Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/scalar/codelets/q1_6.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:31 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 6 -name q1_6 -include dft/scalar/q.h */ | |
29 | |
30 /* | |
31 * This function contains 276 FP additions, 192 FP multiplications, | |
32 * (or, 144 additions, 60 multiplications, 132 fused multiply/add), | |
33 * 109 stack variables, 2 constants, and 144 memory accesses | |
34 */ | |
35 #include "dft/scalar/q.h" | |
36 | |
37 static void q1_6(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
40 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
41 { | |
42 INT m; | |
43 for (m = mb, W = W + (mb * 10); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 10, MAKE_VOLATILE_STRIDE(12, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | |
44 E T3, Tc, Tw, TW, Ta, TM, Tf, Tg, Tt, TT, Tn, TP, Tu, Tv, TU; | |
45 E TV, T17, T1g, T1A, T20, T1e, T1Q, T1j, T1k, T1x, T1X, T1r, T1T, T1y, T1z; | |
46 E T1Y, T1Z, T2B, T31, T2v, T2X, T2C, T2D, T32, T33, T2b, T2k, T2E, T34, T2i; | |
47 E T2U, T2n, T2o, T3f, T3o, T3I, T48, T3m, T3Y, T3r, T3s, T3F, T45, T3z, T41; | |
48 E T3G, T3H, T46, T47, T4j, T4s, T4M, T5c, T4q, T52, T4v, T4w, T4J, T59, T4D; | |
49 E T55, T4K, T4L, T5a, T5b, T5N, T6d, T5H, T69, T5O, T5P, T6e, T6f, T5n, T5w; | |
50 E T5Q, T6g, T5u, T66, T5z, T5A; | |
51 { | |
52 E T9, Te, T6, Td, T1, T2; | |
53 T1 = rio[0]; | |
54 T2 = rio[WS(rs, 3)]; | |
55 T3 = T1 + T2; | |
56 Tc = T1 - T2; | |
57 { | |
58 E T7, T8, T4, T5; | |
59 T7 = rio[WS(rs, 4)]; | |
60 T8 = rio[WS(rs, 1)]; | |
61 T9 = T7 + T8; | |
62 Te = T7 - T8; | |
63 T4 = rio[WS(rs, 2)]; | |
64 T5 = rio[WS(rs, 5)]; | |
65 T6 = T4 + T5; | |
66 Td = T4 - T5; | |
67 } | |
68 Tw = Te - Td; | |
69 TW = T9 - T6; | |
70 Ta = T6 + T9; | |
71 TM = FNMS(KP500000000, Ta, T3); | |
72 Tf = Td + Te; | |
73 Tg = FNMS(KP500000000, Tf, Tc); | |
74 } | |
75 { | |
76 E Tj, TN, Tm, TO, Th, Ti; | |
77 Th = iio[WS(rs, 2)]; | |
78 Ti = iio[WS(rs, 5)]; | |
79 Tj = Th - Ti; | |
80 TN = Th + Ti; | |
81 { | |
82 E Tr, Ts, Tk, Tl; | |
83 Tr = iio[0]; | |
84 Ts = iio[WS(rs, 3)]; | |
85 Tt = Tr - Ts; | |
86 TT = Tr + Ts; | |
87 Tk = iio[WS(rs, 4)]; | |
88 Tl = iio[WS(rs, 1)]; | |
89 Tm = Tk - Tl; | |
90 TO = Tk + Tl; | |
91 } | |
92 Tn = Tj - Tm; | |
93 TP = TN - TO; | |
94 Tu = Tj + Tm; | |
95 Tv = FNMS(KP500000000, Tu, Tt); | |
96 TU = TN + TO; | |
97 TV = FNMS(KP500000000, TU, TT); | |
98 } | |
99 { | |
100 E T1d, T1i, T1a, T1h, T15, T16; | |
101 T15 = rio[WS(vs, 1)]; | |
102 T16 = rio[WS(vs, 1) + WS(rs, 3)]; | |
103 T17 = T15 + T16; | |
104 T1g = T15 - T16; | |
105 { | |
106 E T1b, T1c, T18, T19; | |
107 T1b = rio[WS(vs, 1) + WS(rs, 4)]; | |
108 T1c = rio[WS(vs, 1) + WS(rs, 1)]; | |
109 T1d = T1b + T1c; | |
110 T1i = T1b - T1c; | |
111 T18 = rio[WS(vs, 1) + WS(rs, 2)]; | |
112 T19 = rio[WS(vs, 1) + WS(rs, 5)]; | |
113 T1a = T18 + T19; | |
114 T1h = T18 - T19; | |
115 } | |
116 T1A = T1i - T1h; | |
117 T20 = T1d - T1a; | |
118 T1e = T1a + T1d; | |
119 T1Q = FNMS(KP500000000, T1e, T17); | |
120 T1j = T1h + T1i; | |
121 T1k = FNMS(KP500000000, T1j, T1g); | |
122 } | |
123 { | |
124 E T1n, T1R, T1q, T1S, T1l, T1m; | |
125 T1l = iio[WS(vs, 1) + WS(rs, 2)]; | |
126 T1m = iio[WS(vs, 1) + WS(rs, 5)]; | |
127 T1n = T1l - T1m; | |
128 T1R = T1l + T1m; | |
129 { | |
130 E T1v, T1w, T1o, T1p; | |
131 T1v = iio[WS(vs, 1)]; | |
132 T1w = iio[WS(vs, 1) + WS(rs, 3)]; | |
133 T1x = T1v - T1w; | |
134 T1X = T1v + T1w; | |
135 T1o = iio[WS(vs, 1) + WS(rs, 4)]; | |
136 T1p = iio[WS(vs, 1) + WS(rs, 1)]; | |
137 T1q = T1o - T1p; | |
138 T1S = T1o + T1p; | |
139 } | |
140 T1r = T1n - T1q; | |
141 T1T = T1R - T1S; | |
142 T1y = T1n + T1q; | |
143 T1z = FNMS(KP500000000, T1y, T1x); | |
144 T1Y = T1R + T1S; | |
145 T1Z = FNMS(KP500000000, T1Y, T1X); | |
146 } | |
147 { | |
148 E T2r, T2V, T2u, T2W, T2p, T2q; | |
149 T2p = iio[WS(vs, 2) + WS(rs, 2)]; | |
150 T2q = iio[WS(vs, 2) + WS(rs, 5)]; | |
151 T2r = T2p - T2q; | |
152 T2V = T2p + T2q; | |
153 { | |
154 E T2z, T2A, T2s, T2t; | |
155 T2z = iio[WS(vs, 2)]; | |
156 T2A = iio[WS(vs, 2) + WS(rs, 3)]; | |
157 T2B = T2z - T2A; | |
158 T31 = T2z + T2A; | |
159 T2s = iio[WS(vs, 2) + WS(rs, 4)]; | |
160 T2t = iio[WS(vs, 2) + WS(rs, 1)]; | |
161 T2u = T2s - T2t; | |
162 T2W = T2s + T2t; | |
163 } | |
164 T2v = T2r - T2u; | |
165 T2X = T2V - T2W; | |
166 T2C = T2r + T2u; | |
167 T2D = FNMS(KP500000000, T2C, T2B); | |
168 T32 = T2V + T2W; | |
169 T33 = FNMS(KP500000000, T32, T31); | |
170 } | |
171 { | |
172 E T2h, T2m, T2e, T2l, T29, T2a; | |
173 T29 = rio[WS(vs, 2)]; | |
174 T2a = rio[WS(vs, 2) + WS(rs, 3)]; | |
175 T2b = T29 + T2a; | |
176 T2k = T29 - T2a; | |
177 { | |
178 E T2f, T2g, T2c, T2d; | |
179 T2f = rio[WS(vs, 2) + WS(rs, 4)]; | |
180 T2g = rio[WS(vs, 2) + WS(rs, 1)]; | |
181 T2h = T2f + T2g; | |
182 T2m = T2f - T2g; | |
183 T2c = rio[WS(vs, 2) + WS(rs, 2)]; | |
184 T2d = rio[WS(vs, 2) + WS(rs, 5)]; | |
185 T2e = T2c + T2d; | |
186 T2l = T2c - T2d; | |
187 } | |
188 T2E = T2m - T2l; | |
189 T34 = T2h - T2e; | |
190 T2i = T2e + T2h; | |
191 T2U = FNMS(KP500000000, T2i, T2b); | |
192 T2n = T2l + T2m; | |
193 T2o = FNMS(KP500000000, T2n, T2k); | |
194 } | |
195 { | |
196 E T3l, T3q, T3i, T3p, T3d, T3e; | |
197 T3d = rio[WS(vs, 3)]; | |
198 T3e = rio[WS(vs, 3) + WS(rs, 3)]; | |
199 T3f = T3d + T3e; | |
200 T3o = T3d - T3e; | |
201 { | |
202 E T3j, T3k, T3g, T3h; | |
203 T3j = rio[WS(vs, 3) + WS(rs, 4)]; | |
204 T3k = rio[WS(vs, 3) + WS(rs, 1)]; | |
205 T3l = T3j + T3k; | |
206 T3q = T3j - T3k; | |
207 T3g = rio[WS(vs, 3) + WS(rs, 2)]; | |
208 T3h = rio[WS(vs, 3) + WS(rs, 5)]; | |
209 T3i = T3g + T3h; | |
210 T3p = T3g - T3h; | |
211 } | |
212 T3I = T3q - T3p; | |
213 T48 = T3l - T3i; | |
214 T3m = T3i + T3l; | |
215 T3Y = FNMS(KP500000000, T3m, T3f); | |
216 T3r = T3p + T3q; | |
217 T3s = FNMS(KP500000000, T3r, T3o); | |
218 } | |
219 { | |
220 E T3v, T3Z, T3y, T40, T3t, T3u; | |
221 T3t = iio[WS(vs, 3) + WS(rs, 2)]; | |
222 T3u = iio[WS(vs, 3) + WS(rs, 5)]; | |
223 T3v = T3t - T3u; | |
224 T3Z = T3t + T3u; | |
225 { | |
226 E T3D, T3E, T3w, T3x; | |
227 T3D = iio[WS(vs, 3)]; | |
228 T3E = iio[WS(vs, 3) + WS(rs, 3)]; | |
229 T3F = T3D - T3E; | |
230 T45 = T3D + T3E; | |
231 T3w = iio[WS(vs, 3) + WS(rs, 4)]; | |
232 T3x = iio[WS(vs, 3) + WS(rs, 1)]; | |
233 T3y = T3w - T3x; | |
234 T40 = T3w + T3x; | |
235 } | |
236 T3z = T3v - T3y; | |
237 T41 = T3Z - T40; | |
238 T3G = T3v + T3y; | |
239 T3H = FNMS(KP500000000, T3G, T3F); | |
240 T46 = T3Z + T40; | |
241 T47 = FNMS(KP500000000, T46, T45); | |
242 } | |
243 { | |
244 E T4p, T4u, T4m, T4t, T4h, T4i; | |
245 T4h = rio[WS(vs, 4)]; | |
246 T4i = rio[WS(vs, 4) + WS(rs, 3)]; | |
247 T4j = T4h + T4i; | |
248 T4s = T4h - T4i; | |
249 { | |
250 E T4n, T4o, T4k, T4l; | |
251 T4n = rio[WS(vs, 4) + WS(rs, 4)]; | |
252 T4o = rio[WS(vs, 4) + WS(rs, 1)]; | |
253 T4p = T4n + T4o; | |
254 T4u = T4n - T4o; | |
255 T4k = rio[WS(vs, 4) + WS(rs, 2)]; | |
256 T4l = rio[WS(vs, 4) + WS(rs, 5)]; | |
257 T4m = T4k + T4l; | |
258 T4t = T4k - T4l; | |
259 } | |
260 T4M = T4u - T4t; | |
261 T5c = T4p - T4m; | |
262 T4q = T4m + T4p; | |
263 T52 = FNMS(KP500000000, T4q, T4j); | |
264 T4v = T4t + T4u; | |
265 T4w = FNMS(KP500000000, T4v, T4s); | |
266 } | |
267 { | |
268 E T4z, T53, T4C, T54, T4x, T4y; | |
269 T4x = iio[WS(vs, 4) + WS(rs, 2)]; | |
270 T4y = iio[WS(vs, 4) + WS(rs, 5)]; | |
271 T4z = T4x - T4y; | |
272 T53 = T4x + T4y; | |
273 { | |
274 E T4H, T4I, T4A, T4B; | |
275 T4H = iio[WS(vs, 4)]; | |
276 T4I = iio[WS(vs, 4) + WS(rs, 3)]; | |
277 T4J = T4H - T4I; | |
278 T59 = T4H + T4I; | |
279 T4A = iio[WS(vs, 4) + WS(rs, 4)]; | |
280 T4B = iio[WS(vs, 4) + WS(rs, 1)]; | |
281 T4C = T4A - T4B; | |
282 T54 = T4A + T4B; | |
283 } | |
284 T4D = T4z - T4C; | |
285 T55 = T53 - T54; | |
286 T4K = T4z + T4C; | |
287 T4L = FNMS(KP500000000, T4K, T4J); | |
288 T5a = T53 + T54; | |
289 T5b = FNMS(KP500000000, T5a, T59); | |
290 } | |
291 { | |
292 E T5D, T67, T5G, T68, T5B, T5C; | |
293 T5B = iio[WS(vs, 5) + WS(rs, 2)]; | |
294 T5C = iio[WS(vs, 5) + WS(rs, 5)]; | |
295 T5D = T5B - T5C; | |
296 T67 = T5B + T5C; | |
297 { | |
298 E T5L, T5M, T5E, T5F; | |
299 T5L = iio[WS(vs, 5)]; | |
300 T5M = iio[WS(vs, 5) + WS(rs, 3)]; | |
301 T5N = T5L - T5M; | |
302 T6d = T5L + T5M; | |
303 T5E = iio[WS(vs, 5) + WS(rs, 4)]; | |
304 T5F = iio[WS(vs, 5) + WS(rs, 1)]; | |
305 T5G = T5E - T5F; | |
306 T68 = T5E + T5F; | |
307 } | |
308 T5H = T5D - T5G; | |
309 T69 = T67 - T68; | |
310 T5O = T5D + T5G; | |
311 T5P = FNMS(KP500000000, T5O, T5N); | |
312 T6e = T67 + T68; | |
313 T6f = FNMS(KP500000000, T6e, T6d); | |
314 } | |
315 { | |
316 E T5t, T5y, T5q, T5x, T5l, T5m; | |
317 T5l = rio[WS(vs, 5)]; | |
318 T5m = rio[WS(vs, 5) + WS(rs, 3)]; | |
319 T5n = T5l + T5m; | |
320 T5w = T5l - T5m; | |
321 { | |
322 E T5r, T5s, T5o, T5p; | |
323 T5r = rio[WS(vs, 5) + WS(rs, 4)]; | |
324 T5s = rio[WS(vs, 5) + WS(rs, 1)]; | |
325 T5t = T5r + T5s; | |
326 T5y = T5r - T5s; | |
327 T5o = rio[WS(vs, 5) + WS(rs, 2)]; | |
328 T5p = rio[WS(vs, 5) + WS(rs, 5)]; | |
329 T5q = T5o + T5p; | |
330 T5x = T5o - T5p; | |
331 } | |
332 T5Q = T5y - T5x; | |
333 T6g = T5t - T5q; | |
334 T5u = T5q + T5t; | |
335 T66 = FNMS(KP500000000, T5u, T5n); | |
336 T5z = T5x + T5y; | |
337 T5A = FNMS(KP500000000, T5z, T5w); | |
338 } | |
339 rio[0] = T3 + Ta; | |
340 iio[0] = TT + TU; | |
341 rio[WS(rs, 1)] = T17 + T1e; | |
342 iio[WS(rs, 1)] = T1X + T1Y; | |
343 rio[WS(rs, 2)] = T2b + T2i; | |
344 iio[WS(rs, 2)] = T31 + T32; | |
345 iio[WS(rs, 4)] = T59 + T5a; | |
346 rio[WS(rs, 4)] = T4j + T4q; | |
347 rio[WS(rs, 3)] = T3f + T3m; | |
348 iio[WS(rs, 3)] = T45 + T46; | |
349 rio[WS(rs, 5)] = T5n + T5u; | |
350 iio[WS(rs, 5)] = T6d + T6e; | |
351 { | |
352 E To, Tx, Tp, Ty, Tb, Tq; | |
353 To = FMA(KP866025403, Tn, Tg); | |
354 Tx = FMA(KP866025403, Tw, Tv); | |
355 Tb = W[0]; | |
356 Tp = Tb * To; | |
357 Ty = Tb * Tx; | |
358 Tq = W[1]; | |
359 rio[WS(vs, 1)] = FMA(Tq, Tx, Tp); | |
360 iio[WS(vs, 1)] = FNMS(Tq, To, Ty); | |
361 } | |
362 { | |
363 E TG, TJ, TH, TK, TF, TI; | |
364 TG = Tc + Tf; | |
365 TJ = Tt + Tu; | |
366 TF = W[4]; | |
367 TH = TF * TG; | |
368 TK = TF * TJ; | |
369 TI = W[5]; | |
370 rio[WS(vs, 3)] = FMA(TI, TJ, TH); | |
371 iio[WS(vs, 3)] = FNMS(TI, TG, TK); | |
372 } | |
373 { | |
374 E T10, T13, T11, T14, TZ, T12; | |
375 T10 = FMA(KP866025403, TP, TM); | |
376 T13 = FMA(KP866025403, TW, TV); | |
377 TZ = W[6]; | |
378 T11 = TZ * T10; | |
379 T14 = TZ * T13; | |
380 T12 = W[7]; | |
381 rio[WS(vs, 4)] = FMA(T12, T13, T11); | |
382 iio[WS(vs, 4)] = FNMS(T12, T10, T14); | |
383 } | |
384 { | |
385 E T60, T63, T61, T64, T5Z, T62; | |
386 T60 = T5w + T5z; | |
387 T63 = T5N + T5O; | |
388 T5Z = W[4]; | |
389 T61 = T5Z * T60; | |
390 T64 = T5Z * T63; | |
391 T62 = W[5]; | |
392 rio[WS(vs, 3) + WS(rs, 5)] = FMA(T62, T63, T61); | |
393 iio[WS(vs, 3) + WS(rs, 5)] = FNMS(T62, T60, T64); | |
394 } | |
395 { | |
396 E T6k, T6n, T6l, T6o, T6j, T6m; | |
397 T6k = FMA(KP866025403, T69, T66); | |
398 T6n = FMA(KP866025403, T6g, T6f); | |
399 T6j = W[6]; | |
400 T6l = T6j * T6k; | |
401 T6o = T6j * T6n; | |
402 T6m = W[7]; | |
403 rio[WS(vs, 4) + WS(rs, 5)] = FMA(T6m, T6n, T6l); | |
404 iio[WS(vs, 4) + WS(rs, 5)] = FNMS(T6m, T6k, T6o); | |
405 } | |
406 { | |
407 E TA, TD, TB, TE, Tz, TC; | |
408 TA = FNMS(KP866025403, Tn, Tg); | |
409 TD = FNMS(KP866025403, Tw, Tv); | |
410 Tz = W[8]; | |
411 TB = Tz * TA; | |
412 TE = Tz * TD; | |
413 TC = W[9]; | |
414 rio[WS(vs, 5)] = FMA(TC, TD, TB); | |
415 iio[WS(vs, 5)] = FNMS(TC, TA, TE); | |
416 } | |
417 { | |
418 E TQ, TX, TR, TY, TL, TS; | |
419 TQ = FNMS(KP866025403, TP, TM); | |
420 TX = FNMS(KP866025403, TW, TV); | |
421 TL = W[2]; | |
422 TR = TL * TQ; | |
423 TY = TL * TX; | |
424 TS = W[3]; | |
425 rio[WS(vs, 2)] = FMA(TS, TX, TR); | |
426 iio[WS(vs, 2)] = FNMS(TS, TQ, TY); | |
427 } | |
428 { | |
429 E T5U, T5X, T5V, T5Y, T5T, T5W; | |
430 T5U = FNMS(KP866025403, T5H, T5A); | |
431 T5X = FNMS(KP866025403, T5Q, T5P); | |
432 T5T = W[8]; | |
433 T5V = T5T * T5U; | |
434 T5Y = T5T * T5X; | |
435 T5W = W[9]; | |
436 rio[WS(vs, 5) + WS(rs, 5)] = FMA(T5W, T5X, T5V); | |
437 iio[WS(vs, 5) + WS(rs, 5)] = FNMS(T5W, T5U, T5Y); | |
438 } | |
439 { | |
440 E T6a, T6h, T6b, T6i, T65, T6c; | |
441 T6a = FNMS(KP866025403, T69, T66); | |
442 T6h = FNMS(KP866025403, T6g, T6f); | |
443 T65 = W[2]; | |
444 T6b = T65 * T6a; | |
445 T6i = T65 * T6h; | |
446 T6c = W[3]; | |
447 rio[WS(vs, 2) + WS(rs, 5)] = FMA(T6c, T6h, T6b); | |
448 iio[WS(vs, 2) + WS(rs, 5)] = FNMS(T6c, T6a, T6i); | |
449 } | |
450 { | |
451 E T5I, T5R, T5J, T5S, T5v, T5K; | |
452 T5I = FMA(KP866025403, T5H, T5A); | |
453 T5R = FMA(KP866025403, T5Q, T5P); | |
454 T5v = W[0]; | |
455 T5J = T5v * T5I; | |
456 T5S = T5v * T5R; | |
457 T5K = W[1]; | |
458 rio[WS(vs, 1) + WS(rs, 5)] = FMA(T5K, T5R, T5J); | |
459 iio[WS(vs, 1) + WS(rs, 5)] = FNMS(T5K, T5I, T5S); | |
460 } | |
461 { | |
462 E T1s, T1B, T1t, T1C, T1f, T1u; | |
463 T1s = FMA(KP866025403, T1r, T1k); | |
464 T1B = FMA(KP866025403, T1A, T1z); | |
465 T1f = W[0]; | |
466 T1t = T1f * T1s; | |
467 T1C = T1f * T1B; | |
468 T1u = W[1]; | |
469 rio[WS(vs, 1) + WS(rs, 1)] = FMA(T1u, T1B, T1t); | |
470 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T1u, T1s, T1C); | |
471 } | |
472 { | |
473 E T3S, T3V, T3T, T3W, T3R, T3U; | |
474 T3S = T3o + T3r; | |
475 T3V = T3F + T3G; | |
476 T3R = W[4]; | |
477 T3T = T3R * T3S; | |
478 T3W = T3R * T3V; | |
479 T3U = W[5]; | |
480 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T3U, T3V, T3T); | |
481 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T3U, T3S, T3W); | |
482 } | |
483 { | |
484 E T3A, T3J, T3B, T3K, T3n, T3C; | |
485 T3A = FMA(KP866025403, T3z, T3s); | |
486 T3J = FMA(KP866025403, T3I, T3H); | |
487 T3n = W[0]; | |
488 T3B = T3n * T3A; | |
489 T3K = T3n * T3J; | |
490 T3C = W[1]; | |
491 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T3C, T3J, T3B); | |
492 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T3C, T3A, T3K); | |
493 } | |
494 { | |
495 E T56, T5d, T57, T5e, T51, T58; | |
496 T56 = FNMS(KP866025403, T55, T52); | |
497 T5d = FNMS(KP866025403, T5c, T5b); | |
498 T51 = W[2]; | |
499 T57 = T51 * T56; | |
500 T5e = T51 * T5d; | |
501 T58 = W[3]; | |
502 rio[WS(vs, 2) + WS(rs, 4)] = FMA(T58, T5d, T57); | |
503 iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T58, T56, T5e); | |
504 } | |
505 { | |
506 E T2Y, T35, T2Z, T36, T2T, T30; | |
507 T2Y = FNMS(KP866025403, T2X, T2U); | |
508 T35 = FNMS(KP866025403, T34, T33); | |
509 T2T = W[2]; | |
510 T2Z = T2T * T2Y; | |
511 T36 = T2T * T35; | |
512 T30 = W[3]; | |
513 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T30, T35, T2Z); | |
514 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T30, T2Y, T36); | |
515 } | |
516 { | |
517 E T3M, T3P, T3N, T3Q, T3L, T3O; | |
518 T3M = FNMS(KP866025403, T3z, T3s); | |
519 T3P = FNMS(KP866025403, T3I, T3H); | |
520 T3L = W[8]; | |
521 T3N = T3L * T3M; | |
522 T3Q = T3L * T3P; | |
523 T3O = W[9]; | |
524 rio[WS(vs, 5) + WS(rs, 3)] = FMA(T3O, T3P, T3N); | |
525 iio[WS(vs, 5) + WS(rs, 3)] = FNMS(T3O, T3M, T3Q); | |
526 } | |
527 { | |
528 E T38, T3b, T39, T3c, T37, T3a; | |
529 T38 = FMA(KP866025403, T2X, T2U); | |
530 T3b = FMA(KP866025403, T34, T33); | |
531 T37 = W[6]; | |
532 T39 = T37 * T38; | |
533 T3c = T37 * T3b; | |
534 T3a = W[7]; | |
535 rio[WS(vs, 4) + WS(rs, 2)] = FMA(T3a, T3b, T39); | |
536 iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T3a, T38, T3c); | |
537 } | |
538 { | |
539 E T1E, T1H, T1F, T1I, T1D, T1G; | |
540 T1E = FNMS(KP866025403, T1r, T1k); | |
541 T1H = FNMS(KP866025403, T1A, T1z); | |
542 T1D = W[8]; | |
543 T1F = T1D * T1E; | |
544 T1I = T1D * T1H; | |
545 T1G = W[9]; | |
546 rio[WS(vs, 5) + WS(rs, 1)] = FMA(T1G, T1H, T1F); | |
547 iio[WS(vs, 5) + WS(rs, 1)] = FNMS(T1G, T1E, T1I); | |
548 } | |
549 { | |
550 E T5g, T5j, T5h, T5k, T5f, T5i; | |
551 T5g = FMA(KP866025403, T55, T52); | |
552 T5j = FMA(KP866025403, T5c, T5b); | |
553 T5f = W[6]; | |
554 T5h = T5f * T5g; | |
555 T5k = T5f * T5j; | |
556 T5i = W[7]; | |
557 rio[WS(vs, 4) + WS(rs, 4)] = FMA(T5i, T5j, T5h); | |
558 iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T5i, T5g, T5k); | |
559 } | |
560 { | |
561 E T1K, T1N, T1L, T1O, T1J, T1M; | |
562 T1K = T1g + T1j; | |
563 T1N = T1x + T1y; | |
564 T1J = W[4]; | |
565 T1L = T1J * T1K; | |
566 T1O = T1J * T1N; | |
567 T1M = W[5]; | |
568 rio[WS(vs, 3) + WS(rs, 1)] = FMA(T1M, T1N, T1L); | |
569 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T1M, T1K, T1O); | |
570 } | |
571 { | |
572 E T4W, T4Z, T4X, T50, T4V, T4Y; | |
573 T4W = T4s + T4v; | |
574 T4Z = T4J + T4K; | |
575 T4V = W[4]; | |
576 T4X = T4V * T4W; | |
577 T50 = T4V * T4Z; | |
578 T4Y = W[5]; | |
579 rio[WS(vs, 3) + WS(rs, 4)] = FMA(T4Y, T4Z, T4X); | |
580 iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T4Y, T4W, T50); | |
581 } | |
582 { | |
583 E T4E, T4N, T4F, T4O, T4r, T4G; | |
584 T4E = FMA(KP866025403, T4D, T4w); | |
585 T4N = FMA(KP866025403, T4M, T4L); | |
586 T4r = W[0]; | |
587 T4F = T4r * T4E; | |
588 T4O = T4r * T4N; | |
589 T4G = W[1]; | |
590 rio[WS(vs, 1) + WS(rs, 4)] = FMA(T4G, T4N, T4F); | |
591 iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T4G, T4E, T4O); | |
592 } | |
593 { | |
594 E T2O, T2R, T2P, T2S, T2N, T2Q; | |
595 T2O = T2k + T2n; | |
596 T2R = T2B + T2C; | |
597 T2N = W[4]; | |
598 T2P = T2N * T2O; | |
599 T2S = T2N * T2R; | |
600 T2Q = W[5]; | |
601 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T2Q, T2R, T2P); | |
602 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T2Q, T2O, T2S); | |
603 } | |
604 { | |
605 E T2w, T2F, T2x, T2G, T2j, T2y; | |
606 T2w = FMA(KP866025403, T2v, T2o); | |
607 T2F = FMA(KP866025403, T2E, T2D); | |
608 T2j = W[0]; | |
609 T2x = T2j * T2w; | |
610 T2G = T2j * T2F; | |
611 T2y = W[1]; | |
612 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T2y, T2F, T2x); | |
613 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T2y, T2w, T2G); | |
614 } | |
615 { | |
616 E T24, T27, T25, T28, T23, T26; | |
617 T24 = FMA(KP866025403, T1T, T1Q); | |
618 T27 = FMA(KP866025403, T20, T1Z); | |
619 T23 = W[6]; | |
620 T25 = T23 * T24; | |
621 T28 = T23 * T27; | |
622 T26 = W[7]; | |
623 rio[WS(vs, 4) + WS(rs, 1)] = FMA(T26, T27, T25); | |
624 iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T26, T24, T28); | |
625 } | |
626 { | |
627 E T42, T49, T43, T4a, T3X, T44; | |
628 T42 = FNMS(KP866025403, T41, T3Y); | |
629 T49 = FNMS(KP866025403, T48, T47); | |
630 T3X = W[2]; | |
631 T43 = T3X * T42; | |
632 T4a = T3X * T49; | |
633 T44 = W[3]; | |
634 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T44, T49, T43); | |
635 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T44, T42, T4a); | |
636 } | |
637 { | |
638 E T2I, T2L, T2J, T2M, T2H, T2K; | |
639 T2I = FNMS(KP866025403, T2v, T2o); | |
640 T2L = FNMS(KP866025403, T2E, T2D); | |
641 T2H = W[8]; | |
642 T2J = T2H * T2I; | |
643 T2M = T2H * T2L; | |
644 T2K = W[9]; | |
645 rio[WS(vs, 5) + WS(rs, 2)] = FMA(T2K, T2L, T2J); | |
646 iio[WS(vs, 5) + WS(rs, 2)] = FNMS(T2K, T2I, T2M); | |
647 } | |
648 { | |
649 E T4Q, T4T, T4R, T4U, T4P, T4S; | |
650 T4Q = FNMS(KP866025403, T4D, T4w); | |
651 T4T = FNMS(KP866025403, T4M, T4L); | |
652 T4P = W[8]; | |
653 T4R = T4P * T4Q; | |
654 T4U = T4P * T4T; | |
655 T4S = W[9]; | |
656 rio[WS(vs, 5) + WS(rs, 4)] = FMA(T4S, T4T, T4R); | |
657 iio[WS(vs, 5) + WS(rs, 4)] = FNMS(T4S, T4Q, T4U); | |
658 } | |
659 { | |
660 E T1U, T21, T1V, T22, T1P, T1W; | |
661 T1U = FNMS(KP866025403, T1T, T1Q); | |
662 T21 = FNMS(KP866025403, T20, T1Z); | |
663 T1P = W[2]; | |
664 T1V = T1P * T1U; | |
665 T22 = T1P * T21; | |
666 T1W = W[3]; | |
667 rio[WS(vs, 2) + WS(rs, 1)] = FMA(T1W, T21, T1V); | |
668 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T1W, T1U, T22); | |
669 } | |
670 { | |
671 E T4c, T4f, T4d, T4g, T4b, T4e; | |
672 T4c = FMA(KP866025403, T41, T3Y); | |
673 T4f = FMA(KP866025403, T48, T47); | |
674 T4b = W[6]; | |
675 T4d = T4b * T4c; | |
676 T4g = T4b * T4f; | |
677 T4e = W[7]; | |
678 rio[WS(vs, 4) + WS(rs, 3)] = FMA(T4e, T4f, T4d); | |
679 iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T4e, T4c, T4g); | |
680 } | |
681 } | |
682 } | |
683 } | |
684 | |
685 static const tw_instr twinstr[] = { | |
686 {TW_FULL, 0, 6}, | |
687 {TW_NEXT, 1, 0} | |
688 }; | |
689 | |
690 static const ct_desc desc = { 6, "q1_6", twinstr, &GENUS, {144, 60, 132, 0}, 0, 0, 0 }; | |
691 | |
692 void X(codelet_q1_6) (planner *p) { | |
693 X(kdft_difsq_register) (p, q1_6, &desc); | |
694 } | |
695 #else | |
696 | |
697 /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 6 -name q1_6 -include dft/scalar/q.h */ | |
698 | |
699 /* | |
700 * This function contains 276 FP additions, 168 FP multiplications, | |
701 * (or, 192 additions, 84 multiplications, 84 fused multiply/add), | |
702 * 85 stack variables, 2 constants, and 144 memory accesses | |
703 */ | |
704 #include "dft/scalar/q.h" | |
705 | |
706 static void q1_6(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
707 { | |
708 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
709 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
710 { | |
711 INT m; | |
712 for (m = mb, W = W + (mb * 10); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 10, MAKE_VOLATILE_STRIDE(12, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | |
713 E T3, Tc, Tt, TM, TX, T16, T1n, T1G, T2h, T2A, T1R, T20, T2L, T2U, T3b; | |
714 E T3u, T3F, T3O, T45, T4o, T4Z, T5i, T4z, T4I, Ta, TP, Tf, Tq, Tn, TN; | |
715 E Tu, TJ, T14, T1J, T19, T1k, T1h, T1H, T1o, T1D, T2b, T2B, T2i, T2x, T1Y; | |
716 E T2D, T23, T2e, T2S, T3x, T2X, T38, T35, T3v, T3c, T3r, T3M, T4r, T3R, T42; | |
717 E T3Z, T4p, T46, T4l, T4T, T5j, T50, T5f, T4G, T5l, T4L, T4W; | |
718 { | |
719 E T1, T2, T1l, T1m; | |
720 T1 = rio[0]; | |
721 T2 = rio[WS(rs, 3)]; | |
722 T3 = T1 + T2; | |
723 Tc = T1 - T2; | |
724 { | |
725 E Tr, Ts, TV, TW; | |
726 Tr = iio[0]; | |
727 Ts = iio[WS(rs, 3)]; | |
728 Tt = Tr - Ts; | |
729 TM = Tr + Ts; | |
730 TV = rio[WS(vs, 1)]; | |
731 TW = rio[WS(vs, 1) + WS(rs, 3)]; | |
732 TX = TV + TW; | |
733 T16 = TV - TW; | |
734 } | |
735 T1l = iio[WS(vs, 1)]; | |
736 T1m = iio[WS(vs, 1) + WS(rs, 3)]; | |
737 T1n = T1l - T1m; | |
738 T1G = T1l + T1m; | |
739 { | |
740 E T2f, T2g, T1P, T1Q; | |
741 T2f = iio[WS(vs, 2)]; | |
742 T2g = iio[WS(vs, 2) + WS(rs, 3)]; | |
743 T2h = T2f - T2g; | |
744 T2A = T2f + T2g; | |
745 T1P = rio[WS(vs, 2)]; | |
746 T1Q = rio[WS(vs, 2) + WS(rs, 3)]; | |
747 T1R = T1P + T1Q; | |
748 T20 = T1P - T1Q; | |
749 } | |
750 } | |
751 { | |
752 E T2J, T2K, T43, T44; | |
753 T2J = rio[WS(vs, 3)]; | |
754 T2K = rio[WS(vs, 3) + WS(rs, 3)]; | |
755 T2L = T2J + T2K; | |
756 T2U = T2J - T2K; | |
757 { | |
758 E T39, T3a, T3D, T3E; | |
759 T39 = iio[WS(vs, 3)]; | |
760 T3a = iio[WS(vs, 3) + WS(rs, 3)]; | |
761 T3b = T39 - T3a; | |
762 T3u = T39 + T3a; | |
763 T3D = rio[WS(vs, 4)]; | |
764 T3E = rio[WS(vs, 4) + WS(rs, 3)]; | |
765 T3F = T3D + T3E; | |
766 T3O = T3D - T3E; | |
767 } | |
768 T43 = iio[WS(vs, 4)]; | |
769 T44 = iio[WS(vs, 4) + WS(rs, 3)]; | |
770 T45 = T43 - T44; | |
771 T4o = T43 + T44; | |
772 { | |
773 E T4X, T4Y, T4x, T4y; | |
774 T4X = iio[WS(vs, 5)]; | |
775 T4Y = iio[WS(vs, 5) + WS(rs, 3)]; | |
776 T4Z = T4X - T4Y; | |
777 T5i = T4X + T4Y; | |
778 T4x = rio[WS(vs, 5)]; | |
779 T4y = rio[WS(vs, 5) + WS(rs, 3)]; | |
780 T4z = T4x + T4y; | |
781 T4I = T4x - T4y; | |
782 } | |
783 } | |
784 { | |
785 E T6, Td, T9, Te; | |
786 { | |
787 E T4, T5, T7, T8; | |
788 T4 = rio[WS(rs, 2)]; | |
789 T5 = rio[WS(rs, 5)]; | |
790 T6 = T4 + T5; | |
791 Td = T4 - T5; | |
792 T7 = rio[WS(rs, 4)]; | |
793 T8 = rio[WS(rs, 1)]; | |
794 T9 = T7 + T8; | |
795 Te = T7 - T8; | |
796 } | |
797 Ta = T6 + T9; | |
798 TP = KP866025403 * (T9 - T6); | |
799 Tf = Td + Te; | |
800 Tq = KP866025403 * (Te - Td); | |
801 } | |
802 { | |
803 E Tj, TH, Tm, TI; | |
804 { | |
805 E Th, Ti, Tk, Tl; | |
806 Th = iio[WS(rs, 2)]; | |
807 Ti = iio[WS(rs, 5)]; | |
808 Tj = Th - Ti; | |
809 TH = Th + Ti; | |
810 Tk = iio[WS(rs, 4)]; | |
811 Tl = iio[WS(rs, 1)]; | |
812 Tm = Tk - Tl; | |
813 TI = Tk + Tl; | |
814 } | |
815 Tn = KP866025403 * (Tj - Tm); | |
816 TN = TH + TI; | |
817 Tu = Tj + Tm; | |
818 TJ = KP866025403 * (TH - TI); | |
819 } | |
820 { | |
821 E T10, T17, T13, T18; | |
822 { | |
823 E TY, TZ, T11, T12; | |
824 TY = rio[WS(vs, 1) + WS(rs, 2)]; | |
825 TZ = rio[WS(vs, 1) + WS(rs, 5)]; | |
826 T10 = TY + TZ; | |
827 T17 = TY - TZ; | |
828 T11 = rio[WS(vs, 1) + WS(rs, 4)]; | |
829 T12 = rio[WS(vs, 1) + WS(rs, 1)]; | |
830 T13 = T11 + T12; | |
831 T18 = T11 - T12; | |
832 } | |
833 T14 = T10 + T13; | |
834 T1J = KP866025403 * (T13 - T10); | |
835 T19 = T17 + T18; | |
836 T1k = KP866025403 * (T18 - T17); | |
837 } | |
838 { | |
839 E T1d, T1B, T1g, T1C; | |
840 { | |
841 E T1b, T1c, T1e, T1f; | |
842 T1b = iio[WS(vs, 1) + WS(rs, 2)]; | |
843 T1c = iio[WS(vs, 1) + WS(rs, 5)]; | |
844 T1d = T1b - T1c; | |
845 T1B = T1b + T1c; | |
846 T1e = iio[WS(vs, 1) + WS(rs, 4)]; | |
847 T1f = iio[WS(vs, 1) + WS(rs, 1)]; | |
848 T1g = T1e - T1f; | |
849 T1C = T1e + T1f; | |
850 } | |
851 T1h = KP866025403 * (T1d - T1g); | |
852 T1H = T1B + T1C; | |
853 T1o = T1d + T1g; | |
854 T1D = KP866025403 * (T1B - T1C); | |
855 } | |
856 { | |
857 E T27, T2v, T2a, T2w; | |
858 { | |
859 E T25, T26, T28, T29; | |
860 T25 = iio[WS(vs, 2) + WS(rs, 2)]; | |
861 T26 = iio[WS(vs, 2) + WS(rs, 5)]; | |
862 T27 = T25 - T26; | |
863 T2v = T25 + T26; | |
864 T28 = iio[WS(vs, 2) + WS(rs, 4)]; | |
865 T29 = iio[WS(vs, 2) + WS(rs, 1)]; | |
866 T2a = T28 - T29; | |
867 T2w = T28 + T29; | |
868 } | |
869 T2b = KP866025403 * (T27 - T2a); | |
870 T2B = T2v + T2w; | |
871 T2i = T27 + T2a; | |
872 T2x = KP866025403 * (T2v - T2w); | |
873 } | |
874 { | |
875 E T1U, T21, T1X, T22; | |
876 { | |
877 E T1S, T1T, T1V, T1W; | |
878 T1S = rio[WS(vs, 2) + WS(rs, 2)]; | |
879 T1T = rio[WS(vs, 2) + WS(rs, 5)]; | |
880 T1U = T1S + T1T; | |
881 T21 = T1S - T1T; | |
882 T1V = rio[WS(vs, 2) + WS(rs, 4)]; | |
883 T1W = rio[WS(vs, 2) + WS(rs, 1)]; | |
884 T1X = T1V + T1W; | |
885 T22 = T1V - T1W; | |
886 } | |
887 T1Y = T1U + T1X; | |
888 T2D = KP866025403 * (T1X - T1U); | |
889 T23 = T21 + T22; | |
890 T2e = KP866025403 * (T22 - T21); | |
891 } | |
892 { | |
893 E T2O, T2V, T2R, T2W; | |
894 { | |
895 E T2M, T2N, T2P, T2Q; | |
896 T2M = rio[WS(vs, 3) + WS(rs, 2)]; | |
897 T2N = rio[WS(vs, 3) + WS(rs, 5)]; | |
898 T2O = T2M + T2N; | |
899 T2V = T2M - T2N; | |
900 T2P = rio[WS(vs, 3) + WS(rs, 4)]; | |
901 T2Q = rio[WS(vs, 3) + WS(rs, 1)]; | |
902 T2R = T2P + T2Q; | |
903 T2W = T2P - T2Q; | |
904 } | |
905 T2S = T2O + T2R; | |
906 T3x = KP866025403 * (T2R - T2O); | |
907 T2X = T2V + T2W; | |
908 T38 = KP866025403 * (T2W - T2V); | |
909 } | |
910 { | |
911 E T31, T3p, T34, T3q; | |
912 { | |
913 E T2Z, T30, T32, T33; | |
914 T2Z = iio[WS(vs, 3) + WS(rs, 2)]; | |
915 T30 = iio[WS(vs, 3) + WS(rs, 5)]; | |
916 T31 = T2Z - T30; | |
917 T3p = T2Z + T30; | |
918 T32 = iio[WS(vs, 3) + WS(rs, 4)]; | |
919 T33 = iio[WS(vs, 3) + WS(rs, 1)]; | |
920 T34 = T32 - T33; | |
921 T3q = T32 + T33; | |
922 } | |
923 T35 = KP866025403 * (T31 - T34); | |
924 T3v = T3p + T3q; | |
925 T3c = T31 + T34; | |
926 T3r = KP866025403 * (T3p - T3q); | |
927 } | |
928 { | |
929 E T3I, T3P, T3L, T3Q; | |
930 { | |
931 E T3G, T3H, T3J, T3K; | |
932 T3G = rio[WS(vs, 4) + WS(rs, 2)]; | |
933 T3H = rio[WS(vs, 4) + WS(rs, 5)]; | |
934 T3I = T3G + T3H; | |
935 T3P = T3G - T3H; | |
936 T3J = rio[WS(vs, 4) + WS(rs, 4)]; | |
937 T3K = rio[WS(vs, 4) + WS(rs, 1)]; | |
938 T3L = T3J + T3K; | |
939 T3Q = T3J - T3K; | |
940 } | |
941 T3M = T3I + T3L; | |
942 T4r = KP866025403 * (T3L - T3I); | |
943 T3R = T3P + T3Q; | |
944 T42 = KP866025403 * (T3Q - T3P); | |
945 } | |
946 { | |
947 E T3V, T4j, T3Y, T4k; | |
948 { | |
949 E T3T, T3U, T3W, T3X; | |
950 T3T = iio[WS(vs, 4) + WS(rs, 2)]; | |
951 T3U = iio[WS(vs, 4) + WS(rs, 5)]; | |
952 T3V = T3T - T3U; | |
953 T4j = T3T + T3U; | |
954 T3W = iio[WS(vs, 4) + WS(rs, 4)]; | |
955 T3X = iio[WS(vs, 4) + WS(rs, 1)]; | |
956 T3Y = T3W - T3X; | |
957 T4k = T3W + T3X; | |
958 } | |
959 T3Z = KP866025403 * (T3V - T3Y); | |
960 T4p = T4j + T4k; | |
961 T46 = T3V + T3Y; | |
962 T4l = KP866025403 * (T4j - T4k); | |
963 } | |
964 { | |
965 E T4P, T5d, T4S, T5e; | |
966 { | |
967 E T4N, T4O, T4Q, T4R; | |
968 T4N = iio[WS(vs, 5) + WS(rs, 2)]; | |
969 T4O = iio[WS(vs, 5) + WS(rs, 5)]; | |
970 T4P = T4N - T4O; | |
971 T5d = T4N + T4O; | |
972 T4Q = iio[WS(vs, 5) + WS(rs, 4)]; | |
973 T4R = iio[WS(vs, 5) + WS(rs, 1)]; | |
974 T4S = T4Q - T4R; | |
975 T5e = T4Q + T4R; | |
976 } | |
977 T4T = KP866025403 * (T4P - T4S); | |
978 T5j = T5d + T5e; | |
979 T50 = T4P + T4S; | |
980 T5f = KP866025403 * (T5d - T5e); | |
981 } | |
982 { | |
983 E T4C, T4J, T4F, T4K; | |
984 { | |
985 E T4A, T4B, T4D, T4E; | |
986 T4A = rio[WS(vs, 5) + WS(rs, 2)]; | |
987 T4B = rio[WS(vs, 5) + WS(rs, 5)]; | |
988 T4C = T4A + T4B; | |
989 T4J = T4A - T4B; | |
990 T4D = rio[WS(vs, 5) + WS(rs, 4)]; | |
991 T4E = rio[WS(vs, 5) + WS(rs, 1)]; | |
992 T4F = T4D + T4E; | |
993 T4K = T4D - T4E; | |
994 } | |
995 T4G = T4C + T4F; | |
996 T5l = KP866025403 * (T4F - T4C); | |
997 T4L = T4J + T4K; | |
998 T4W = KP866025403 * (T4K - T4J); | |
999 } | |
1000 rio[0] = T3 + Ta; | |
1001 iio[0] = TM + TN; | |
1002 rio[WS(rs, 1)] = TX + T14; | |
1003 iio[WS(rs, 1)] = T1G + T1H; | |
1004 rio[WS(rs, 3)] = T2L + T2S; | |
1005 rio[WS(rs, 2)] = T1R + T1Y; | |
1006 iio[WS(rs, 2)] = T2A + T2B; | |
1007 iio[WS(rs, 3)] = T3u + T3v; | |
1008 iio[WS(rs, 4)] = T4o + T4p; | |
1009 iio[WS(rs, 5)] = T5i + T5j; | |
1010 rio[WS(rs, 5)] = T4z + T4G; | |
1011 rio[WS(rs, 4)] = T3F + T3M; | |
1012 { | |
1013 E T1w, T1y, T1v, T1x; | |
1014 T1w = T16 + T19; | |
1015 T1y = T1n + T1o; | |
1016 T1v = W[4]; | |
1017 T1x = W[5]; | |
1018 rio[WS(vs, 3) + WS(rs, 1)] = FMA(T1v, T1w, T1x * T1y); | |
1019 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T1x, T1w, T1v * T1y); | |
1020 } | |
1021 { | |
1022 E T58, T5a, T57, T59; | |
1023 T58 = T4I + T4L; | |
1024 T5a = T4Z + T50; | |
1025 T57 = W[4]; | |
1026 T59 = W[5]; | |
1027 rio[WS(vs, 3) + WS(rs, 5)] = FMA(T57, T58, T59 * T5a); | |
1028 iio[WS(vs, 3) + WS(rs, 5)] = FNMS(T59, T58, T57 * T5a); | |
1029 } | |
1030 { | |
1031 E TC, TE, TB, TD; | |
1032 TC = Tc + Tf; | |
1033 TE = Tt + Tu; | |
1034 TB = W[4]; | |
1035 TD = W[5]; | |
1036 rio[WS(vs, 3)] = FMA(TB, TC, TD * TE); | |
1037 iio[WS(vs, 3)] = FNMS(TD, TC, TB * TE); | |
1038 } | |
1039 { | |
1040 E T4e, T4g, T4d, T4f; | |
1041 T4e = T3O + T3R; | |
1042 T4g = T45 + T46; | |
1043 T4d = W[4]; | |
1044 T4f = W[5]; | |
1045 rio[WS(vs, 3) + WS(rs, 4)] = FMA(T4d, T4e, T4f * T4g); | |
1046 iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T4f, T4e, T4d * T4g); | |
1047 } | |
1048 { | |
1049 E T3k, T3m, T3j, T3l; | |
1050 T3k = T2U + T2X; | |
1051 T3m = T3b + T3c; | |
1052 T3j = W[4]; | |
1053 T3l = W[5]; | |
1054 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T3j, T3k, T3l * T3m); | |
1055 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T3l, T3k, T3j * T3m); | |
1056 } | |
1057 { | |
1058 E T2q, T2s, T2p, T2r; | |
1059 T2q = T20 + T23; | |
1060 T2s = T2h + T2i; | |
1061 T2p = W[4]; | |
1062 T2r = W[5]; | |
1063 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T2p, T2q, T2r * T2s); | |
1064 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T2r, T2q, T2p * T2s); | |
1065 } | |
1066 { | |
1067 E T5g, T5o, T5m, T5q, T5c, T5k; | |
1068 T5c = FNMS(KP500000000, T4G, T4z); | |
1069 T5g = T5c - T5f; | |
1070 T5o = T5c + T5f; | |
1071 T5k = FNMS(KP500000000, T5j, T5i); | |
1072 T5m = T5k - T5l; | |
1073 T5q = T5l + T5k; | |
1074 { | |
1075 E T5b, T5h, T5n, T5p; | |
1076 T5b = W[2]; | |
1077 T5h = W[3]; | |
1078 rio[WS(vs, 2) + WS(rs, 5)] = FMA(T5b, T5g, T5h * T5m); | |
1079 iio[WS(vs, 2) + WS(rs, 5)] = FNMS(T5h, T5g, T5b * T5m); | |
1080 T5n = W[6]; | |
1081 T5p = W[7]; | |
1082 rio[WS(vs, 4) + WS(rs, 5)] = FMA(T5n, T5o, T5p * T5q); | |
1083 iio[WS(vs, 4) + WS(rs, 5)] = FNMS(T5p, T5o, T5n * T5q); | |
1084 } | |
1085 } | |
1086 { | |
1087 E To, Ty, Tw, TA, Tg, Tv; | |
1088 Tg = FNMS(KP500000000, Tf, Tc); | |
1089 To = Tg + Tn; | |
1090 Ty = Tg - Tn; | |
1091 Tv = FNMS(KP500000000, Tu, Tt); | |
1092 Tw = Tq + Tv; | |
1093 TA = Tv - Tq; | |
1094 { | |
1095 E Tb, Tp, Tx, Tz; | |
1096 Tb = W[0]; | |
1097 Tp = W[1]; | |
1098 rio[WS(vs, 1)] = FMA(Tb, To, Tp * Tw); | |
1099 iio[WS(vs, 1)] = FNMS(Tp, To, Tb * Tw); | |
1100 Tx = W[8]; | |
1101 Tz = W[9]; | |
1102 rio[WS(vs, 5)] = FMA(Tx, Ty, Tz * TA); | |
1103 iio[WS(vs, 5)] = FNMS(Tz, Ty, Tx * TA); | |
1104 } | |
1105 } | |
1106 { | |
1107 E T36, T3g, T3e, T3i, T2Y, T3d; | |
1108 T2Y = FNMS(KP500000000, T2X, T2U); | |
1109 T36 = T2Y + T35; | |
1110 T3g = T2Y - T35; | |
1111 T3d = FNMS(KP500000000, T3c, T3b); | |
1112 T3e = T38 + T3d; | |
1113 T3i = T3d - T38; | |
1114 { | |
1115 E T2T, T37, T3f, T3h; | |
1116 T2T = W[0]; | |
1117 T37 = W[1]; | |
1118 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T2T, T36, T37 * T3e); | |
1119 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T37, T36, T2T * T3e); | |
1120 T3f = W[8]; | |
1121 T3h = W[9]; | |
1122 rio[WS(vs, 5) + WS(rs, 3)] = FMA(T3f, T3g, T3h * T3i); | |
1123 iio[WS(vs, 5) + WS(rs, 3)] = FNMS(T3h, T3g, T3f * T3i); | |
1124 } | |
1125 } | |
1126 { | |
1127 E T2y, T2G, T2E, T2I, T2u, T2C; | |
1128 T2u = FNMS(KP500000000, T1Y, T1R); | |
1129 T2y = T2u - T2x; | |
1130 T2G = T2u + T2x; | |
1131 T2C = FNMS(KP500000000, T2B, T2A); | |
1132 T2E = T2C - T2D; | |
1133 T2I = T2D + T2C; | |
1134 { | |
1135 E T2t, T2z, T2F, T2H; | |
1136 T2t = W[2]; | |
1137 T2z = W[3]; | |
1138 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T2t, T2y, T2z * T2E); | |
1139 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T2z, T2y, T2t * T2E); | |
1140 T2F = W[6]; | |
1141 T2H = W[7]; | |
1142 rio[WS(vs, 4) + WS(rs, 2)] = FMA(T2F, T2G, T2H * T2I); | |
1143 iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T2H, T2G, T2F * T2I); | |
1144 } | |
1145 } | |
1146 { | |
1147 E T3s, T3A, T3y, T3C, T3o, T3w; | |
1148 T3o = FNMS(KP500000000, T2S, T2L); | |
1149 T3s = T3o - T3r; | |
1150 T3A = T3o + T3r; | |
1151 T3w = FNMS(KP500000000, T3v, T3u); | |
1152 T3y = T3w - T3x; | |
1153 T3C = T3x + T3w; | |
1154 { | |
1155 E T3n, T3t, T3z, T3B; | |
1156 T3n = W[2]; | |
1157 T3t = W[3]; | |
1158 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T3n, T3s, T3t * T3y); | |
1159 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T3t, T3s, T3n * T3y); | |
1160 T3z = W[6]; | |
1161 T3B = W[7]; | |
1162 rio[WS(vs, 4) + WS(rs, 3)] = FMA(T3z, T3A, T3B * T3C); | |
1163 iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T3B, T3A, T3z * T3C); | |
1164 } | |
1165 } | |
1166 { | |
1167 E T1E, T1M, T1K, T1O, T1A, T1I; | |
1168 T1A = FNMS(KP500000000, T14, TX); | |
1169 T1E = T1A - T1D; | |
1170 T1M = T1A + T1D; | |
1171 T1I = FNMS(KP500000000, T1H, T1G); | |
1172 T1K = T1I - T1J; | |
1173 T1O = T1J + T1I; | |
1174 { | |
1175 E T1z, T1F, T1L, T1N; | |
1176 T1z = W[2]; | |
1177 T1F = W[3]; | |
1178 rio[WS(vs, 2) + WS(rs, 1)] = FMA(T1z, T1E, T1F * T1K); | |
1179 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T1F, T1E, T1z * T1K); | |
1180 T1L = W[6]; | |
1181 T1N = W[7]; | |
1182 rio[WS(vs, 4) + WS(rs, 1)] = FMA(T1L, T1M, T1N * T1O); | |
1183 iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T1N, T1M, T1L * T1O); | |
1184 } | |
1185 } | |
1186 { | |
1187 E T4m, T4u, T4s, T4w, T4i, T4q; | |
1188 T4i = FNMS(KP500000000, T3M, T3F); | |
1189 T4m = T4i - T4l; | |
1190 T4u = T4i + T4l; | |
1191 T4q = FNMS(KP500000000, T4p, T4o); | |
1192 T4s = T4q - T4r; | |
1193 T4w = T4r + T4q; | |
1194 { | |
1195 E T4h, T4n, T4t, T4v; | |
1196 T4h = W[2]; | |
1197 T4n = W[3]; | |
1198 rio[WS(vs, 2) + WS(rs, 4)] = FMA(T4h, T4m, T4n * T4s); | |
1199 iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T4n, T4m, T4h * T4s); | |
1200 T4t = W[6]; | |
1201 T4v = W[7]; | |
1202 rio[WS(vs, 4) + WS(rs, 4)] = FMA(T4t, T4u, T4v * T4w); | |
1203 iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T4v, T4u, T4t * T4w); | |
1204 } | |
1205 } | |
1206 { | |
1207 E TK, TS, TQ, TU, TG, TO; | |
1208 TG = FNMS(KP500000000, Ta, T3); | |
1209 TK = TG - TJ; | |
1210 TS = TG + TJ; | |
1211 TO = FNMS(KP500000000, TN, TM); | |
1212 TQ = TO - TP; | |
1213 TU = TP + TO; | |
1214 { | |
1215 E TF, TL, TR, TT; | |
1216 TF = W[2]; | |
1217 TL = W[3]; | |
1218 rio[WS(vs, 2)] = FMA(TF, TK, TL * TQ); | |
1219 iio[WS(vs, 2)] = FNMS(TL, TK, TF * TQ); | |
1220 TR = W[6]; | |
1221 TT = W[7]; | |
1222 rio[WS(vs, 4)] = FMA(TR, TS, TT * TU); | |
1223 iio[WS(vs, 4)] = FNMS(TT, TS, TR * TU); | |
1224 } | |
1225 } | |
1226 { | |
1227 E T2c, T2m, T2k, T2o, T24, T2j; | |
1228 T24 = FNMS(KP500000000, T23, T20); | |
1229 T2c = T24 + T2b; | |
1230 T2m = T24 - T2b; | |
1231 T2j = FNMS(KP500000000, T2i, T2h); | |
1232 T2k = T2e + T2j; | |
1233 T2o = T2j - T2e; | |
1234 { | |
1235 E T1Z, T2d, T2l, T2n; | |
1236 T1Z = W[0]; | |
1237 T2d = W[1]; | |
1238 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1Z, T2c, T2d * T2k); | |
1239 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T2d, T2c, T1Z * T2k); | |
1240 T2l = W[8]; | |
1241 T2n = W[9]; | |
1242 rio[WS(vs, 5) + WS(rs, 2)] = FMA(T2l, T2m, T2n * T2o); | |
1243 iio[WS(vs, 5) + WS(rs, 2)] = FNMS(T2n, T2m, T2l * T2o); | |
1244 } | |
1245 } | |
1246 { | |
1247 E T40, T4a, T48, T4c, T3S, T47; | |
1248 T3S = FNMS(KP500000000, T3R, T3O); | |
1249 T40 = T3S + T3Z; | |
1250 T4a = T3S - T3Z; | |
1251 T47 = FNMS(KP500000000, T46, T45); | |
1252 T48 = T42 + T47; | |
1253 T4c = T47 - T42; | |
1254 { | |
1255 E T3N, T41, T49, T4b; | |
1256 T3N = W[0]; | |
1257 T41 = W[1]; | |
1258 rio[WS(vs, 1) + WS(rs, 4)] = FMA(T3N, T40, T41 * T48); | |
1259 iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T41, T40, T3N * T48); | |
1260 T49 = W[8]; | |
1261 T4b = W[9]; | |
1262 rio[WS(vs, 5) + WS(rs, 4)] = FMA(T49, T4a, T4b * T4c); | |
1263 iio[WS(vs, 5) + WS(rs, 4)] = FNMS(T4b, T4a, T49 * T4c); | |
1264 } | |
1265 } | |
1266 { | |
1267 E T1i, T1s, T1q, T1u, T1a, T1p; | |
1268 T1a = FNMS(KP500000000, T19, T16); | |
1269 T1i = T1a + T1h; | |
1270 T1s = T1a - T1h; | |
1271 T1p = FNMS(KP500000000, T1o, T1n); | |
1272 T1q = T1k + T1p; | |
1273 T1u = T1p - T1k; | |
1274 { | |
1275 E T15, T1j, T1r, T1t; | |
1276 T15 = W[0]; | |
1277 T1j = W[1]; | |
1278 rio[WS(vs, 1) + WS(rs, 1)] = FMA(T15, T1i, T1j * T1q); | |
1279 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T1j, T1i, T15 * T1q); | |
1280 T1r = W[8]; | |
1281 T1t = W[9]; | |
1282 rio[WS(vs, 5) + WS(rs, 1)] = FMA(T1r, T1s, T1t * T1u); | |
1283 iio[WS(vs, 5) + WS(rs, 1)] = FNMS(T1t, T1s, T1r * T1u); | |
1284 } | |
1285 } | |
1286 { | |
1287 E T4U, T54, T52, T56, T4M, T51; | |
1288 T4M = FNMS(KP500000000, T4L, T4I); | |
1289 T4U = T4M + T4T; | |
1290 T54 = T4M - T4T; | |
1291 T51 = FNMS(KP500000000, T50, T4Z); | |
1292 T52 = T4W + T51; | |
1293 T56 = T51 - T4W; | |
1294 { | |
1295 E T4H, T4V, T53, T55; | |
1296 T4H = W[0]; | |
1297 T4V = W[1]; | |
1298 rio[WS(vs, 1) + WS(rs, 5)] = FMA(T4H, T4U, T4V * T52); | |
1299 iio[WS(vs, 1) + WS(rs, 5)] = FNMS(T4V, T4U, T4H * T52); | |
1300 T53 = W[8]; | |
1301 T55 = W[9]; | |
1302 rio[WS(vs, 5) + WS(rs, 5)] = FMA(T53, T54, T55 * T56); | |
1303 iio[WS(vs, 5) + WS(rs, 5)] = FNMS(T55, T54, T53 * T56); | |
1304 } | |
1305 } | |
1306 } | |
1307 } | |
1308 } | |
1309 | |
1310 static const tw_instr twinstr[] = { | |
1311 {TW_FULL, 0, 6}, | |
1312 {TW_NEXT, 1, 0} | |
1313 }; | |
1314 | |
1315 static const ct_desc desc = { 6, "q1_6", twinstr, &GENUS, {192, 84, 84, 0}, 0, 0, 0 }; | |
1316 | |
1317 void X(codelet_q1_6) (planner *p) { | |
1318 X(kdft_difsq_register) (p, q1_6, &desc); | |
1319 } | |
1320 #endif |