comparison src/fftw-3.3.8/dft/scalar/codelets/q1_6.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:04:31 EDT 2018 */
23
24 #include "dft/codelet-dft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 6 -name q1_6 -include dft/scalar/q.h */
29
30 /*
31 * This function contains 276 FP additions, 192 FP multiplications,
32 * (or, 144 additions, 60 multiplications, 132 fused multiply/add),
33 * 109 stack variables, 2 constants, and 144 memory accesses
34 */
35 #include "dft/scalar/q.h"
36
37 static void q1_6(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
38 {
39 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
40 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
41 {
42 INT m;
43 for (m = mb, W = W + (mb * 10); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 10, MAKE_VOLATILE_STRIDE(12, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
44 E T3, Tc, Tw, TW, Ta, TM, Tf, Tg, Tt, TT, Tn, TP, Tu, Tv, TU;
45 E TV, T17, T1g, T1A, T20, T1e, T1Q, T1j, T1k, T1x, T1X, T1r, T1T, T1y, T1z;
46 E T1Y, T1Z, T2B, T31, T2v, T2X, T2C, T2D, T32, T33, T2b, T2k, T2E, T34, T2i;
47 E T2U, T2n, T2o, T3f, T3o, T3I, T48, T3m, T3Y, T3r, T3s, T3F, T45, T3z, T41;
48 E T3G, T3H, T46, T47, T4j, T4s, T4M, T5c, T4q, T52, T4v, T4w, T4J, T59, T4D;
49 E T55, T4K, T4L, T5a, T5b, T5N, T6d, T5H, T69, T5O, T5P, T6e, T6f, T5n, T5w;
50 E T5Q, T6g, T5u, T66, T5z, T5A;
51 {
52 E T9, Te, T6, Td, T1, T2;
53 T1 = rio[0];
54 T2 = rio[WS(rs, 3)];
55 T3 = T1 + T2;
56 Tc = T1 - T2;
57 {
58 E T7, T8, T4, T5;
59 T7 = rio[WS(rs, 4)];
60 T8 = rio[WS(rs, 1)];
61 T9 = T7 + T8;
62 Te = T7 - T8;
63 T4 = rio[WS(rs, 2)];
64 T5 = rio[WS(rs, 5)];
65 T6 = T4 + T5;
66 Td = T4 - T5;
67 }
68 Tw = Te - Td;
69 TW = T9 - T6;
70 Ta = T6 + T9;
71 TM = FNMS(KP500000000, Ta, T3);
72 Tf = Td + Te;
73 Tg = FNMS(KP500000000, Tf, Tc);
74 }
75 {
76 E Tj, TN, Tm, TO, Th, Ti;
77 Th = iio[WS(rs, 2)];
78 Ti = iio[WS(rs, 5)];
79 Tj = Th - Ti;
80 TN = Th + Ti;
81 {
82 E Tr, Ts, Tk, Tl;
83 Tr = iio[0];
84 Ts = iio[WS(rs, 3)];
85 Tt = Tr - Ts;
86 TT = Tr + Ts;
87 Tk = iio[WS(rs, 4)];
88 Tl = iio[WS(rs, 1)];
89 Tm = Tk - Tl;
90 TO = Tk + Tl;
91 }
92 Tn = Tj - Tm;
93 TP = TN - TO;
94 Tu = Tj + Tm;
95 Tv = FNMS(KP500000000, Tu, Tt);
96 TU = TN + TO;
97 TV = FNMS(KP500000000, TU, TT);
98 }
99 {
100 E T1d, T1i, T1a, T1h, T15, T16;
101 T15 = rio[WS(vs, 1)];
102 T16 = rio[WS(vs, 1) + WS(rs, 3)];
103 T17 = T15 + T16;
104 T1g = T15 - T16;
105 {
106 E T1b, T1c, T18, T19;
107 T1b = rio[WS(vs, 1) + WS(rs, 4)];
108 T1c = rio[WS(vs, 1) + WS(rs, 1)];
109 T1d = T1b + T1c;
110 T1i = T1b - T1c;
111 T18 = rio[WS(vs, 1) + WS(rs, 2)];
112 T19 = rio[WS(vs, 1) + WS(rs, 5)];
113 T1a = T18 + T19;
114 T1h = T18 - T19;
115 }
116 T1A = T1i - T1h;
117 T20 = T1d - T1a;
118 T1e = T1a + T1d;
119 T1Q = FNMS(KP500000000, T1e, T17);
120 T1j = T1h + T1i;
121 T1k = FNMS(KP500000000, T1j, T1g);
122 }
123 {
124 E T1n, T1R, T1q, T1S, T1l, T1m;
125 T1l = iio[WS(vs, 1) + WS(rs, 2)];
126 T1m = iio[WS(vs, 1) + WS(rs, 5)];
127 T1n = T1l - T1m;
128 T1R = T1l + T1m;
129 {
130 E T1v, T1w, T1o, T1p;
131 T1v = iio[WS(vs, 1)];
132 T1w = iio[WS(vs, 1) + WS(rs, 3)];
133 T1x = T1v - T1w;
134 T1X = T1v + T1w;
135 T1o = iio[WS(vs, 1) + WS(rs, 4)];
136 T1p = iio[WS(vs, 1) + WS(rs, 1)];
137 T1q = T1o - T1p;
138 T1S = T1o + T1p;
139 }
140 T1r = T1n - T1q;
141 T1T = T1R - T1S;
142 T1y = T1n + T1q;
143 T1z = FNMS(KP500000000, T1y, T1x);
144 T1Y = T1R + T1S;
145 T1Z = FNMS(KP500000000, T1Y, T1X);
146 }
147 {
148 E T2r, T2V, T2u, T2W, T2p, T2q;
149 T2p = iio[WS(vs, 2) + WS(rs, 2)];
150 T2q = iio[WS(vs, 2) + WS(rs, 5)];
151 T2r = T2p - T2q;
152 T2V = T2p + T2q;
153 {
154 E T2z, T2A, T2s, T2t;
155 T2z = iio[WS(vs, 2)];
156 T2A = iio[WS(vs, 2) + WS(rs, 3)];
157 T2B = T2z - T2A;
158 T31 = T2z + T2A;
159 T2s = iio[WS(vs, 2) + WS(rs, 4)];
160 T2t = iio[WS(vs, 2) + WS(rs, 1)];
161 T2u = T2s - T2t;
162 T2W = T2s + T2t;
163 }
164 T2v = T2r - T2u;
165 T2X = T2V - T2W;
166 T2C = T2r + T2u;
167 T2D = FNMS(KP500000000, T2C, T2B);
168 T32 = T2V + T2W;
169 T33 = FNMS(KP500000000, T32, T31);
170 }
171 {
172 E T2h, T2m, T2e, T2l, T29, T2a;
173 T29 = rio[WS(vs, 2)];
174 T2a = rio[WS(vs, 2) + WS(rs, 3)];
175 T2b = T29 + T2a;
176 T2k = T29 - T2a;
177 {
178 E T2f, T2g, T2c, T2d;
179 T2f = rio[WS(vs, 2) + WS(rs, 4)];
180 T2g = rio[WS(vs, 2) + WS(rs, 1)];
181 T2h = T2f + T2g;
182 T2m = T2f - T2g;
183 T2c = rio[WS(vs, 2) + WS(rs, 2)];
184 T2d = rio[WS(vs, 2) + WS(rs, 5)];
185 T2e = T2c + T2d;
186 T2l = T2c - T2d;
187 }
188 T2E = T2m - T2l;
189 T34 = T2h - T2e;
190 T2i = T2e + T2h;
191 T2U = FNMS(KP500000000, T2i, T2b);
192 T2n = T2l + T2m;
193 T2o = FNMS(KP500000000, T2n, T2k);
194 }
195 {
196 E T3l, T3q, T3i, T3p, T3d, T3e;
197 T3d = rio[WS(vs, 3)];
198 T3e = rio[WS(vs, 3) + WS(rs, 3)];
199 T3f = T3d + T3e;
200 T3o = T3d - T3e;
201 {
202 E T3j, T3k, T3g, T3h;
203 T3j = rio[WS(vs, 3) + WS(rs, 4)];
204 T3k = rio[WS(vs, 3) + WS(rs, 1)];
205 T3l = T3j + T3k;
206 T3q = T3j - T3k;
207 T3g = rio[WS(vs, 3) + WS(rs, 2)];
208 T3h = rio[WS(vs, 3) + WS(rs, 5)];
209 T3i = T3g + T3h;
210 T3p = T3g - T3h;
211 }
212 T3I = T3q - T3p;
213 T48 = T3l - T3i;
214 T3m = T3i + T3l;
215 T3Y = FNMS(KP500000000, T3m, T3f);
216 T3r = T3p + T3q;
217 T3s = FNMS(KP500000000, T3r, T3o);
218 }
219 {
220 E T3v, T3Z, T3y, T40, T3t, T3u;
221 T3t = iio[WS(vs, 3) + WS(rs, 2)];
222 T3u = iio[WS(vs, 3) + WS(rs, 5)];
223 T3v = T3t - T3u;
224 T3Z = T3t + T3u;
225 {
226 E T3D, T3E, T3w, T3x;
227 T3D = iio[WS(vs, 3)];
228 T3E = iio[WS(vs, 3) + WS(rs, 3)];
229 T3F = T3D - T3E;
230 T45 = T3D + T3E;
231 T3w = iio[WS(vs, 3) + WS(rs, 4)];
232 T3x = iio[WS(vs, 3) + WS(rs, 1)];
233 T3y = T3w - T3x;
234 T40 = T3w + T3x;
235 }
236 T3z = T3v - T3y;
237 T41 = T3Z - T40;
238 T3G = T3v + T3y;
239 T3H = FNMS(KP500000000, T3G, T3F);
240 T46 = T3Z + T40;
241 T47 = FNMS(KP500000000, T46, T45);
242 }
243 {
244 E T4p, T4u, T4m, T4t, T4h, T4i;
245 T4h = rio[WS(vs, 4)];
246 T4i = rio[WS(vs, 4) + WS(rs, 3)];
247 T4j = T4h + T4i;
248 T4s = T4h - T4i;
249 {
250 E T4n, T4o, T4k, T4l;
251 T4n = rio[WS(vs, 4) + WS(rs, 4)];
252 T4o = rio[WS(vs, 4) + WS(rs, 1)];
253 T4p = T4n + T4o;
254 T4u = T4n - T4o;
255 T4k = rio[WS(vs, 4) + WS(rs, 2)];
256 T4l = rio[WS(vs, 4) + WS(rs, 5)];
257 T4m = T4k + T4l;
258 T4t = T4k - T4l;
259 }
260 T4M = T4u - T4t;
261 T5c = T4p - T4m;
262 T4q = T4m + T4p;
263 T52 = FNMS(KP500000000, T4q, T4j);
264 T4v = T4t + T4u;
265 T4w = FNMS(KP500000000, T4v, T4s);
266 }
267 {
268 E T4z, T53, T4C, T54, T4x, T4y;
269 T4x = iio[WS(vs, 4) + WS(rs, 2)];
270 T4y = iio[WS(vs, 4) + WS(rs, 5)];
271 T4z = T4x - T4y;
272 T53 = T4x + T4y;
273 {
274 E T4H, T4I, T4A, T4B;
275 T4H = iio[WS(vs, 4)];
276 T4I = iio[WS(vs, 4) + WS(rs, 3)];
277 T4J = T4H - T4I;
278 T59 = T4H + T4I;
279 T4A = iio[WS(vs, 4) + WS(rs, 4)];
280 T4B = iio[WS(vs, 4) + WS(rs, 1)];
281 T4C = T4A - T4B;
282 T54 = T4A + T4B;
283 }
284 T4D = T4z - T4C;
285 T55 = T53 - T54;
286 T4K = T4z + T4C;
287 T4L = FNMS(KP500000000, T4K, T4J);
288 T5a = T53 + T54;
289 T5b = FNMS(KP500000000, T5a, T59);
290 }
291 {
292 E T5D, T67, T5G, T68, T5B, T5C;
293 T5B = iio[WS(vs, 5) + WS(rs, 2)];
294 T5C = iio[WS(vs, 5) + WS(rs, 5)];
295 T5D = T5B - T5C;
296 T67 = T5B + T5C;
297 {
298 E T5L, T5M, T5E, T5F;
299 T5L = iio[WS(vs, 5)];
300 T5M = iio[WS(vs, 5) + WS(rs, 3)];
301 T5N = T5L - T5M;
302 T6d = T5L + T5M;
303 T5E = iio[WS(vs, 5) + WS(rs, 4)];
304 T5F = iio[WS(vs, 5) + WS(rs, 1)];
305 T5G = T5E - T5F;
306 T68 = T5E + T5F;
307 }
308 T5H = T5D - T5G;
309 T69 = T67 - T68;
310 T5O = T5D + T5G;
311 T5P = FNMS(KP500000000, T5O, T5N);
312 T6e = T67 + T68;
313 T6f = FNMS(KP500000000, T6e, T6d);
314 }
315 {
316 E T5t, T5y, T5q, T5x, T5l, T5m;
317 T5l = rio[WS(vs, 5)];
318 T5m = rio[WS(vs, 5) + WS(rs, 3)];
319 T5n = T5l + T5m;
320 T5w = T5l - T5m;
321 {
322 E T5r, T5s, T5o, T5p;
323 T5r = rio[WS(vs, 5) + WS(rs, 4)];
324 T5s = rio[WS(vs, 5) + WS(rs, 1)];
325 T5t = T5r + T5s;
326 T5y = T5r - T5s;
327 T5o = rio[WS(vs, 5) + WS(rs, 2)];
328 T5p = rio[WS(vs, 5) + WS(rs, 5)];
329 T5q = T5o + T5p;
330 T5x = T5o - T5p;
331 }
332 T5Q = T5y - T5x;
333 T6g = T5t - T5q;
334 T5u = T5q + T5t;
335 T66 = FNMS(KP500000000, T5u, T5n);
336 T5z = T5x + T5y;
337 T5A = FNMS(KP500000000, T5z, T5w);
338 }
339 rio[0] = T3 + Ta;
340 iio[0] = TT + TU;
341 rio[WS(rs, 1)] = T17 + T1e;
342 iio[WS(rs, 1)] = T1X + T1Y;
343 rio[WS(rs, 2)] = T2b + T2i;
344 iio[WS(rs, 2)] = T31 + T32;
345 iio[WS(rs, 4)] = T59 + T5a;
346 rio[WS(rs, 4)] = T4j + T4q;
347 rio[WS(rs, 3)] = T3f + T3m;
348 iio[WS(rs, 3)] = T45 + T46;
349 rio[WS(rs, 5)] = T5n + T5u;
350 iio[WS(rs, 5)] = T6d + T6e;
351 {
352 E To, Tx, Tp, Ty, Tb, Tq;
353 To = FMA(KP866025403, Tn, Tg);
354 Tx = FMA(KP866025403, Tw, Tv);
355 Tb = W[0];
356 Tp = Tb * To;
357 Ty = Tb * Tx;
358 Tq = W[1];
359 rio[WS(vs, 1)] = FMA(Tq, Tx, Tp);
360 iio[WS(vs, 1)] = FNMS(Tq, To, Ty);
361 }
362 {
363 E TG, TJ, TH, TK, TF, TI;
364 TG = Tc + Tf;
365 TJ = Tt + Tu;
366 TF = W[4];
367 TH = TF * TG;
368 TK = TF * TJ;
369 TI = W[5];
370 rio[WS(vs, 3)] = FMA(TI, TJ, TH);
371 iio[WS(vs, 3)] = FNMS(TI, TG, TK);
372 }
373 {
374 E T10, T13, T11, T14, TZ, T12;
375 T10 = FMA(KP866025403, TP, TM);
376 T13 = FMA(KP866025403, TW, TV);
377 TZ = W[6];
378 T11 = TZ * T10;
379 T14 = TZ * T13;
380 T12 = W[7];
381 rio[WS(vs, 4)] = FMA(T12, T13, T11);
382 iio[WS(vs, 4)] = FNMS(T12, T10, T14);
383 }
384 {
385 E T60, T63, T61, T64, T5Z, T62;
386 T60 = T5w + T5z;
387 T63 = T5N + T5O;
388 T5Z = W[4];
389 T61 = T5Z * T60;
390 T64 = T5Z * T63;
391 T62 = W[5];
392 rio[WS(vs, 3) + WS(rs, 5)] = FMA(T62, T63, T61);
393 iio[WS(vs, 3) + WS(rs, 5)] = FNMS(T62, T60, T64);
394 }
395 {
396 E T6k, T6n, T6l, T6o, T6j, T6m;
397 T6k = FMA(KP866025403, T69, T66);
398 T6n = FMA(KP866025403, T6g, T6f);
399 T6j = W[6];
400 T6l = T6j * T6k;
401 T6o = T6j * T6n;
402 T6m = W[7];
403 rio[WS(vs, 4) + WS(rs, 5)] = FMA(T6m, T6n, T6l);
404 iio[WS(vs, 4) + WS(rs, 5)] = FNMS(T6m, T6k, T6o);
405 }
406 {
407 E TA, TD, TB, TE, Tz, TC;
408 TA = FNMS(KP866025403, Tn, Tg);
409 TD = FNMS(KP866025403, Tw, Tv);
410 Tz = W[8];
411 TB = Tz * TA;
412 TE = Tz * TD;
413 TC = W[9];
414 rio[WS(vs, 5)] = FMA(TC, TD, TB);
415 iio[WS(vs, 5)] = FNMS(TC, TA, TE);
416 }
417 {
418 E TQ, TX, TR, TY, TL, TS;
419 TQ = FNMS(KP866025403, TP, TM);
420 TX = FNMS(KP866025403, TW, TV);
421 TL = W[2];
422 TR = TL * TQ;
423 TY = TL * TX;
424 TS = W[3];
425 rio[WS(vs, 2)] = FMA(TS, TX, TR);
426 iio[WS(vs, 2)] = FNMS(TS, TQ, TY);
427 }
428 {
429 E T5U, T5X, T5V, T5Y, T5T, T5W;
430 T5U = FNMS(KP866025403, T5H, T5A);
431 T5X = FNMS(KP866025403, T5Q, T5P);
432 T5T = W[8];
433 T5V = T5T * T5U;
434 T5Y = T5T * T5X;
435 T5W = W[9];
436 rio[WS(vs, 5) + WS(rs, 5)] = FMA(T5W, T5X, T5V);
437 iio[WS(vs, 5) + WS(rs, 5)] = FNMS(T5W, T5U, T5Y);
438 }
439 {
440 E T6a, T6h, T6b, T6i, T65, T6c;
441 T6a = FNMS(KP866025403, T69, T66);
442 T6h = FNMS(KP866025403, T6g, T6f);
443 T65 = W[2];
444 T6b = T65 * T6a;
445 T6i = T65 * T6h;
446 T6c = W[3];
447 rio[WS(vs, 2) + WS(rs, 5)] = FMA(T6c, T6h, T6b);
448 iio[WS(vs, 2) + WS(rs, 5)] = FNMS(T6c, T6a, T6i);
449 }
450 {
451 E T5I, T5R, T5J, T5S, T5v, T5K;
452 T5I = FMA(KP866025403, T5H, T5A);
453 T5R = FMA(KP866025403, T5Q, T5P);
454 T5v = W[0];
455 T5J = T5v * T5I;
456 T5S = T5v * T5R;
457 T5K = W[1];
458 rio[WS(vs, 1) + WS(rs, 5)] = FMA(T5K, T5R, T5J);
459 iio[WS(vs, 1) + WS(rs, 5)] = FNMS(T5K, T5I, T5S);
460 }
461 {
462 E T1s, T1B, T1t, T1C, T1f, T1u;
463 T1s = FMA(KP866025403, T1r, T1k);
464 T1B = FMA(KP866025403, T1A, T1z);
465 T1f = W[0];
466 T1t = T1f * T1s;
467 T1C = T1f * T1B;
468 T1u = W[1];
469 rio[WS(vs, 1) + WS(rs, 1)] = FMA(T1u, T1B, T1t);
470 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T1u, T1s, T1C);
471 }
472 {
473 E T3S, T3V, T3T, T3W, T3R, T3U;
474 T3S = T3o + T3r;
475 T3V = T3F + T3G;
476 T3R = W[4];
477 T3T = T3R * T3S;
478 T3W = T3R * T3V;
479 T3U = W[5];
480 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T3U, T3V, T3T);
481 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T3U, T3S, T3W);
482 }
483 {
484 E T3A, T3J, T3B, T3K, T3n, T3C;
485 T3A = FMA(KP866025403, T3z, T3s);
486 T3J = FMA(KP866025403, T3I, T3H);
487 T3n = W[0];
488 T3B = T3n * T3A;
489 T3K = T3n * T3J;
490 T3C = W[1];
491 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T3C, T3J, T3B);
492 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T3C, T3A, T3K);
493 }
494 {
495 E T56, T5d, T57, T5e, T51, T58;
496 T56 = FNMS(KP866025403, T55, T52);
497 T5d = FNMS(KP866025403, T5c, T5b);
498 T51 = W[2];
499 T57 = T51 * T56;
500 T5e = T51 * T5d;
501 T58 = W[3];
502 rio[WS(vs, 2) + WS(rs, 4)] = FMA(T58, T5d, T57);
503 iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T58, T56, T5e);
504 }
505 {
506 E T2Y, T35, T2Z, T36, T2T, T30;
507 T2Y = FNMS(KP866025403, T2X, T2U);
508 T35 = FNMS(KP866025403, T34, T33);
509 T2T = W[2];
510 T2Z = T2T * T2Y;
511 T36 = T2T * T35;
512 T30 = W[3];
513 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T30, T35, T2Z);
514 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T30, T2Y, T36);
515 }
516 {
517 E T3M, T3P, T3N, T3Q, T3L, T3O;
518 T3M = FNMS(KP866025403, T3z, T3s);
519 T3P = FNMS(KP866025403, T3I, T3H);
520 T3L = W[8];
521 T3N = T3L * T3M;
522 T3Q = T3L * T3P;
523 T3O = W[9];
524 rio[WS(vs, 5) + WS(rs, 3)] = FMA(T3O, T3P, T3N);
525 iio[WS(vs, 5) + WS(rs, 3)] = FNMS(T3O, T3M, T3Q);
526 }
527 {
528 E T38, T3b, T39, T3c, T37, T3a;
529 T38 = FMA(KP866025403, T2X, T2U);
530 T3b = FMA(KP866025403, T34, T33);
531 T37 = W[6];
532 T39 = T37 * T38;
533 T3c = T37 * T3b;
534 T3a = W[7];
535 rio[WS(vs, 4) + WS(rs, 2)] = FMA(T3a, T3b, T39);
536 iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T3a, T38, T3c);
537 }
538 {
539 E T1E, T1H, T1F, T1I, T1D, T1G;
540 T1E = FNMS(KP866025403, T1r, T1k);
541 T1H = FNMS(KP866025403, T1A, T1z);
542 T1D = W[8];
543 T1F = T1D * T1E;
544 T1I = T1D * T1H;
545 T1G = W[9];
546 rio[WS(vs, 5) + WS(rs, 1)] = FMA(T1G, T1H, T1F);
547 iio[WS(vs, 5) + WS(rs, 1)] = FNMS(T1G, T1E, T1I);
548 }
549 {
550 E T5g, T5j, T5h, T5k, T5f, T5i;
551 T5g = FMA(KP866025403, T55, T52);
552 T5j = FMA(KP866025403, T5c, T5b);
553 T5f = W[6];
554 T5h = T5f * T5g;
555 T5k = T5f * T5j;
556 T5i = W[7];
557 rio[WS(vs, 4) + WS(rs, 4)] = FMA(T5i, T5j, T5h);
558 iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T5i, T5g, T5k);
559 }
560 {
561 E T1K, T1N, T1L, T1O, T1J, T1M;
562 T1K = T1g + T1j;
563 T1N = T1x + T1y;
564 T1J = W[4];
565 T1L = T1J * T1K;
566 T1O = T1J * T1N;
567 T1M = W[5];
568 rio[WS(vs, 3) + WS(rs, 1)] = FMA(T1M, T1N, T1L);
569 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T1M, T1K, T1O);
570 }
571 {
572 E T4W, T4Z, T4X, T50, T4V, T4Y;
573 T4W = T4s + T4v;
574 T4Z = T4J + T4K;
575 T4V = W[4];
576 T4X = T4V * T4W;
577 T50 = T4V * T4Z;
578 T4Y = W[5];
579 rio[WS(vs, 3) + WS(rs, 4)] = FMA(T4Y, T4Z, T4X);
580 iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T4Y, T4W, T50);
581 }
582 {
583 E T4E, T4N, T4F, T4O, T4r, T4G;
584 T4E = FMA(KP866025403, T4D, T4w);
585 T4N = FMA(KP866025403, T4M, T4L);
586 T4r = W[0];
587 T4F = T4r * T4E;
588 T4O = T4r * T4N;
589 T4G = W[1];
590 rio[WS(vs, 1) + WS(rs, 4)] = FMA(T4G, T4N, T4F);
591 iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T4G, T4E, T4O);
592 }
593 {
594 E T2O, T2R, T2P, T2S, T2N, T2Q;
595 T2O = T2k + T2n;
596 T2R = T2B + T2C;
597 T2N = W[4];
598 T2P = T2N * T2O;
599 T2S = T2N * T2R;
600 T2Q = W[5];
601 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T2Q, T2R, T2P);
602 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T2Q, T2O, T2S);
603 }
604 {
605 E T2w, T2F, T2x, T2G, T2j, T2y;
606 T2w = FMA(KP866025403, T2v, T2o);
607 T2F = FMA(KP866025403, T2E, T2D);
608 T2j = W[0];
609 T2x = T2j * T2w;
610 T2G = T2j * T2F;
611 T2y = W[1];
612 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T2y, T2F, T2x);
613 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T2y, T2w, T2G);
614 }
615 {
616 E T24, T27, T25, T28, T23, T26;
617 T24 = FMA(KP866025403, T1T, T1Q);
618 T27 = FMA(KP866025403, T20, T1Z);
619 T23 = W[6];
620 T25 = T23 * T24;
621 T28 = T23 * T27;
622 T26 = W[7];
623 rio[WS(vs, 4) + WS(rs, 1)] = FMA(T26, T27, T25);
624 iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T26, T24, T28);
625 }
626 {
627 E T42, T49, T43, T4a, T3X, T44;
628 T42 = FNMS(KP866025403, T41, T3Y);
629 T49 = FNMS(KP866025403, T48, T47);
630 T3X = W[2];
631 T43 = T3X * T42;
632 T4a = T3X * T49;
633 T44 = W[3];
634 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T44, T49, T43);
635 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T44, T42, T4a);
636 }
637 {
638 E T2I, T2L, T2J, T2M, T2H, T2K;
639 T2I = FNMS(KP866025403, T2v, T2o);
640 T2L = FNMS(KP866025403, T2E, T2D);
641 T2H = W[8];
642 T2J = T2H * T2I;
643 T2M = T2H * T2L;
644 T2K = W[9];
645 rio[WS(vs, 5) + WS(rs, 2)] = FMA(T2K, T2L, T2J);
646 iio[WS(vs, 5) + WS(rs, 2)] = FNMS(T2K, T2I, T2M);
647 }
648 {
649 E T4Q, T4T, T4R, T4U, T4P, T4S;
650 T4Q = FNMS(KP866025403, T4D, T4w);
651 T4T = FNMS(KP866025403, T4M, T4L);
652 T4P = W[8];
653 T4R = T4P * T4Q;
654 T4U = T4P * T4T;
655 T4S = W[9];
656 rio[WS(vs, 5) + WS(rs, 4)] = FMA(T4S, T4T, T4R);
657 iio[WS(vs, 5) + WS(rs, 4)] = FNMS(T4S, T4Q, T4U);
658 }
659 {
660 E T1U, T21, T1V, T22, T1P, T1W;
661 T1U = FNMS(KP866025403, T1T, T1Q);
662 T21 = FNMS(KP866025403, T20, T1Z);
663 T1P = W[2];
664 T1V = T1P * T1U;
665 T22 = T1P * T21;
666 T1W = W[3];
667 rio[WS(vs, 2) + WS(rs, 1)] = FMA(T1W, T21, T1V);
668 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T1W, T1U, T22);
669 }
670 {
671 E T4c, T4f, T4d, T4g, T4b, T4e;
672 T4c = FMA(KP866025403, T41, T3Y);
673 T4f = FMA(KP866025403, T48, T47);
674 T4b = W[6];
675 T4d = T4b * T4c;
676 T4g = T4b * T4f;
677 T4e = W[7];
678 rio[WS(vs, 4) + WS(rs, 3)] = FMA(T4e, T4f, T4d);
679 iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T4e, T4c, T4g);
680 }
681 }
682 }
683 }
684
685 static const tw_instr twinstr[] = {
686 {TW_FULL, 0, 6},
687 {TW_NEXT, 1, 0}
688 };
689
690 static const ct_desc desc = { 6, "q1_6", twinstr, &GENUS, {144, 60, 132, 0}, 0, 0, 0 };
691
692 void X(codelet_q1_6) (planner *p) {
693 X(kdft_difsq_register) (p, q1_6, &desc);
694 }
695 #else
696
697 /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 6 -name q1_6 -include dft/scalar/q.h */
698
699 /*
700 * This function contains 276 FP additions, 168 FP multiplications,
701 * (or, 192 additions, 84 multiplications, 84 fused multiply/add),
702 * 85 stack variables, 2 constants, and 144 memory accesses
703 */
704 #include "dft/scalar/q.h"
705
706 static void q1_6(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
707 {
708 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
709 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
710 {
711 INT m;
712 for (m = mb, W = W + (mb * 10); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 10, MAKE_VOLATILE_STRIDE(12, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
713 E T3, Tc, Tt, TM, TX, T16, T1n, T1G, T2h, T2A, T1R, T20, T2L, T2U, T3b;
714 E T3u, T3F, T3O, T45, T4o, T4Z, T5i, T4z, T4I, Ta, TP, Tf, Tq, Tn, TN;
715 E Tu, TJ, T14, T1J, T19, T1k, T1h, T1H, T1o, T1D, T2b, T2B, T2i, T2x, T1Y;
716 E T2D, T23, T2e, T2S, T3x, T2X, T38, T35, T3v, T3c, T3r, T3M, T4r, T3R, T42;
717 E T3Z, T4p, T46, T4l, T4T, T5j, T50, T5f, T4G, T5l, T4L, T4W;
718 {
719 E T1, T2, T1l, T1m;
720 T1 = rio[0];
721 T2 = rio[WS(rs, 3)];
722 T3 = T1 + T2;
723 Tc = T1 - T2;
724 {
725 E Tr, Ts, TV, TW;
726 Tr = iio[0];
727 Ts = iio[WS(rs, 3)];
728 Tt = Tr - Ts;
729 TM = Tr + Ts;
730 TV = rio[WS(vs, 1)];
731 TW = rio[WS(vs, 1) + WS(rs, 3)];
732 TX = TV + TW;
733 T16 = TV - TW;
734 }
735 T1l = iio[WS(vs, 1)];
736 T1m = iio[WS(vs, 1) + WS(rs, 3)];
737 T1n = T1l - T1m;
738 T1G = T1l + T1m;
739 {
740 E T2f, T2g, T1P, T1Q;
741 T2f = iio[WS(vs, 2)];
742 T2g = iio[WS(vs, 2) + WS(rs, 3)];
743 T2h = T2f - T2g;
744 T2A = T2f + T2g;
745 T1P = rio[WS(vs, 2)];
746 T1Q = rio[WS(vs, 2) + WS(rs, 3)];
747 T1R = T1P + T1Q;
748 T20 = T1P - T1Q;
749 }
750 }
751 {
752 E T2J, T2K, T43, T44;
753 T2J = rio[WS(vs, 3)];
754 T2K = rio[WS(vs, 3) + WS(rs, 3)];
755 T2L = T2J + T2K;
756 T2U = T2J - T2K;
757 {
758 E T39, T3a, T3D, T3E;
759 T39 = iio[WS(vs, 3)];
760 T3a = iio[WS(vs, 3) + WS(rs, 3)];
761 T3b = T39 - T3a;
762 T3u = T39 + T3a;
763 T3D = rio[WS(vs, 4)];
764 T3E = rio[WS(vs, 4) + WS(rs, 3)];
765 T3F = T3D + T3E;
766 T3O = T3D - T3E;
767 }
768 T43 = iio[WS(vs, 4)];
769 T44 = iio[WS(vs, 4) + WS(rs, 3)];
770 T45 = T43 - T44;
771 T4o = T43 + T44;
772 {
773 E T4X, T4Y, T4x, T4y;
774 T4X = iio[WS(vs, 5)];
775 T4Y = iio[WS(vs, 5) + WS(rs, 3)];
776 T4Z = T4X - T4Y;
777 T5i = T4X + T4Y;
778 T4x = rio[WS(vs, 5)];
779 T4y = rio[WS(vs, 5) + WS(rs, 3)];
780 T4z = T4x + T4y;
781 T4I = T4x - T4y;
782 }
783 }
784 {
785 E T6, Td, T9, Te;
786 {
787 E T4, T5, T7, T8;
788 T4 = rio[WS(rs, 2)];
789 T5 = rio[WS(rs, 5)];
790 T6 = T4 + T5;
791 Td = T4 - T5;
792 T7 = rio[WS(rs, 4)];
793 T8 = rio[WS(rs, 1)];
794 T9 = T7 + T8;
795 Te = T7 - T8;
796 }
797 Ta = T6 + T9;
798 TP = KP866025403 * (T9 - T6);
799 Tf = Td + Te;
800 Tq = KP866025403 * (Te - Td);
801 }
802 {
803 E Tj, TH, Tm, TI;
804 {
805 E Th, Ti, Tk, Tl;
806 Th = iio[WS(rs, 2)];
807 Ti = iio[WS(rs, 5)];
808 Tj = Th - Ti;
809 TH = Th + Ti;
810 Tk = iio[WS(rs, 4)];
811 Tl = iio[WS(rs, 1)];
812 Tm = Tk - Tl;
813 TI = Tk + Tl;
814 }
815 Tn = KP866025403 * (Tj - Tm);
816 TN = TH + TI;
817 Tu = Tj + Tm;
818 TJ = KP866025403 * (TH - TI);
819 }
820 {
821 E T10, T17, T13, T18;
822 {
823 E TY, TZ, T11, T12;
824 TY = rio[WS(vs, 1) + WS(rs, 2)];
825 TZ = rio[WS(vs, 1) + WS(rs, 5)];
826 T10 = TY + TZ;
827 T17 = TY - TZ;
828 T11 = rio[WS(vs, 1) + WS(rs, 4)];
829 T12 = rio[WS(vs, 1) + WS(rs, 1)];
830 T13 = T11 + T12;
831 T18 = T11 - T12;
832 }
833 T14 = T10 + T13;
834 T1J = KP866025403 * (T13 - T10);
835 T19 = T17 + T18;
836 T1k = KP866025403 * (T18 - T17);
837 }
838 {
839 E T1d, T1B, T1g, T1C;
840 {
841 E T1b, T1c, T1e, T1f;
842 T1b = iio[WS(vs, 1) + WS(rs, 2)];
843 T1c = iio[WS(vs, 1) + WS(rs, 5)];
844 T1d = T1b - T1c;
845 T1B = T1b + T1c;
846 T1e = iio[WS(vs, 1) + WS(rs, 4)];
847 T1f = iio[WS(vs, 1) + WS(rs, 1)];
848 T1g = T1e - T1f;
849 T1C = T1e + T1f;
850 }
851 T1h = KP866025403 * (T1d - T1g);
852 T1H = T1B + T1C;
853 T1o = T1d + T1g;
854 T1D = KP866025403 * (T1B - T1C);
855 }
856 {
857 E T27, T2v, T2a, T2w;
858 {
859 E T25, T26, T28, T29;
860 T25 = iio[WS(vs, 2) + WS(rs, 2)];
861 T26 = iio[WS(vs, 2) + WS(rs, 5)];
862 T27 = T25 - T26;
863 T2v = T25 + T26;
864 T28 = iio[WS(vs, 2) + WS(rs, 4)];
865 T29 = iio[WS(vs, 2) + WS(rs, 1)];
866 T2a = T28 - T29;
867 T2w = T28 + T29;
868 }
869 T2b = KP866025403 * (T27 - T2a);
870 T2B = T2v + T2w;
871 T2i = T27 + T2a;
872 T2x = KP866025403 * (T2v - T2w);
873 }
874 {
875 E T1U, T21, T1X, T22;
876 {
877 E T1S, T1T, T1V, T1W;
878 T1S = rio[WS(vs, 2) + WS(rs, 2)];
879 T1T = rio[WS(vs, 2) + WS(rs, 5)];
880 T1U = T1S + T1T;
881 T21 = T1S - T1T;
882 T1V = rio[WS(vs, 2) + WS(rs, 4)];
883 T1W = rio[WS(vs, 2) + WS(rs, 1)];
884 T1X = T1V + T1W;
885 T22 = T1V - T1W;
886 }
887 T1Y = T1U + T1X;
888 T2D = KP866025403 * (T1X - T1U);
889 T23 = T21 + T22;
890 T2e = KP866025403 * (T22 - T21);
891 }
892 {
893 E T2O, T2V, T2R, T2W;
894 {
895 E T2M, T2N, T2P, T2Q;
896 T2M = rio[WS(vs, 3) + WS(rs, 2)];
897 T2N = rio[WS(vs, 3) + WS(rs, 5)];
898 T2O = T2M + T2N;
899 T2V = T2M - T2N;
900 T2P = rio[WS(vs, 3) + WS(rs, 4)];
901 T2Q = rio[WS(vs, 3) + WS(rs, 1)];
902 T2R = T2P + T2Q;
903 T2W = T2P - T2Q;
904 }
905 T2S = T2O + T2R;
906 T3x = KP866025403 * (T2R - T2O);
907 T2X = T2V + T2W;
908 T38 = KP866025403 * (T2W - T2V);
909 }
910 {
911 E T31, T3p, T34, T3q;
912 {
913 E T2Z, T30, T32, T33;
914 T2Z = iio[WS(vs, 3) + WS(rs, 2)];
915 T30 = iio[WS(vs, 3) + WS(rs, 5)];
916 T31 = T2Z - T30;
917 T3p = T2Z + T30;
918 T32 = iio[WS(vs, 3) + WS(rs, 4)];
919 T33 = iio[WS(vs, 3) + WS(rs, 1)];
920 T34 = T32 - T33;
921 T3q = T32 + T33;
922 }
923 T35 = KP866025403 * (T31 - T34);
924 T3v = T3p + T3q;
925 T3c = T31 + T34;
926 T3r = KP866025403 * (T3p - T3q);
927 }
928 {
929 E T3I, T3P, T3L, T3Q;
930 {
931 E T3G, T3H, T3J, T3K;
932 T3G = rio[WS(vs, 4) + WS(rs, 2)];
933 T3H = rio[WS(vs, 4) + WS(rs, 5)];
934 T3I = T3G + T3H;
935 T3P = T3G - T3H;
936 T3J = rio[WS(vs, 4) + WS(rs, 4)];
937 T3K = rio[WS(vs, 4) + WS(rs, 1)];
938 T3L = T3J + T3K;
939 T3Q = T3J - T3K;
940 }
941 T3M = T3I + T3L;
942 T4r = KP866025403 * (T3L - T3I);
943 T3R = T3P + T3Q;
944 T42 = KP866025403 * (T3Q - T3P);
945 }
946 {
947 E T3V, T4j, T3Y, T4k;
948 {
949 E T3T, T3U, T3W, T3X;
950 T3T = iio[WS(vs, 4) + WS(rs, 2)];
951 T3U = iio[WS(vs, 4) + WS(rs, 5)];
952 T3V = T3T - T3U;
953 T4j = T3T + T3U;
954 T3W = iio[WS(vs, 4) + WS(rs, 4)];
955 T3X = iio[WS(vs, 4) + WS(rs, 1)];
956 T3Y = T3W - T3X;
957 T4k = T3W + T3X;
958 }
959 T3Z = KP866025403 * (T3V - T3Y);
960 T4p = T4j + T4k;
961 T46 = T3V + T3Y;
962 T4l = KP866025403 * (T4j - T4k);
963 }
964 {
965 E T4P, T5d, T4S, T5e;
966 {
967 E T4N, T4O, T4Q, T4R;
968 T4N = iio[WS(vs, 5) + WS(rs, 2)];
969 T4O = iio[WS(vs, 5) + WS(rs, 5)];
970 T4P = T4N - T4O;
971 T5d = T4N + T4O;
972 T4Q = iio[WS(vs, 5) + WS(rs, 4)];
973 T4R = iio[WS(vs, 5) + WS(rs, 1)];
974 T4S = T4Q - T4R;
975 T5e = T4Q + T4R;
976 }
977 T4T = KP866025403 * (T4P - T4S);
978 T5j = T5d + T5e;
979 T50 = T4P + T4S;
980 T5f = KP866025403 * (T5d - T5e);
981 }
982 {
983 E T4C, T4J, T4F, T4K;
984 {
985 E T4A, T4B, T4D, T4E;
986 T4A = rio[WS(vs, 5) + WS(rs, 2)];
987 T4B = rio[WS(vs, 5) + WS(rs, 5)];
988 T4C = T4A + T4B;
989 T4J = T4A - T4B;
990 T4D = rio[WS(vs, 5) + WS(rs, 4)];
991 T4E = rio[WS(vs, 5) + WS(rs, 1)];
992 T4F = T4D + T4E;
993 T4K = T4D - T4E;
994 }
995 T4G = T4C + T4F;
996 T5l = KP866025403 * (T4F - T4C);
997 T4L = T4J + T4K;
998 T4W = KP866025403 * (T4K - T4J);
999 }
1000 rio[0] = T3 + Ta;
1001 iio[0] = TM + TN;
1002 rio[WS(rs, 1)] = TX + T14;
1003 iio[WS(rs, 1)] = T1G + T1H;
1004 rio[WS(rs, 3)] = T2L + T2S;
1005 rio[WS(rs, 2)] = T1R + T1Y;
1006 iio[WS(rs, 2)] = T2A + T2B;
1007 iio[WS(rs, 3)] = T3u + T3v;
1008 iio[WS(rs, 4)] = T4o + T4p;
1009 iio[WS(rs, 5)] = T5i + T5j;
1010 rio[WS(rs, 5)] = T4z + T4G;
1011 rio[WS(rs, 4)] = T3F + T3M;
1012 {
1013 E T1w, T1y, T1v, T1x;
1014 T1w = T16 + T19;
1015 T1y = T1n + T1o;
1016 T1v = W[4];
1017 T1x = W[5];
1018 rio[WS(vs, 3) + WS(rs, 1)] = FMA(T1v, T1w, T1x * T1y);
1019 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T1x, T1w, T1v * T1y);
1020 }
1021 {
1022 E T58, T5a, T57, T59;
1023 T58 = T4I + T4L;
1024 T5a = T4Z + T50;
1025 T57 = W[4];
1026 T59 = W[5];
1027 rio[WS(vs, 3) + WS(rs, 5)] = FMA(T57, T58, T59 * T5a);
1028 iio[WS(vs, 3) + WS(rs, 5)] = FNMS(T59, T58, T57 * T5a);
1029 }
1030 {
1031 E TC, TE, TB, TD;
1032 TC = Tc + Tf;
1033 TE = Tt + Tu;
1034 TB = W[4];
1035 TD = W[5];
1036 rio[WS(vs, 3)] = FMA(TB, TC, TD * TE);
1037 iio[WS(vs, 3)] = FNMS(TD, TC, TB * TE);
1038 }
1039 {
1040 E T4e, T4g, T4d, T4f;
1041 T4e = T3O + T3R;
1042 T4g = T45 + T46;
1043 T4d = W[4];
1044 T4f = W[5];
1045 rio[WS(vs, 3) + WS(rs, 4)] = FMA(T4d, T4e, T4f * T4g);
1046 iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T4f, T4e, T4d * T4g);
1047 }
1048 {
1049 E T3k, T3m, T3j, T3l;
1050 T3k = T2U + T2X;
1051 T3m = T3b + T3c;
1052 T3j = W[4];
1053 T3l = W[5];
1054 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T3j, T3k, T3l * T3m);
1055 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T3l, T3k, T3j * T3m);
1056 }
1057 {
1058 E T2q, T2s, T2p, T2r;
1059 T2q = T20 + T23;
1060 T2s = T2h + T2i;
1061 T2p = W[4];
1062 T2r = W[5];
1063 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T2p, T2q, T2r * T2s);
1064 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T2r, T2q, T2p * T2s);
1065 }
1066 {
1067 E T5g, T5o, T5m, T5q, T5c, T5k;
1068 T5c = FNMS(KP500000000, T4G, T4z);
1069 T5g = T5c - T5f;
1070 T5o = T5c + T5f;
1071 T5k = FNMS(KP500000000, T5j, T5i);
1072 T5m = T5k - T5l;
1073 T5q = T5l + T5k;
1074 {
1075 E T5b, T5h, T5n, T5p;
1076 T5b = W[2];
1077 T5h = W[3];
1078 rio[WS(vs, 2) + WS(rs, 5)] = FMA(T5b, T5g, T5h * T5m);
1079 iio[WS(vs, 2) + WS(rs, 5)] = FNMS(T5h, T5g, T5b * T5m);
1080 T5n = W[6];
1081 T5p = W[7];
1082 rio[WS(vs, 4) + WS(rs, 5)] = FMA(T5n, T5o, T5p * T5q);
1083 iio[WS(vs, 4) + WS(rs, 5)] = FNMS(T5p, T5o, T5n * T5q);
1084 }
1085 }
1086 {
1087 E To, Ty, Tw, TA, Tg, Tv;
1088 Tg = FNMS(KP500000000, Tf, Tc);
1089 To = Tg + Tn;
1090 Ty = Tg - Tn;
1091 Tv = FNMS(KP500000000, Tu, Tt);
1092 Tw = Tq + Tv;
1093 TA = Tv - Tq;
1094 {
1095 E Tb, Tp, Tx, Tz;
1096 Tb = W[0];
1097 Tp = W[1];
1098 rio[WS(vs, 1)] = FMA(Tb, To, Tp * Tw);
1099 iio[WS(vs, 1)] = FNMS(Tp, To, Tb * Tw);
1100 Tx = W[8];
1101 Tz = W[9];
1102 rio[WS(vs, 5)] = FMA(Tx, Ty, Tz * TA);
1103 iio[WS(vs, 5)] = FNMS(Tz, Ty, Tx * TA);
1104 }
1105 }
1106 {
1107 E T36, T3g, T3e, T3i, T2Y, T3d;
1108 T2Y = FNMS(KP500000000, T2X, T2U);
1109 T36 = T2Y + T35;
1110 T3g = T2Y - T35;
1111 T3d = FNMS(KP500000000, T3c, T3b);
1112 T3e = T38 + T3d;
1113 T3i = T3d - T38;
1114 {
1115 E T2T, T37, T3f, T3h;
1116 T2T = W[0];
1117 T37 = W[1];
1118 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T2T, T36, T37 * T3e);
1119 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T37, T36, T2T * T3e);
1120 T3f = W[8];
1121 T3h = W[9];
1122 rio[WS(vs, 5) + WS(rs, 3)] = FMA(T3f, T3g, T3h * T3i);
1123 iio[WS(vs, 5) + WS(rs, 3)] = FNMS(T3h, T3g, T3f * T3i);
1124 }
1125 }
1126 {
1127 E T2y, T2G, T2E, T2I, T2u, T2C;
1128 T2u = FNMS(KP500000000, T1Y, T1R);
1129 T2y = T2u - T2x;
1130 T2G = T2u + T2x;
1131 T2C = FNMS(KP500000000, T2B, T2A);
1132 T2E = T2C - T2D;
1133 T2I = T2D + T2C;
1134 {
1135 E T2t, T2z, T2F, T2H;
1136 T2t = W[2];
1137 T2z = W[3];
1138 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T2t, T2y, T2z * T2E);
1139 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T2z, T2y, T2t * T2E);
1140 T2F = W[6];
1141 T2H = W[7];
1142 rio[WS(vs, 4) + WS(rs, 2)] = FMA(T2F, T2G, T2H * T2I);
1143 iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T2H, T2G, T2F * T2I);
1144 }
1145 }
1146 {
1147 E T3s, T3A, T3y, T3C, T3o, T3w;
1148 T3o = FNMS(KP500000000, T2S, T2L);
1149 T3s = T3o - T3r;
1150 T3A = T3o + T3r;
1151 T3w = FNMS(KP500000000, T3v, T3u);
1152 T3y = T3w - T3x;
1153 T3C = T3x + T3w;
1154 {
1155 E T3n, T3t, T3z, T3B;
1156 T3n = W[2];
1157 T3t = W[3];
1158 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T3n, T3s, T3t * T3y);
1159 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T3t, T3s, T3n * T3y);
1160 T3z = W[6];
1161 T3B = W[7];
1162 rio[WS(vs, 4) + WS(rs, 3)] = FMA(T3z, T3A, T3B * T3C);
1163 iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T3B, T3A, T3z * T3C);
1164 }
1165 }
1166 {
1167 E T1E, T1M, T1K, T1O, T1A, T1I;
1168 T1A = FNMS(KP500000000, T14, TX);
1169 T1E = T1A - T1D;
1170 T1M = T1A + T1D;
1171 T1I = FNMS(KP500000000, T1H, T1G);
1172 T1K = T1I - T1J;
1173 T1O = T1J + T1I;
1174 {
1175 E T1z, T1F, T1L, T1N;
1176 T1z = W[2];
1177 T1F = W[3];
1178 rio[WS(vs, 2) + WS(rs, 1)] = FMA(T1z, T1E, T1F * T1K);
1179 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T1F, T1E, T1z * T1K);
1180 T1L = W[6];
1181 T1N = W[7];
1182 rio[WS(vs, 4) + WS(rs, 1)] = FMA(T1L, T1M, T1N * T1O);
1183 iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T1N, T1M, T1L * T1O);
1184 }
1185 }
1186 {
1187 E T4m, T4u, T4s, T4w, T4i, T4q;
1188 T4i = FNMS(KP500000000, T3M, T3F);
1189 T4m = T4i - T4l;
1190 T4u = T4i + T4l;
1191 T4q = FNMS(KP500000000, T4p, T4o);
1192 T4s = T4q - T4r;
1193 T4w = T4r + T4q;
1194 {
1195 E T4h, T4n, T4t, T4v;
1196 T4h = W[2];
1197 T4n = W[3];
1198 rio[WS(vs, 2) + WS(rs, 4)] = FMA(T4h, T4m, T4n * T4s);
1199 iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T4n, T4m, T4h * T4s);
1200 T4t = W[6];
1201 T4v = W[7];
1202 rio[WS(vs, 4) + WS(rs, 4)] = FMA(T4t, T4u, T4v * T4w);
1203 iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T4v, T4u, T4t * T4w);
1204 }
1205 }
1206 {
1207 E TK, TS, TQ, TU, TG, TO;
1208 TG = FNMS(KP500000000, Ta, T3);
1209 TK = TG - TJ;
1210 TS = TG + TJ;
1211 TO = FNMS(KP500000000, TN, TM);
1212 TQ = TO - TP;
1213 TU = TP + TO;
1214 {
1215 E TF, TL, TR, TT;
1216 TF = W[2];
1217 TL = W[3];
1218 rio[WS(vs, 2)] = FMA(TF, TK, TL * TQ);
1219 iio[WS(vs, 2)] = FNMS(TL, TK, TF * TQ);
1220 TR = W[6];
1221 TT = W[7];
1222 rio[WS(vs, 4)] = FMA(TR, TS, TT * TU);
1223 iio[WS(vs, 4)] = FNMS(TT, TS, TR * TU);
1224 }
1225 }
1226 {
1227 E T2c, T2m, T2k, T2o, T24, T2j;
1228 T24 = FNMS(KP500000000, T23, T20);
1229 T2c = T24 + T2b;
1230 T2m = T24 - T2b;
1231 T2j = FNMS(KP500000000, T2i, T2h);
1232 T2k = T2e + T2j;
1233 T2o = T2j - T2e;
1234 {
1235 E T1Z, T2d, T2l, T2n;
1236 T1Z = W[0];
1237 T2d = W[1];
1238 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1Z, T2c, T2d * T2k);
1239 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T2d, T2c, T1Z * T2k);
1240 T2l = W[8];
1241 T2n = W[9];
1242 rio[WS(vs, 5) + WS(rs, 2)] = FMA(T2l, T2m, T2n * T2o);
1243 iio[WS(vs, 5) + WS(rs, 2)] = FNMS(T2n, T2m, T2l * T2o);
1244 }
1245 }
1246 {
1247 E T40, T4a, T48, T4c, T3S, T47;
1248 T3S = FNMS(KP500000000, T3R, T3O);
1249 T40 = T3S + T3Z;
1250 T4a = T3S - T3Z;
1251 T47 = FNMS(KP500000000, T46, T45);
1252 T48 = T42 + T47;
1253 T4c = T47 - T42;
1254 {
1255 E T3N, T41, T49, T4b;
1256 T3N = W[0];
1257 T41 = W[1];
1258 rio[WS(vs, 1) + WS(rs, 4)] = FMA(T3N, T40, T41 * T48);
1259 iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T41, T40, T3N * T48);
1260 T49 = W[8];
1261 T4b = W[9];
1262 rio[WS(vs, 5) + WS(rs, 4)] = FMA(T49, T4a, T4b * T4c);
1263 iio[WS(vs, 5) + WS(rs, 4)] = FNMS(T4b, T4a, T49 * T4c);
1264 }
1265 }
1266 {
1267 E T1i, T1s, T1q, T1u, T1a, T1p;
1268 T1a = FNMS(KP500000000, T19, T16);
1269 T1i = T1a + T1h;
1270 T1s = T1a - T1h;
1271 T1p = FNMS(KP500000000, T1o, T1n);
1272 T1q = T1k + T1p;
1273 T1u = T1p - T1k;
1274 {
1275 E T15, T1j, T1r, T1t;
1276 T15 = W[0];
1277 T1j = W[1];
1278 rio[WS(vs, 1) + WS(rs, 1)] = FMA(T15, T1i, T1j * T1q);
1279 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T1j, T1i, T15 * T1q);
1280 T1r = W[8];
1281 T1t = W[9];
1282 rio[WS(vs, 5) + WS(rs, 1)] = FMA(T1r, T1s, T1t * T1u);
1283 iio[WS(vs, 5) + WS(rs, 1)] = FNMS(T1t, T1s, T1r * T1u);
1284 }
1285 }
1286 {
1287 E T4U, T54, T52, T56, T4M, T51;
1288 T4M = FNMS(KP500000000, T4L, T4I);
1289 T4U = T4M + T4T;
1290 T54 = T4M - T4T;
1291 T51 = FNMS(KP500000000, T50, T4Z);
1292 T52 = T4W + T51;
1293 T56 = T51 - T4W;
1294 {
1295 E T4H, T4V, T53, T55;
1296 T4H = W[0];
1297 T4V = W[1];
1298 rio[WS(vs, 1) + WS(rs, 5)] = FMA(T4H, T4U, T4V * T52);
1299 iio[WS(vs, 1) + WS(rs, 5)] = FNMS(T4V, T4U, T4H * T52);
1300 T53 = W[8];
1301 T55 = W[9];
1302 rio[WS(vs, 5) + WS(rs, 5)] = FMA(T53, T54, T55 * T56);
1303 iio[WS(vs, 5) + WS(rs, 5)] = FNMS(T55, T54, T53 * T56);
1304 }
1305 }
1306 }
1307 }
1308 }
1309
1310 static const tw_instr twinstr[] = {
1311 {TW_FULL, 0, 6},
1312 {TW_NEXT, 1, 0}
1313 };
1314
1315 static const ct_desc desc = { 6, "q1_6", twinstr, &GENUS, {192, 84, 84, 0}, 0, 0, 0 };
1316
1317 void X(codelet_q1_6) (planner *p) {
1318 X(kdft_difsq_register) (p, q1_6, &desc);
1319 }
1320 #endif