs, 6)];
1546 T3b = T39 - T3a;
1547 T3z = T39 + T3a;
1548 }
1549 T2H = T2D + T2G;
1550 T3E = T2D - T2G;
1551 T3Q = T3y + T3z;
1552 T2U = T2Q + T2T;
1553 T3c = T38 - T3b;
1554 T3q = T2T - T2Q;
1555 T3A = T3y - T3z;
1556 T3m = T38 + T3b;
1557 }
1558 {
1559 E T42, T4i, T4l, T4X, T45, T4d, T4g, T4Y;
1560 {
1561 E T40, T41, T4j, T4k;
1562 T40 = rio[WS(vs, 3) + WS(rs, 1)];
1563 T41 = rio[WS(vs, 3) + WS(rs, 5)];
1564 T42 = T40 + T41;
1565 T4i = T40 - T41;
1566 T4j = iio[WS(vs, 3) + WS(rs, 1)];
1567 T4k = iio[WS(vs, 3) + WS(rs, 5)];
1568 T4l = T4j - T4k;
1569 T4X = T4j + T4k;
1570 }
1571 {
1572 E T43, T44, T4e, T4f;
1573 T43 = rio[WS(vs, 3) + WS(rs, 7)];
1574 T44 = rio[WS(vs, 3) + WS(rs, 3)];
1575 T45 = T43 + T44;
1576 T4d = T43 - T44;
1577 T4e = iio[WS(vs, 3) + WS(rs, 7)];
1578 T4f = iio[WS(vs, 3) + WS(rs, 3)];
1579 T4g = T4e - T4f;
1580 T4Y = T4e + T4f;
1581 }
1582 T46 = T42 + T45;
1583 T4Z = T4X - T4Y;
1584 T59 = T4X + T4Y;
1585 T4h = T4d - T4g;
1586 T4m = T4i + T4l;
1587 T4w = T4d + T4g;
1588 T4T = T45 - T42;
1589 T4v = T4l - T4i;
1590 }
1591 {
1592 E T5d, T5I, T5t, T68, T5g, T5q, T5L, T69;
1593 {
1594 E T5b, T5c, T5r, T5s;
1595 T5b = rio[WS(vs, 4)];
1596 T5c = rio[WS(vs, 4) + WS(rs, 4)];
1597 T5d = T5b + T5c;
1598 T5I = T5b - T5c;
1599 T5r = iio[WS(vs, 4)];
1600 T5s = iio[WS(vs, 4) + WS(rs, 4)];
1601 T5t = T5r - T5s;
1602 T68 = T5r + T5s;
1603 }
1604 {
1605 E T5e, T5f, T5J, T5K;
1606 T5e = rio[WS(vs, 4) + WS(rs, 2)];
1607 T5f = rio[WS(vs, 4) + WS(rs, 6)];
1608 T5g = T5e + T5f;
1609 T5q = T5e - T5f;
1610 T5J = iio[WS(vs, 4) + WS(rs, 2)];
1611 T5K = iio[WS(vs, 4) + WS(rs, 6)];
1612 T5L = T5J - T5K;
1613 T69 = T5J + T5K;
1614 }
1615 T5h = T5d + T5g;
1616 T6e = T5d - T5g;
1617 T6q = T68 + T69;
1618 T5u = T5q + T5t;
1619 T5M = T5I - T5L;
1620 T60 = T5t - T5q;
1621 T6a = T68 - T69;
1622 T5W = T5I + T5L;
1623 }
1624 {
1625 E T6C, T6S, T6V, T7x, T6F, T6N, T6Q, T7y;
1626 {
1627 E T6A, T6B, T6T, T6U;
1628 T6A = rio[WS(vs, 5) + WS(rs, 1)];
1629 T6B = rio[WS(vs, 5) + WS(rs, 5)];
1630 T6C = T6A + T6B;
1631 T6S = T6A - T6B;
1632 T6T = iio[WS(vs, 5) + WS(rs, 1)];
1633 T6U = iio[WS(vs, 5) + WS(rs, 5)];
1634 T6V = T6T - T6U;
1635 T7x = T6T + T6U;
1636 }
1637 {
1638 E T6D, T6E, T6O, T6P;
1639 T6D = rio[WS(vs, 5) + WS(rs, 7)];
1640 T6E = rio[WS(vs, 5) + WS(rs, 3)];
1641 T6F = T6D + T6E;
1642 T6N = T6D - T6E;
1643 T6O = iio[WS(vs, 5) + WS(rs, 7)];
1644 T6P = iio[WS(vs, 5) + WS(rs, 3)];
1645 T6Q = T6O - T6P;
1646 T7y = T6O + T6P;
1647 }
1648 T6G = T6C + T6F;
1649 T7z = T7x - T7y;
1650 T7J = T7x + T7y;
1651 T6R = T6N - T6Q;
1652 T6W = T6S + T6V;
1653 T76 = T6N + T6Q;
1654 T7t = T6F - T6C;
1655 T75 = T6V - T6S;
1656 }
1657 {
1658 E T2K, T30, T33, T3F, T2N, T2V, T2Y, T3G;
1659 {
1660 E T2I, T2J, T31, T32;
1661 T2I = rio[WS(vs, 2) + WS(rs, 1)];
1662 T2J = rio[WS(vs, 2) + WS(rs, 5)];
1663 T2K = T2I + T2J;
1664 T30 = T2I - T2J;
1665 T31 = iio[WS(vs, 2) + WS(rs, 1)];
1666 T32 = iio[WS(vs, 2) + WS(rs, 5)];
1667 T33 = T31 - T32;
1668 T3F = T31 + T32;
1669 }
1670 {
1671 E T2L, T2M, T2W, T2X;
1672 T2L = rio[WS(vs, 2) + WS(rs, 7)];
1673 T2M = rio[WS(vs, 2) + WS(rs, 3)];
1674 T2N = T2L + T2M;
1675 T2V = T2L - T2M;
1676 T2W = iio[WS(vs, 2) + WS(rs, 7)];
1677 T2X = iio[WS(vs, 2) + WS(rs, 3)];
1678 T2Y = T2W - T2X;
1679 T3G = T2W + T2X;
1680 }
1681 T2O = T2K + T2N;
1682 T3H = T3F - T3G;
1683 T3R = T3F + T3G;
1684 T2Z = T2V - T2Y;
1685 T34 = T30 + T33;
1686 T3e = T2V + T2Y;
1687 T3B = T2N - T2K;
1688 T3d = T33 - T30;
1689 }
1690 {
1691 E T3V, T4q, T4b, T4Q, T3Y, T48, T4t, T4R;
1692 {
1693 E T3T, T3U, T49, T4a;
1694 T3T = rio[WS(vs, 3)];
1695 T3U = rio[WS(vs, 3) + WS(rs, 4)];
1696 T3V = T3T + T3U;
1697 T4q = T3T - T3U;
1698 T49 = iio[WS(vs, 3)];
1699 T4a = iio[WS(vs, 3) + WS(rs, 4)];
1700 T4b = T49 - T4a;
1701 T4Q = T49 + T4a;
1702 }
1703 {
1704 E T3W, T3X, T4r, T4s;
1705 T3W = rio[WS(vs, 3) + WS(rs, 2)];
1706 T3X = rio[WS(vs, 3) + WS(rs, 6)];
1707 T3Y = T3W + T3X;
1708 T48 = T3W - T3X;
1709 T4r = iio[WS(vs, 3) + WS(rs, 2)];
1710 T4s = iio[WS(vs, 3) + WS(rs, 6)];
1711 T4t = T4r - T4s;
1712 T4R = T4r + T4s;
1713 }
1714 T3Z = T3V + T3Y;
1715 T4W = T3V - T3Y;
1716 T58 = T4Q + T4R;
1717 T4c = T48 + T4b;
1718 T4u = T4q - T4t;
1719 T4I = T4b - T48;
1720 T4S = T4Q - T4R;
1721 T4E = T4q + T4t;
1722 }
1723 {
1724 E T5k, T5A, T5D, T6f, T5n, T5v, T5y, T6g;
1725 {
1726 E T5i, T5j, T5B, T5C;
1727 T5i = rio[WS(vs, 4) + WS(rs, 1)];
1728 T5j = rio[WS(vs, 4) + WS(rs, 5)];
1729 T5k = T5i + T5j;
1730 T5A = T5i - T5j;
1731 T5B = iio[WS(vs, 4) + WS(rs, 1)];
1732 T5C = iio[WS(vs, 4) + WS(rs, 5)];
1733 T5D = T5B - T5C;
1734 T6f = T5B + T5C;
1735 }
1736 {
1737 E T5l, T5m, T5w, T5x;
1738 T5l = rio[WS(vs, 4) + WS(rs, 7)];
1739 T5m = rio[WS(vs, 4) + WS(rs, 3)];
1740 T5n = T5l + T5m;
1741 T5v = T5l - T5m;
1742 T5w = iio[WS(vs, 4) + WS(rs, 7)];
1743 T5x = iio[WS(vs, 4) + WS(rs, 3)];
1744 T5y = T5w - T5x;
1745 T6g = T5w + T5x;
1746 }
1747 T5o = T5k + T5n;
1748 T6h = T6f - T6g;
1749 T6r = T6f + T6g;
1750 T5z = T5v - T5y;
1751 T5E = T5A + T5D;
1752 T5O = T5v + T5y;
1753 T6b = T5n - T5k;
1754 T5N = T5D - T5A;
1755 }
1756 {
1757 E T6v, T70, T6L, T7q, T6y, T6I, T73, T7r;
1758 {
1759 E T6t, T6u, T6J, T6K;
1760 T6t = rio[WS(vs, 5)];
1761 T6u = rio[WS(vs, 5) + WS(rs, 4)];
1762 T6v = T6t + T6u;
1763 T70 = T6t - T6u;
1764 T6J = iio[WS(vs, 5)];
1765 T6K = iio[WS(vs, 5) + WS(rs, 4)];
1766 T6L = T6J - T6K;
1767 T7q = T6J + T6K;
1768 }
1769 {
1770 E T6w, T6x, T71, T72;
1771 T6w = rio[WS(vs, 5) + WS(rs, 2)];
1772 T6x = rio[WS(vs, 5) + WS(rs, 6)];
1773 T6y = T6w + T6x;
1774 T6I = T6w - T6x;
1775 T71 = iio[WS(vs, 5) + WS(rs, 2)];
1776 T72 = iio[WS(vs, 5) + WS(rs, 6)];
1777 T73 = T71 - T72;
1778 T7r = T71 + T72;
1779 }
1780 T6z = T6v + T6y;
1781 T7w = T6v - T6y;
1782 T7I = T7q + T7r;
1783 T6M = T6I + T6L;
1784 T74 = T70 - T73;
1785 T7i = T6L - T6I;
1786 T7s = T7q - T7r;
1787 T7e = T70 + T73;
1788 }
1789 rio[0] = T7 + Te;
1790 iio[0] = T1g + T1h;
1791 rio[WS(rs, 1)] = T1p + T1w;
1792 iio[WS(rs, 1)] = T2y + T2z;
1793 rio[WS(rs, 3)] = T3Z + T46;
1794 rio[WS(rs, 2)] = T2H + T2O;
1795 iio[WS(rs, 2)] = T3Q + T3R;
1796 iio[WS(rs, 3)] = T58 + T59;
1797 rio[WS(rs, 6)] = T7R + T7Y;
1798 iio[WS(rs, 6)] = T90 + T91;
1799 iio[WS(rs, 5)] = T7I + T7J;
1800 rio[WS(rs, 5)] = T6z + T6G;
1801 iio[WS(rs, 4)] = T6q + T6r;
1802 rio[WS(rs, 4)] = T5h + T5o;
1803 rio[WS(rs, 7)] = T99 + T9g;
1804 iio[WS(rs, 7)] = Tai + Taj;
1805 {
1806 E T12, T18, TX, T13;
1807 T12 = T10 - T11;
1808 T18 = T14 - T17;
1809 TX = W[10];
1810 T13 = W[11];
1811 iio[WS(vs, 6)] = FNMS(T13, T18, TX * T12);
1812 rio[WS(vs, 6)] = FMA(T13, T12, TX * T18);
1813 }
1814 {
1815 E Tag, Tak, Taf, Tah;
1816 Tag = T99 - T9g;
1817 Tak = Tai - Taj;
1818 Taf = W[6];
1819 Tah = W[7];
1820 rio[WS(vs, 4) + WS(rs, 7)] = FMA(Taf, Tag, Tah * Tak);
1821 iio[WS(vs, 4) + WS(rs, 7)] = FNMS(Tah, Tag, Taf * Tak);
1822 }
1823 {
1824 E T8M, T8S, T8H, T8N;
1825 T8M = T8K - T8L;
1826 T8S = T8O - T8R;
1827 T8H = W[10];
1828 T8N = W[11];
1829 iio[WS(vs, 6) + WS(rs, 6)] = FNMS(T8N, T8S, T8H * T8M);
1830 rio[WS(vs, 6) + WS(rs, 6)] = FMA(T8N, T8M, T8H * T8S);
1831 }
1832 {
1833 E T2k, T2q, T2f, T2l;
1834 T2k = T2i - T2j;
1835 T2q = T2m - T2p;
1836 T2f = W[10];
1837 T2l = W[11];
1838 iio[WS(vs, 6) + WS(rs, 1)] = FNMS(T2l, T2q, T2f * T2k);
1839 rio[WS(vs, 6) + WS(rs, 1)] = FMA(T2l, T2k, T2f * T2q);
1840 }
1841 {
1842 E Ta4, Taa, T9Z, Ta5;
1843 Ta4 = Ta2 - Ta3;
1844 Taa = Ta6 - Ta9;
1845 T9Z = W[10];
1846 Ta5 = W[11];
1847 iio[WS(vs, 6) + WS(rs, 7)] = FNMS(Ta5, Taa, T9Z * Ta4);
1848 rio[WS(vs, 6) + WS(rs, 7)] = FMA(Ta5, Ta4, T9Z * Taa);
1849 }
1850 {
1851 E T8Y, T92, T8X, T8Z;
1852 T8Y = T7R - T7Y;
1853 T92 = T90 - T91;
1854 T8X = W[6];
1855 T8Z = W[7];
1856 rio[WS(vs, 4) + WS(rs, 6)] = FMA(T8X, T8Y, T8Z * T92);
1857 iio[WS(vs, 4) + WS(rs, 6)] = FNMS(T8Z, T8Y, T8X * T92);
1858 }
1859 {
1860 E T2w, T2A, T2v, T2x;
1861 T2w = T1p - T1w;
1862 T2A = T2y - T2z;
1863 T2v = W[6];
1864 T2x = W[7];
1865 rio[WS(vs, 4) + WS(rs, 1)] = FMA(T2v, T2w, T2x * T2A);
1866 iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T2x, T2w, T2v * T2A);
1867 }
1868 {
1869 E Tac, Tae, Tab, Tad;
1870 Tac = Ta3 + Ta2;
1871 Tae = Ta6 + Ta9;
1872 Tab = W[2];
1873 Tad = W[3];
1874 iio[WS(vs, 2) + WS(rs, 7)] = FNMS(Tad, Tae, Tab * Tac);
1875 rio[WS(vs, 2) + WS(rs, 7)] = FMA(Tad, Tac, Tab * Tae);
1876 }
1877 {
1878 E T8U, T8W, T8T, T8V;
1879 T8U = T8L + T8K;
1880 T8W = T8O + T8R;
1881 T8T = W[2];
1882 T8V = W[3];
1883 iio[WS(vs, 2) + WS(rs, 6)] = FNMS(T8V, T8W, T8T * T8U);
1884 rio[WS(vs, 2) + WS(rs, 6)] = FMA(T8V, T8U, T8T * T8W);
1885 }
1886 {
1887 E T1a, T1c, T19, T1b;
1888 T1a = T11 + T10;
1889 T1c = T14 + T17;
1890 T19 = W[2];
1891 T1b = W[3];
1892 iio[WS(vs, 2)] = FNMS(T1b, T1c, T19 * T1a);
1893 rio[WS(vs, 2)] = FMA(T1b, T1a, T19 * T1c);
1894 }
1895 {
1896 E T1e, T1i, T1d, T1f;
1897 T1e = T7 - Te;
1898 T1i = T1g - T1h;
1899 T1d = W[6];
1900 T1f = W[7];
1901 rio[WS(vs, 4)] = FMA(T1d, T1e, T1f * T1i);
1902 iio[WS(vs, 4)] = FNMS(T1f, T1e, T1d * T1i);
1903 }
1904 {
1905 E T2s, T2u, T2r, T2t;
1906 T2s = T2j + T2i;
1907 T2u = T2m + T2p;
1908 T2r = W[2];
1909 T2t = W[3];
1910 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T2t, T2u, T2r * T2s);
1911 rio[WS(vs, 2) + WS(rs, 1)] = FMA(T2t, T2s, T2r * T2u);
1912 }
1913 {
1914 E T3C, T3I, T3x, T3D;
1915 T3C = T3A - T3B;
1916 T3I = T3E - T3H;
1917 T3x = W[10];
1918 T3D = W[11];
1919 iio[WS(vs, 6) + WS(rs, 2)] = FNMS(T3D, T3I, T3x * T3C);
1920 rio[WS(vs, 6) + WS(rs, 2)] = FMA(T3D, T3C, T3x * T3I);
1921 }
1922 {
1923 E T4U, T50, T4P, T4V;
1924 T4U = T4S - T4T;
1925 T50 = T4W - T4Z;
1926 T4P = W[10];
1927 T4V = W[11];
1928 iio[WS(vs, 6) + WS(rs, 3)] = FNMS(T4V, T50, T4P * T4U);
1929 rio[WS(vs, 6) + WS(rs, 3)] = FMA(T4V, T4U, T4P * T50);
1930 }
1931 {
1932 E T56, T5a, T55, T57;
1933 T56 = T3Z - T46;
1934 T5a = T58 - T59;
1935 T55 = W[6];
1936 T57 = W[7];
1937 rio[WS(vs, 4) + WS(rs, 3)] = FMA(T55, T56, T57 * T5a);
1938 iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T57, T56, T55 * T5a);
1939 }
1940 {
1941 E T6o, T6s, T6n, T6p;
1942 T6o = T5h - T5o;
1943 T6s = T6q - T6r;
1944 T6n = W[6];
1945 T6p = W[7];
1946 rio[WS(vs, 4) + WS(rs, 4)] = FMA(T6n, T6o, T6p * T6s);
1947 iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T6p, T6o, T6n * T6s);
1948 }
1949 {
1950 E T7u, T7A, T7p, T7v;
1951 T7u = T7s - T7t;
1952 T7A = T7w - T7z;
1953 T7p = W[10];
1954 T7v = W[11];
1955 iio[WS(vs, 6) + WS(rs, 5)] = FNMS(T7v, T7A, T7p * T7u);
1956 rio[WS(vs, 6) + WS(rs, 5)] = FMA(T7v, T7u, T7p * T7A);
1957 }
1958 {
1959 E T6c, T6i, T67, T6d;
1960 T6c = T6a - T6b;
1961 T6i = T6e - T6h;
1962 T67 = W[10];
1963 T6d = W[11];
1964 iio[WS(vs, 6) + WS(rs, 4)] = FNMS(T6d, T6i, T67 * T6c);
1965 rio[WS(vs, 6) + WS(rs, 4)] = FMA(T6d, T6c, T67 * T6i);
1966 }
1967 {
1968 E T7G, T7K, T7F, T7H;
1969 T7G = T6z - T6G;
1970 T7K = T7I - T7J;
1971 T7F = W[6];
1972 T7H = W[7];
1973 rio[WS(vs, 4) + WS(rs, 5)] = FMA(T7F, T7G, T7H * T7K);
1974 iio[WS(vs, 4) + WS(rs, 5)] = FNMS(T7H, T7G, T7F * T7K);
1975 }
1976 {
1977 E T3O, T3S, T3N, T3P;
1978 T3O = T2H - T2O;
1979 T3S = T3Q - T3R;
1980 T3N = W[6];
1981 T3P = W[7];
1982 rio[WS(vs, 4) + WS(rs, 2)] = FMA(T3N, T3O, T3P * T3S);
1983 iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T3P, T3O, T3N * T3S);
1984 }
1985 {
1986 E T3K, T3M, T3J, T3L;
1987 T3K = T3B + T3A;
1988 T3M = T3E + T3H;
1989 T3J = W[2];
1990 T3L = W[3];
1991 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T3L, T3M, T3J * T3K);
1992 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T3L, T3K, T3J * T3M);
1993 }
1994 {
1995 E T7C, T7E, T7B, T7D;
1996 T7C = T7t + T7s;
1997 T7E = T7w + T7z;
1998 T7B = W[2];
1999 T7D = W[3];
2000 iio[WS(vs, 2) + WS(rs, 5)] = FNMS(T7D, T7E, T7B * T7C);
2001 rio[WS(vs, 2) + WS(rs, 5)] = FMA(T7D, T7C, T7B * T7E);
2002 }
2003 {
2004 E T6k, T6m, T6j, T6l;
2005 T6k = T6b + T6a;
2006 T6m = T6e + T6h;
2007 T6j = W[2];
2008 T6l = W[3];
2009 iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T6l, T6m, T6j * T6k);
2010 rio[WS(vs, 2) + WS(rs, 4)] = FMA(T6l, T6k, T6j * T6m);
2011 }
2012 {
2013 E T52, T54, T51, T53;
2014 T52 = T4T + T4S;
2015 T54 = T4W + T4Z;
2016 T51 = W[2];
2017 T53 = W[3];
2018 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T53, T54, T51 * T52);
2019 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T53, T52, T51 * T54);
2020 }
2021 {
2022 E T5G, T5S, T5Q, T5U, T5F, T5P;
2023 T5F = KP707106781 * (T5z - T5E);
2024 T5G = T5u - T5F;
2025 T5S = T5u + T5F;
2026 T5P = KP707106781 * (T5N - T5O);
2027 T5Q = T5M - T5P;
2028 T5U = T5M + T5P;
2029 {
2030 E T5p, T5H, T5R, T5T;
2031 T5p = W[12];
2032 T5H = W[13];
2033 iio[WS(vs, 7) + WS(rs, 4)] = FNMS(T5H, T5Q, T5p * T5G);
2034 rio[WS(vs, 7) + WS(rs, 4)] = FMA(T5H, T5G, T5p * T5Q);
2035 T5R = W[4];
2036 T5T = W[5];
2037 iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T5T, T5U, T5R * T5S);
2038 rio[WS(vs, 3) + WS(rs, 4)] = FMA(T5T, T5S, T5R * T5U);
2039 }
2040 }
2041 {
2042 E Tw, TI, TG, TK, Tv, TF;
2043 Tv = KP707106781 * (Tp - Tu);
2044 Tw = Tk - Tv;
2045 TI = Tk + Tv;
2046 TF = KP707106781 * (TD - TE);
2047 TG = TC - TF;
2048 TK = TC + TF;
2049 {
2050 E Tf, Tx, TH, TJ;
2051 Tf = W[12];
2052 Tx = W[13];
2053 iio[WS(vs, 7)] = FNMS(Tx, TG, Tf * Tw);
2054 rio[WS(vs, 7)] = FMA(Tx, Tw, Tf * TG);
2055 TH = W[4];
2056 TJ = W[5];
2057 iio[WS(vs, 3)] = FNMS(TJ, TK, TH * TI);
2058 rio[WS(vs, 3)] = FMA(TJ, TI, TH * TK);
2059 }
2060 }
2061 {
2062 E T9Q, T9W, T9U, T9Y, T9P, T9T;
2063 T9P = KP707106781 * (T9w + T9r);
2064 T9Q = T9O - T9P;
2065 T9W = T9O + T9P;
2066 T9T = KP707106781 * (T9F + T9G);
2067 T9U = T9S - T9T;
2068 T9Y = T9S + T9T;
2069 {
2070 E T9N, T9R, T9V, T9X;
2071 T9N = W[8];
2072 T9R = W[9];
2073 rio[WS(vs, 5) + WS(rs, 7)] = FMA(T9N, T9Q, T9R * T9U);
2074 iio[WS(vs, 5) + WS(rs, 7)] = FNMS(T9R, T9Q, T9N * T9U);
2075 T9V = W[0];
2076 T9X = W[1];
2077 rio[WS(vs, 1) + WS(rs, 7)] = FMA(T9V, T9W, T9X * T9Y);
2078 iio[WS(vs, 1) + WS(rs, 7)] = FNMS(T9X, T9W, T9V * T9Y);
2079 }
2080 }
2081 {
2082 E T36, T3i, T3g, T3k, T35, T3f;
2083 T35 = KP707106781 * (T2Z - T34);
2084 T36 = T2U - T35;
2085 T3i = T2U + T35;
2086 T3f = KP707106781 * (T3d - T3e);
2087 T3g = T3c - T3f;
2088 T3k = T3c + T3f;
2089 {
2090 E T2P, T37, T3h, T3j;
2091 T2P = W[12];
2092 T37 = W[13];
2093 iio[WS(vs, 7) + WS(rs, 2)] = FNMS(T37, T3g, T2P * T36);
2094 rio[WS(vs, 7) + WS(rs, 2)] = FMA(T37, T36, T2P * T3g);
2095 T3h = W[4];
2096 T3j = W[5];
2097 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T3j, T3k, T3h * T3i);
2098 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T3j, T3i, T3h * T3k);
2099 }
2100 }
2101 {
2102 E T5Y, T64, T62, T66, T5X, T61;
2103 T5X = KP707106781 * (T5E + T5z);
2104 T5Y = T5W - T5X;
2105 T64 = T5W + T5X;
2106 T61 = KP707106781 * (T5N + T5O);
2107 T62 = T60 - T61;
2108 T66 = T60 + T61;
2109 {
2110 E T5V, T5Z, T63, T65;
2111 T5V = W[8];
2112 T5Z = W[9];
2113 rio[WS(vs, 5) + WS(rs, 4)] = FMA(T5V, T5Y, T5Z * T62);
2114 iio[WS(vs, 5) + WS(rs, 4)] = FNMS(T5Z, T5Y, T5V * T62);
2115 T63 = W[0];
2116 T65 = W[1];
2117 rio[WS(vs, 1) + WS(rs, 4)] = FMA(T63, T64, T65 * T66);
2118 iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T65, T64, T63 * T66);
2119 }
2120 }
2121 {
2122 E T7g, T7m, T7k, T7o, T7f, T7j;
2123 T7f = KP707106781 * (T6W + T6R);
2124 T7g = T7e - T7f;
2125 T7m = T7e + T7f;
2126 T7j = KP707106781 * (T75 + T76);
2127 T7k = T7i - T7j;
2128 T7o = T7i + T7j;
2129 {
2130 E T7d, T7h, T7l, T7n;
2131 T7d = W[8];
2132 T7h = W[9];
2133 rio[WS(vs, 5) + WS(rs, 5)] = FMA(T7d, T7g, T7h * T7k);
2134 iio[WS(vs, 5) + WS(rs, 5)] = FNMS(T7h, T7g, T7d * T7k);
2135 T7l = W[0];
2136 T7n = W[1];
2137 rio[WS(vs, 1) + WS(rs, 5)] = FMA(T7l, T7m, T7n * T7o);
2138 iio[WS(vs, 1) + WS(rs, 5)] = FNMS(T7n, T7m, T7l * T7o);
2139 }
2140 }
2141 {
2142 E T8g, T8s, T8q, T8u, T8f, T8p;
2143 T8f = KP707106781 * (T89 - T8e);
2144 T8g = T84 - T8f;
2145 T8s = T84 + T8f;
2146 T8p = KP707106781 * (T8n - T8o);
2147 T8q = T8m - T8p;
2148 T8u = T8m + T8p;
2149 {
2150 E T7Z, T8h, T8r, T8t;
2151 T7Z = W[12];
2152 T8h = W[13];
2153 iio[WS(vs, 7) + WS(rs, 6)] = FNMS(T8h, T8q, T7Z * T8g);
2154 rio[WS(vs, 7) + WS(rs, 6)] = FMA(T8h, T8g, T7Z * T8q);
2155 T8r = W[4];
2156 T8t = W[5];
2157 iio[WS(vs, 3) + WS(rs, 6)] = FNMS(T8t, T8u, T8r * T8s);
2158 rio[WS(vs, 3) + WS(rs, 6)] = FMA(T8t, T8s, T8r * T8u);
2159 }
2160 }
2161 {
2162 E T4G, T4M, T4K, T4O, T4F, T4J;
2163 T4F = KP707106781 * (T4m + T4h);
2164 T4G = T4E - T4F;
2165 T4M = T4E + T4F;
2166 T4J = KP707106781 * (T4v + T4w);
2167 T4K = T4I - T4J;
2168 T4O = T4I + T4J;
2169 {
2170 E T4D, T4H, T4L, T4N;
2171 T4D = W[8];
2172 T4H = W[9];
2173 rio[WS(vs, 5) + WS(rs, 3)] = FMA(T4D, T4G, T4H * T4K);
2174 iio[WS(vs, 5) + WS(rs, 3)] = FNMS(T4H, T4G, T4D * T4K);
2175 T4L = W[0];
2176 T4N = W[1];
2177 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T4L, T4M, T4N * T4O);
2178 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T4N, T4M, T4L * T4O);
2179 }
2180 }
2181 {
2182 E TO, TU, TS, TW, TN, TR;
2183 TN = KP707106781 * (Tu + Tp);
2184 TO = TM - TN;
2185 TU = TM + TN;
2186 TR = KP707106781 * (TD + TE);
2187 TS = TQ - TR;
2188 TW = TQ + TR;
2189 {
2190 E TL, TP, TT, TV;
2191 TL = W[8];
2192 TP = W[9];
2193 rio[WS(vs, 5)] = FMA(TL, TO, TP * TS);
2194 iio[WS(vs, 5)] = FNMS(TP, TO, TL * TS);
2195 TT = W[0];
2196 TV = W[1];
2197 rio[WS(vs, 1)] = FMA(TT, TU, TV * TW);
2198 iio[WS(vs, 1)] = FNMS(TV, TU, TT * TW);
2199 }
2200 }
2201 {
2202 E T26, T2c, T2a, T2e, T25, T29;
2203 T25 = KP707106781 * (T1M + T1H);
2204 T26 = T24 - T25;
2205 T2c = T24 + T25;
2206 T29 = KP707106781 * (T1V + T1W);
2207 T2a = T28 - T29;
2208 T2e = T28 + T29;
2209 {
2210 E T23, T27, T2b, T2d;
2211 T23 = W[8];
2212 T27 = W[9];
2213 rio[WS(vs, 5) + WS(rs, 1)] = FMA(T23, T26, T27 * T2a);
2214 iio[WS(vs, 5) + WS(rs, 1)] = FNMS(T27, T26, T23 * T2a);
2215 T2b = W[0];
2216 T2d = W[1];
2217 rio[WS(vs, 1) + WS(rs, 1)] = FMA(T2b, T2c, T2d * T2e);
2218 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T2d, T2c, T2b * T2e);
2219 }
2220 }
2221 {
2222 E T9y, T9K, T9I, T9M, T9x, T9H;
2223 T9x = KP707106781 * (T9r - T9w);
2224 T9y = T9m - T9x;
2225 T9K = T9m + T9x;
2226 T9H = KP707106781 * (T9F - T9G);
2227 T9I = T9E - T9H;
2228 T9M = T9E + T9H;
2229 {
2230 E T9h, T9z, T9J, T9L;
2231 T9h = W[12];
2232 T9z = W[13];
2233 iio[WS(vs, 7) + WS(rs, 7)] = FNMS(T9z, T9I, T9h * T9y);
2234 rio[WS(vs, 7) + WS(rs, 7)] = FMA(T9z, T9y, T9h * T9I);
2235 T9J = W[4];
2236 T9L = W[5];
2237 iio[WS(vs, 3) + WS(rs, 7)] = FNMS(T9L, T9M, T9J * T9K);
2238 rio[WS(vs, 3) + WS(rs, 7)] = FMA(T9L, T9K, T9J * T9M);
2239 }
2240 }
2241 {
2242 E T6Y, T7a, T78, T7c, T6X, T77;
2243 T6X = KP707106781 * (T6R - T6W);
2244 T6Y = T6M - T6X;
2245 T7a = T6M + T6X;
2246 T77 = KP707106781 * (T75 - T76);
2247 T78 = T74 - T77;
2248 T7c = T74 + T77;
2249 {
2250 E T6H, T6Z, T79, T7b;
2251 T6H = W[12];
2252 T6Z = W[13];
2253 iio[WS(vs, 7) + WS(rs, 5)] = FNMS(T6Z, T78, T6H * T6Y);
2254 rio[WS(vs, 7) + WS(rs, 5)] = FMA(T6Z, T6Y, T6H * T78);
2255 T79 = W[4];
2256 T7b = W[5];
2257 iio[WS(vs, 3) + WS(rs, 5)] = FNMS(T7b, T7c, T79 * T7a);
2258 rio[WS(vs, 3) + WS(rs, 5)] = FMA(T7b, T7a, T79 * T7c);
2259 }
2260 }
2261 {
2262 E T1O, T20, T1Y, T22, T1N, T1X;
2263 T1N = KP707106781 * (T1H - T1M);
2264 T1O = T1C - T1N;
2265 T20 = T1C + T1N;
2266 T1X = KP707106781 * (T1V - T1W);
2267 T1Y = T1U - T1X;
2268 T22 = T1U + T1X;
2269 {
2270 E T1x, T1P, T1Z, T21;
2271 T1x = W[12];
2272 T1P = W[13];
2273 iio[WS(vs, 7) + WS(rs, 1)] = FNMS(T1P, T1Y, T1x * T1O);
2274 rio[WS(vs, 7) + WS(rs, 1)] = FMA(T1P, T1O, T1x * T1Y);
2275 T1Z = W[4];
2276 T21 = W[5];
2277 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T21, T22, T1Z * T20);
2278 rio[WS(vs, 3) + WS(rs, 1)] = FMA(T21, T20, T1Z * T22);
2279 }
2280 }
2281 {
2282 E T4o, T4A, T4y, T4C, T4n, T4x;
2283 T4n = KP707106781 * (T4h - T4m);
2284 T4o = T4c - T4n;
2285 T4A = T4c + T4n;
2286 T4x = KP707106781 * (T4v - T4w);
2287 T4y = T4u - T4x;
2288 T4C = T4u + T4x;
2289 {
2290 E T47, T4p, T4z, T4B;
2291 T47 = W[12];
2292 T4p = W[13];
2293 iio[WS(vs, 7) + WS(rs, 3)] = FNMS(T4p, T4y, T47 * T4o);
2294 rio[WS(vs, 7) + WS(rs, 3)] = FMA(T4p, T4o, T47 * T4y);
2295 T4z = W[4];
2296 T4B = W[5];
2297 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T4B, T4C, T4z * T4A);
2298 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T4B, T4A, T4z * T4C);
2299 }
2300 }
2301 {
2302 E T3o, T3u, T3s, T3w, T3n, T3r;
2303 T3n = KP707106781 * (T34 + T2Z);
2304 T3o = T3m - T3n;
2305 T3u = T3m + T3n;
2306 T3r = KP707106781 * (T3d + T3e);
2307 T3s = T3q - T3r;
2308 T3w = T3q + T3r;
2309 {
2310 E T3l, T3p, T3t, T3v;
2311 T3l = W[8];
2312 T3p = W[9];
2313 rio[WS(vs, 5) + WS(rs, 2)] = FMA(T3l, T3o, T3p * T3s);
2314 iio[WS(vs, 5) + WS(rs, 2)] = FNMS(T3p, T3o, T3l * T3s);
2315 T3t = W[0];
2316 T3v = W[1];
2317 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T3t, T3u, T3v * T3w);
2318 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T3v, T3u, T3t * T3w);
2319 }
2320 }
2321 {
2322 E T8y, T8E, T8C, T8G, T8x, T8B;
2323 T8x = KP707106781 * (T8e + T89);
2324 T8y = T8w - T8x;
2325 T8E = T8w + T8x;
2326 T8B = KP707106781 * (T8n + T8o);
2327 T8C = T8A - T8B;
2328 T8G = T8A + T8B;
2329 {
2330 E T8v, T8z, T8D, T8F;
2331 T8v = W[8];
2332 T8z = W[9];
2333 rio[WS(vs, 5) + WS(rs, 6)] = FMA(T8v, T8y, T8z * T8C);
2334 iio[WS(vs, 5) + WS(rs, 6)] = FNMS(T8z, T8y, T8v * T8C);
2335 T8D = W[0];
2336 T8F = W[1];
2337 rio[WS(vs, 1) + WS(rs, 6)] = FMA(T8D, T8E, T8F * T8G);
2338 iio[WS(vs, 1) + WS(rs, 6)] = FNMS(T8F, T8E, T8D * T8G);
2339 }
2340 }
2341 }
2342 }
2343 }
2344
2345 static const tw_instr twinstr[] = {
2346 {TW_FULL, 0, 8},
2347 {TW_NEXT, 1, 0}
2348 };
2349
2350 static const ct_desc desc = { 8, "q1_8", twinstr, &GENUS, {416, 144, 112, 0}, 0, 0, 0 };
2351
2352 void X(codelet_q1_8) (planner *p) {
2353 X(kdft_difsq_register) (p, q1_8, &desc);
2354 }
2355 #endif