Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/scalar/codelets/q1_4.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:29 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 4 -name q1_4 -include dft/scalar/q.h */ | |
29 | |
30 /* | |
31 * This function contains 88 FP additions, 48 FP multiplications, | |
32 * (or, 64 additions, 24 multiplications, 24 fused multiply/add), | |
33 * 51 stack variables, 0 constants, and 64 memory accesses | |
34 */ | |
35 #include "dft/scalar/q.h" | |
36 | |
37 static void q1_4(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
38 { | |
39 { | |
40 INT m; | |
41 for (m = mb, W = W + (mb * 6); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 6, MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | |
42 E T3, Tv, Tw, T6, Tc, Tf, Tx, Ts, Tm, Ti, T1H, T29, T2a, T1K, T1Q; | |
43 E T1T, T2b, T26, T20, T1W, TB, T13, T14, TE, TK, TN, T15, T10, TU, TQ; | |
44 E T19, T1B, T1C, T1c, T1i, T1l, T1D, T1y, T1s, T1o; | |
45 { | |
46 E T1, T2, Tb, Tg, Th, T8; | |
47 { | |
48 E T9, Ta, T4, T5; | |
49 T1 = rio[0]; | |
50 T2 = rio[WS(rs, 2)]; | |
51 T3 = T1 + T2; | |
52 T9 = iio[0]; | |
53 Ta = iio[WS(rs, 2)]; | |
54 Tb = T9 - Ta; | |
55 Tv = T9 + Ta; | |
56 Tg = iio[WS(rs, 1)]; | |
57 Th = iio[WS(rs, 3)]; | |
58 Tw = Tg + Th; | |
59 T4 = rio[WS(rs, 1)]; | |
60 T5 = rio[WS(rs, 3)]; | |
61 T6 = T4 + T5; | |
62 T8 = T4 - T5; | |
63 } | |
64 Tc = T8 + Tb; | |
65 Tf = T1 - T2; | |
66 Tx = Tv - Tw; | |
67 Ts = T3 - T6; | |
68 Tm = Tb - T8; | |
69 Ti = Tg - Th; | |
70 } | |
71 { | |
72 E T1F, T1G, T1P, T1U, T1V, T1M; | |
73 { | |
74 E T1N, T1O, T1I, T1J; | |
75 T1F = rio[WS(vs, 3)]; | |
76 T1G = rio[WS(vs, 3) + WS(rs, 2)]; | |
77 T1H = T1F + T1G; | |
78 T1N = iio[WS(vs, 3)]; | |
79 T1O = iio[WS(vs, 3) + WS(rs, 2)]; | |
80 T1P = T1N - T1O; | |
81 T29 = T1N + T1O; | |
82 T1U = iio[WS(vs, 3) + WS(rs, 1)]; | |
83 T1V = iio[WS(vs, 3) + WS(rs, 3)]; | |
84 T2a = T1U + T1V; | |
85 T1I = rio[WS(vs, 3) + WS(rs, 1)]; | |
86 T1J = rio[WS(vs, 3) + WS(rs, 3)]; | |
87 T1K = T1I + T1J; | |
88 T1M = T1I - T1J; | |
89 } | |
90 T1Q = T1M + T1P; | |
91 T1T = T1F - T1G; | |
92 T2b = T29 - T2a; | |
93 T26 = T1H - T1K; | |
94 T20 = T1P - T1M; | |
95 T1W = T1U - T1V; | |
96 } | |
97 { | |
98 E Tz, TA, TJ, TO, TP, TG; | |
99 { | |
100 E TH, TI, TC, TD; | |
101 Tz = rio[WS(vs, 1)]; | |
102 TA = rio[WS(vs, 1) + WS(rs, 2)]; | |
103 TB = Tz + TA; | |
104 TH = iio[WS(vs, 1)]; | |
105 TI = iio[WS(vs, 1) + WS(rs, 2)]; | |
106 TJ = TH - TI; | |
107 T13 = TH + TI; | |
108 TO = iio[WS(vs, 1) + WS(rs, 1)]; | |
109 TP = iio[WS(vs, 1) + WS(rs, 3)]; | |
110 T14 = TO + TP; | |
111 TC = rio[WS(vs, 1) + WS(rs, 1)]; | |
112 TD = rio[WS(vs, 1) + WS(rs, 3)]; | |
113 TE = TC + TD; | |
114 TG = TC - TD; | |
115 } | |
116 TK = TG + TJ; | |
117 TN = Tz - TA; | |
118 T15 = T13 - T14; | |
119 T10 = TB - TE; | |
120 TU = TJ - TG; | |
121 TQ = TO - TP; | |
122 } | |
123 { | |
124 E T17, T18, T1h, T1m, T1n, T1e; | |
125 { | |
126 E T1f, T1g, T1a, T1b; | |
127 T17 = rio[WS(vs, 2)]; | |
128 T18 = rio[WS(vs, 2) + WS(rs, 2)]; | |
129 T19 = T17 + T18; | |
130 T1f = iio[WS(vs, 2)]; | |
131 T1g = iio[WS(vs, 2) + WS(rs, 2)]; | |
132 T1h = T1f - T1g; | |
133 T1B = T1f + T1g; | |
134 T1m = iio[WS(vs, 2) + WS(rs, 1)]; | |
135 T1n = iio[WS(vs, 2) + WS(rs, 3)]; | |
136 T1C = T1m + T1n; | |
137 T1a = rio[WS(vs, 2) + WS(rs, 1)]; | |
138 T1b = rio[WS(vs, 2) + WS(rs, 3)]; | |
139 T1c = T1a + T1b; | |
140 T1e = T1a - T1b; | |
141 } | |
142 T1i = T1e + T1h; | |
143 T1l = T17 - T18; | |
144 T1D = T1B - T1C; | |
145 T1y = T19 - T1c; | |
146 T1s = T1h - T1e; | |
147 T1o = T1m - T1n; | |
148 } | |
149 rio[0] = T3 + T6; | |
150 iio[0] = Tv + Tw; | |
151 rio[WS(rs, 1)] = TB + TE; | |
152 iio[WS(rs, 1)] = T13 + T14; | |
153 rio[WS(rs, 2)] = T19 + T1c; | |
154 iio[WS(rs, 2)] = T1B + T1C; | |
155 iio[WS(rs, 3)] = T29 + T2a; | |
156 rio[WS(rs, 3)] = T1H + T1K; | |
157 { | |
158 E Tt, Ty, Tr, Tu; | |
159 Tr = W[2]; | |
160 Tt = Tr * Ts; | |
161 Ty = Tr * Tx; | |
162 Tu = W[3]; | |
163 rio[WS(vs, 2)] = FMA(Tu, Tx, Tt); | |
164 iio[WS(vs, 2)] = FNMS(Tu, Ts, Ty); | |
165 } | |
166 { | |
167 E T27, T2c, T25, T28; | |
168 T25 = W[2]; | |
169 T27 = T25 * T26; | |
170 T2c = T25 * T2b; | |
171 T28 = W[3]; | |
172 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T28, T2b, T27); | |
173 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T28, T26, T2c); | |
174 } | |
175 { | |
176 E T11, T16, TZ, T12; | |
177 TZ = W[2]; | |
178 T11 = TZ * T10; | |
179 T16 = TZ * T15; | |
180 T12 = W[3]; | |
181 rio[WS(vs, 2) + WS(rs, 1)] = FMA(T12, T15, T11); | |
182 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T12, T10, T16); | |
183 } | |
184 { | |
185 E T1z, T1E, T1x, T1A; | |
186 T1x = W[2]; | |
187 T1z = T1x * T1y; | |
188 T1E = T1x * T1D; | |
189 T1A = W[3]; | |
190 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T1A, T1D, T1z); | |
191 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T1A, T1y, T1E); | |
192 } | |
193 { | |
194 E Tj, Te, Tk, T7, Td; | |
195 Tj = Tf - Ti; | |
196 Te = W[5]; | |
197 Tk = Te * Tc; | |
198 T7 = W[4]; | |
199 Td = T7 * Tc; | |
200 iio[WS(vs, 3)] = FNMS(Te, Tj, Td); | |
201 rio[WS(vs, 3)] = FMA(T7, Tj, Tk); | |
202 } | |
203 { | |
204 E T1p, T1k, T1q, T1d, T1j; | |
205 T1p = T1l - T1o; | |
206 T1k = W[5]; | |
207 T1q = T1k * T1i; | |
208 T1d = W[4]; | |
209 T1j = T1d * T1i; | |
210 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T1k, T1p, T1j); | |
211 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T1d, T1p, T1q); | |
212 } | |
213 { | |
214 E T23, T22, T24, T1Z, T21; | |
215 T23 = T1T + T1W; | |
216 T22 = W[1]; | |
217 T24 = T22 * T20; | |
218 T1Z = W[0]; | |
219 T21 = T1Z * T20; | |
220 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T22, T23, T21); | |
221 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T1Z, T23, T24); | |
222 } | |
223 { | |
224 E TX, TW, TY, TT, TV; | |
225 TX = TN + TQ; | |
226 TW = W[1]; | |
227 TY = TW * TU; | |
228 TT = W[0]; | |
229 TV = TT * TU; | |
230 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TW, TX, TV); | |
231 rio[WS(vs, 1) + WS(rs, 1)] = FMA(TT, TX, TY); | |
232 } | |
233 { | |
234 E TR, TM, TS, TF, TL; | |
235 TR = TN - TQ; | |
236 TM = W[5]; | |
237 TS = TM * TK; | |
238 TF = W[4]; | |
239 TL = TF * TK; | |
240 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(TM, TR, TL); | |
241 rio[WS(vs, 3) + WS(rs, 1)] = FMA(TF, TR, TS); | |
242 } | |
243 { | |
244 E Tp, To, Tq, Tl, Tn; | |
245 Tp = Tf + Ti; | |
246 To = W[1]; | |
247 Tq = To * Tm; | |
248 Tl = W[0]; | |
249 Tn = Tl * Tm; | |
250 iio[WS(vs, 1)] = FNMS(To, Tp, Tn); | |
251 rio[WS(vs, 1)] = FMA(Tl, Tp, Tq); | |
252 } | |
253 { | |
254 E T1v, T1u, T1w, T1r, T1t; | |
255 T1v = T1l + T1o; | |
256 T1u = W[1]; | |
257 T1w = T1u * T1s; | |
258 T1r = W[0]; | |
259 T1t = T1r * T1s; | |
260 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1u, T1v, T1t); | |
261 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1r, T1v, T1w); | |
262 } | |
263 { | |
264 E T1X, T1S, T1Y, T1L, T1R; | |
265 T1X = T1T - T1W; | |
266 T1S = W[5]; | |
267 T1Y = T1S * T1Q; | |
268 T1L = W[4]; | |
269 T1R = T1L * T1Q; | |
270 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T1S, T1X, T1R); | |
271 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T1L, T1X, T1Y); | |
272 } | |
273 } | |
274 } | |
275 } | |
276 | |
277 static const tw_instr twinstr[] = { | |
278 {TW_FULL, 0, 4}, | |
279 {TW_NEXT, 1, 0} | |
280 }; | |
281 | |
282 static const ct_desc desc = { 4, "q1_4", twinstr, &GENUS, {64, 24, 24, 0}, 0, 0, 0 }; | |
283 | |
284 void X(codelet_q1_4) (planner *p) { | |
285 X(kdft_difsq_register) (p, q1_4, &desc); | |
286 } | |
287 #else | |
288 | |
289 /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 4 -name q1_4 -include dft/scalar/q.h */ | |
290 | |
291 /* | |
292 * This function contains 88 FP additions, 48 FP multiplications, | |
293 * (or, 64 additions, 24 multiplications, 24 fused multiply/add), | |
294 * 37 stack variables, 0 constants, and 64 memory accesses | |
295 */ | |
296 #include "dft/scalar/q.h" | |
297 | |
298 static void q1_4(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
299 { | |
300 { | |
301 INT m; | |
302 for (m = mb, W = W + (mb * 6); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 6, MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | |
303 E T3, Te, Tb, Tq, T6, T8, Th, Tr, Tv, TG, TD, TS, Ty, TA, TJ; | |
304 E TT, TX, T18, T15, T1k, T10, T12, T1b, T1l, T1p, T1A, T1x, T1M, T1s, T1u; | |
305 E T1D, T1N; | |
306 { | |
307 E T1, T2, T9, Ta; | |
308 T1 = rio[0]; | |
309 T2 = rio[WS(rs, 2)]; | |
310 T3 = T1 + T2; | |
311 Te = T1 - T2; | |
312 T9 = iio[0]; | |
313 Ta = iio[WS(rs, 2)]; | |
314 Tb = T9 - Ta; | |
315 Tq = T9 + Ta; | |
316 } | |
317 { | |
318 E T4, T5, Tf, Tg; | |
319 T4 = rio[WS(rs, 1)]; | |
320 T5 = rio[WS(rs, 3)]; | |
321 T6 = T4 + T5; | |
322 T8 = T4 - T5; | |
323 Tf = iio[WS(rs, 1)]; | |
324 Tg = iio[WS(rs, 3)]; | |
325 Th = Tf - Tg; | |
326 Tr = Tf + Tg; | |
327 } | |
328 { | |
329 E Tt, Tu, TB, TC; | |
330 Tt = rio[WS(vs, 1)]; | |
331 Tu = rio[WS(vs, 1) + WS(rs, 2)]; | |
332 Tv = Tt + Tu; | |
333 TG = Tt - Tu; | |
334 TB = iio[WS(vs, 1)]; | |
335 TC = iio[WS(vs, 1) + WS(rs, 2)]; | |
336 TD = TB - TC; | |
337 TS = TB + TC; | |
338 } | |
339 { | |
340 E Tw, Tx, TH, TI; | |
341 Tw = rio[WS(vs, 1) + WS(rs, 1)]; | |
342 Tx = rio[WS(vs, 1) + WS(rs, 3)]; | |
343 Ty = Tw + Tx; | |
344 TA = Tw - Tx; | |
345 TH = iio[WS(vs, 1) + WS(rs, 1)]; | |
346 TI = iio[WS(vs, 1) + WS(rs, 3)]; | |
347 TJ = TH - TI; | |
348 TT = TH + TI; | |
349 } | |
350 { | |
351 E TV, TW, T13, T14; | |
352 TV = rio[WS(vs, 2)]; | |
353 TW = rio[WS(vs, 2) + WS(rs, 2)]; | |
354 TX = TV + TW; | |
355 T18 = TV - TW; | |
356 T13 = iio[WS(vs, 2)]; | |
357 T14 = iio[WS(vs, 2) + WS(rs, 2)]; | |
358 T15 = T13 - T14; | |
359 T1k = T13 + T14; | |
360 } | |
361 { | |
362 E TY, TZ, T19, T1a; | |
363 TY = rio[WS(vs, 2) + WS(rs, 1)]; | |
364 TZ = rio[WS(vs, 2) + WS(rs, 3)]; | |
365 T10 = TY + TZ; | |
366 T12 = TY - TZ; | |
367 T19 = iio[WS(vs, 2) + WS(rs, 1)]; | |
368 T1a = iio[WS(vs, 2) + WS(rs, 3)]; | |
369 T1b = T19 - T1a; | |
370 T1l = T19 + T1a; | |
371 } | |
372 { | |
373 E T1n, T1o, T1v, T1w; | |
374 T1n = rio[WS(vs, 3)]; | |
375 T1o = rio[WS(vs, 3) + WS(rs, 2)]; | |
376 T1p = T1n + T1o; | |
377 T1A = T1n - T1o; | |
378 T1v = iio[WS(vs, 3)]; | |
379 T1w = iio[WS(vs, 3) + WS(rs, 2)]; | |
380 T1x = T1v - T1w; | |
381 T1M = T1v + T1w; | |
382 } | |
383 { | |
384 E T1q, T1r, T1B, T1C; | |
385 T1q = rio[WS(vs, 3) + WS(rs, 1)]; | |
386 T1r = rio[WS(vs, 3) + WS(rs, 3)]; | |
387 T1s = T1q + T1r; | |
388 T1u = T1q - T1r; | |
389 T1B = iio[WS(vs, 3) + WS(rs, 1)]; | |
390 T1C = iio[WS(vs, 3) + WS(rs, 3)]; | |
391 T1D = T1B - T1C; | |
392 T1N = T1B + T1C; | |
393 } | |
394 rio[0] = T3 + T6; | |
395 iio[0] = Tq + Tr; | |
396 rio[WS(rs, 1)] = Tv + Ty; | |
397 iio[WS(rs, 1)] = TS + TT; | |
398 rio[WS(rs, 2)] = TX + T10; | |
399 iio[WS(rs, 2)] = T1k + T1l; | |
400 iio[WS(rs, 3)] = T1M + T1N; | |
401 rio[WS(rs, 3)] = T1p + T1s; | |
402 { | |
403 E Tc, Ti, T7, Td; | |
404 Tc = T8 + Tb; | |
405 Ti = Te - Th; | |
406 T7 = W[4]; | |
407 Td = W[5]; | |
408 iio[WS(vs, 3)] = FNMS(Td, Ti, T7 * Tc); | |
409 rio[WS(vs, 3)] = FMA(Td, Tc, T7 * Ti); | |
410 } | |
411 { | |
412 E T1K, T1O, T1J, T1L; | |
413 T1K = T1p - T1s; | |
414 T1O = T1M - T1N; | |
415 T1J = W[2]; | |
416 T1L = W[3]; | |
417 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T1J, T1K, T1L * T1O); | |
418 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T1L, T1K, T1J * T1O); | |
419 } | |
420 { | |
421 E Tk, Tm, Tj, Tl; | |
422 Tk = Tb - T8; | |
423 Tm = Te + Th; | |
424 Tj = W[0]; | |
425 Tl = W[1]; | |
426 iio[WS(vs, 1)] = FNMS(Tl, Tm, Tj * Tk); | |
427 rio[WS(vs, 1)] = FMA(Tl, Tk, Tj * Tm); | |
428 } | |
429 { | |
430 E To, Ts, Tn, Tp; | |
431 To = T3 - T6; | |
432 Ts = Tq - Tr; | |
433 Tn = W[2]; | |
434 Tp = W[3]; | |
435 rio[WS(vs, 2)] = FMA(Tn, To, Tp * Ts); | |
436 iio[WS(vs, 2)] = FNMS(Tp, To, Tn * Ts); | |
437 } | |
438 { | |
439 E T16, T1c, T11, T17; | |
440 T16 = T12 + T15; | |
441 T1c = T18 - T1b; | |
442 T11 = W[4]; | |
443 T17 = W[5]; | |
444 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T17, T1c, T11 * T16); | |
445 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T17, T16, T11 * T1c); | |
446 } | |
447 { | |
448 E T1G, T1I, T1F, T1H; | |
449 T1G = T1x - T1u; | |
450 T1I = T1A + T1D; | |
451 T1F = W[0]; | |
452 T1H = W[1]; | |
453 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T1H, T1I, T1F * T1G); | |
454 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T1H, T1G, T1F * T1I); | |
455 } | |
456 { | |
457 E TQ, TU, TP, TR; | |
458 TQ = Tv - Ty; | |
459 TU = TS - TT; | |
460 TP = W[2]; | |
461 TR = W[3]; | |
462 rio[WS(vs, 2) + WS(rs, 1)] = FMA(TP, TQ, TR * TU); | |
463 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TR, TQ, TP * TU); | |
464 } | |
465 { | |
466 E T1e, T1g, T1d, T1f; | |
467 T1e = T15 - T12; | |
468 T1g = T18 + T1b; | |
469 T1d = W[0]; | |
470 T1f = W[1]; | |
471 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1f, T1g, T1d * T1e); | |
472 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1f, T1e, T1d * T1g); | |
473 } | |
474 { | |
475 E T1i, T1m, T1h, T1j; | |
476 T1i = TX - T10; | |
477 T1m = T1k - T1l; | |
478 T1h = W[2]; | |
479 T1j = W[3]; | |
480 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T1h, T1i, T1j * T1m); | |
481 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T1j, T1i, T1h * T1m); | |
482 } | |
483 { | |
484 E T1y, T1E, T1t, T1z; | |
485 T1y = T1u + T1x; | |
486 T1E = T1A - T1D; | |
487 T1t = W[4]; | |
488 T1z = W[5]; | |
489 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T1z, T1E, T1t * T1y); | |
490 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T1z, T1y, T1t * T1E); | |
491 } | |
492 { | |
493 E TM, TO, TL, TN; | |
494 TM = TD - TA; | |
495 TO = TG + TJ; | |
496 TL = W[0]; | |
497 TN = W[1]; | |
498 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TN, TO, TL * TM); | |
499 rio[WS(vs, 1) + WS(rs, 1)] = FMA(TN, TM, TL * TO); | |
500 } | |
501 { | |
502 E TE, TK, Tz, TF; | |
503 TE = TA + TD; | |
504 TK = TG - TJ; | |
505 Tz = W[4]; | |
506 TF = W[5]; | |
507 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(TF, TK, Tz * TE); | |
508 rio[WS(vs, 3) + WS(rs, 1)] = FMA(TF, TE, Tz * TK); | |
509 } | |
510 } | |
511 } | |
512 } | |
513 | |
514 static const tw_instr twinstr[] = { | |
515 {TW_FULL, 0, 4}, | |
516 {TW_NEXT, 1, 0} | |
517 }; | |
518 | |
519 static const ct_desc desc = { 4, "q1_4", twinstr, &GENUS, {64, 24, 24, 0}, 0, 0, 0 }; | |
520 | |
521 void X(codelet_q1_4) (planner *p) { | |
522 X(kdft_difsq_register) (p, q1_4, &desc); | |
523 } | |
524 #endif |