Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/scalar/codelets/q1_3.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:30 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 3 -name q1_3 -include dft/scalar/q.h */ | |
29 | |
30 /* | |
31 * This function contains 48 FP additions, 42 FP multiplications, | |
32 * (or, 18 additions, 12 multiplications, 30 fused multiply/add), | |
33 * 35 stack variables, 2 constants, and 36 memory accesses | |
34 */ | |
35 #include "dft/scalar/q.h" | |
36 | |
37 static void q1_3(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
40 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
41 { | |
42 INT m; | |
43 for (m = mb, W = W + (mb * 4); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 4, MAKE_VOLATILE_STRIDE(6, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | |
44 E T1, T4, T6, Tg, Td, Te, T9, Tf, Tp, Ts, Tu, TE, TB, TC, Tx; | |
45 E TD, TZ, T10, TV, T11, TN, TQ, TS, T12; | |
46 { | |
47 E T2, T3, Tv, Tw; | |
48 T1 = rio[0]; | |
49 T2 = rio[WS(rs, 1)]; | |
50 T3 = rio[WS(rs, 2)]; | |
51 T4 = T2 + T3; | |
52 T6 = FNMS(KP500000000, T4, T1); | |
53 Tg = T3 - T2; | |
54 { | |
55 E T7, T8, Tq, Tr; | |
56 Td = iio[0]; | |
57 T7 = iio[WS(rs, 1)]; | |
58 T8 = iio[WS(rs, 2)]; | |
59 Te = T7 + T8; | |
60 T9 = T7 - T8; | |
61 Tf = FNMS(KP500000000, Te, Td); | |
62 Tp = rio[WS(vs, 1)]; | |
63 Tq = rio[WS(vs, 1) + WS(rs, 1)]; | |
64 Tr = rio[WS(vs, 1) + WS(rs, 2)]; | |
65 Ts = Tq + Tr; | |
66 Tu = FNMS(KP500000000, Ts, Tp); | |
67 TE = Tr - Tq; | |
68 } | |
69 TB = iio[WS(vs, 1)]; | |
70 Tv = iio[WS(vs, 1) + WS(rs, 1)]; | |
71 Tw = iio[WS(vs, 1) + WS(rs, 2)]; | |
72 TC = Tv + Tw; | |
73 Tx = Tv - Tw; | |
74 TD = FNMS(KP500000000, TC, TB); | |
75 { | |
76 E TT, TU, TO, TP; | |
77 TZ = iio[WS(vs, 2)]; | |
78 TT = iio[WS(vs, 2) + WS(rs, 1)]; | |
79 TU = iio[WS(vs, 2) + WS(rs, 2)]; | |
80 T10 = TT + TU; | |
81 TV = TT - TU; | |
82 T11 = FNMS(KP500000000, T10, TZ); | |
83 TN = rio[WS(vs, 2)]; | |
84 TO = rio[WS(vs, 2) + WS(rs, 1)]; | |
85 TP = rio[WS(vs, 2) + WS(rs, 2)]; | |
86 TQ = TO + TP; | |
87 TS = FNMS(KP500000000, TQ, TN); | |
88 T12 = TP - TO; | |
89 } | |
90 } | |
91 rio[0] = T1 + T4; | |
92 iio[0] = Td + Te; | |
93 rio[WS(rs, 1)] = Tp + Ts; | |
94 iio[WS(rs, 1)] = TB + TC; | |
95 iio[WS(rs, 2)] = TZ + T10; | |
96 rio[WS(rs, 2)] = TN + TQ; | |
97 { | |
98 E Ta, Th, Tb, Ti, T5, Tc; | |
99 Ta = FMA(KP866025403, T9, T6); | |
100 Th = FMA(KP866025403, Tg, Tf); | |
101 T5 = W[0]; | |
102 Tb = T5 * Ta; | |
103 Ti = T5 * Th; | |
104 Tc = W[1]; | |
105 rio[WS(vs, 1)] = FMA(Tc, Th, Tb); | |
106 iio[WS(vs, 1)] = FNMS(Tc, Ta, Ti); | |
107 } | |
108 { | |
109 E T16, T19, T17, T1a, T15, T18; | |
110 T16 = FNMS(KP866025403, TV, TS); | |
111 T19 = FNMS(KP866025403, T12, T11); | |
112 T15 = W[2]; | |
113 T17 = T15 * T16; | |
114 T1a = T15 * T19; | |
115 T18 = W[3]; | |
116 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T18, T19, T17); | |
117 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T18, T16, T1a); | |
118 } | |
119 { | |
120 E TI, TL, TJ, TM, TH, TK; | |
121 TI = FNMS(KP866025403, Tx, Tu); | |
122 TL = FNMS(KP866025403, TE, TD); | |
123 TH = W[2]; | |
124 TJ = TH * TI; | |
125 TM = TH * TL; | |
126 TK = W[3]; | |
127 rio[WS(vs, 2) + WS(rs, 1)] = FMA(TK, TL, TJ); | |
128 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TK, TI, TM); | |
129 } | |
130 { | |
131 E Ty, TF, Tz, TG, Tt, TA; | |
132 Ty = FMA(KP866025403, Tx, Tu); | |
133 TF = FMA(KP866025403, TE, TD); | |
134 Tt = W[0]; | |
135 Tz = Tt * Ty; | |
136 TG = Tt * TF; | |
137 TA = W[1]; | |
138 rio[WS(vs, 1) + WS(rs, 1)] = FMA(TA, TF, Tz); | |
139 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TA, Ty, TG); | |
140 } | |
141 { | |
142 E TW, T13, TX, T14, TR, TY; | |
143 TW = FMA(KP866025403, TV, TS); | |
144 T13 = FMA(KP866025403, T12, T11); | |
145 TR = W[0]; | |
146 TX = TR * TW; | |
147 T14 = TR * T13; | |
148 TY = W[1]; | |
149 rio[WS(vs, 1) + WS(rs, 2)] = FMA(TY, T13, TX); | |
150 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(TY, TW, T14); | |
151 } | |
152 { | |
153 E Tk, Tn, Tl, To, Tj, Tm; | |
154 Tk = FNMS(KP866025403, T9, T6); | |
155 Tn = FNMS(KP866025403, Tg, Tf); | |
156 Tj = W[2]; | |
157 Tl = Tj * Tk; | |
158 To = Tj * Tn; | |
159 Tm = W[3]; | |
160 rio[WS(vs, 2)] = FMA(Tm, Tn, Tl); | |
161 iio[WS(vs, 2)] = FNMS(Tm, Tk, To); | |
162 } | |
163 } | |
164 } | |
165 } | |
166 | |
167 static const tw_instr twinstr[] = { | |
168 {TW_FULL, 0, 3}, | |
169 {TW_NEXT, 1, 0} | |
170 }; | |
171 | |
172 static const ct_desc desc = { 3, "q1_3", twinstr, &GENUS, {18, 12, 30, 0}, 0, 0, 0 }; | |
173 | |
174 void X(codelet_q1_3) (planner *p) { | |
175 X(kdft_difsq_register) (p, q1_3, &desc); | |
176 } | |
177 #else | |
178 | |
179 /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 3 -name q1_3 -include dft/scalar/q.h */ | |
180 | |
181 /* | |
182 * This function contains 48 FP additions, 36 FP multiplications, | |
183 * (or, 30 additions, 18 multiplications, 18 fused multiply/add), | |
184 * 35 stack variables, 2 constants, and 36 memory accesses | |
185 */ | |
186 #include "dft/scalar/q.h" | |
187 | |
188 static void q1_3(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
189 { | |
190 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
191 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
192 { | |
193 INT m; | |
194 for (m = mb, W = W + (mb * 4); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 4, MAKE_VOLATILE_STRIDE(6, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | |
195 E T1, T4, T6, Tc, Td, Te, T9, Tf, Tl, To, Tq, Tw, Tx, Ty, Tt; | |
196 E Tz, TR, TS, TN, TT, TF, TI, TK, TQ; | |
197 { | |
198 E T2, T3, Tr, Ts; | |
199 T1 = rio[0]; | |
200 T2 = rio[WS(rs, 1)]; | |
201 T3 = rio[WS(rs, 2)]; | |
202 T4 = T2 + T3; | |
203 T6 = FNMS(KP500000000, T4, T1); | |
204 Tc = KP866025403 * (T3 - T2); | |
205 { | |
206 E T7, T8, Tm, Tn; | |
207 Td = iio[0]; | |
208 T7 = iio[WS(rs, 1)]; | |
209 T8 = iio[WS(rs, 2)]; | |
210 Te = T7 + T8; | |
211 T9 = KP866025403 * (T7 - T8); | |
212 Tf = FNMS(KP500000000, Te, Td); | |
213 Tl = rio[WS(vs, 1)]; | |
214 Tm = rio[WS(vs, 1) + WS(rs, 1)]; | |
215 Tn = rio[WS(vs, 1) + WS(rs, 2)]; | |
216 To = Tm + Tn; | |
217 Tq = FNMS(KP500000000, To, Tl); | |
218 Tw = KP866025403 * (Tn - Tm); | |
219 } | |
220 Tx = iio[WS(vs, 1)]; | |
221 Tr = iio[WS(vs, 1) + WS(rs, 1)]; | |
222 Ts = iio[WS(vs, 1) + WS(rs, 2)]; | |
223 Ty = Tr + Ts; | |
224 Tt = KP866025403 * (Tr - Ts); | |
225 Tz = FNMS(KP500000000, Ty, Tx); | |
226 { | |
227 E TL, TM, TG, TH; | |
228 TR = iio[WS(vs, 2)]; | |
229 TL = iio[WS(vs, 2) + WS(rs, 1)]; | |
230 TM = iio[WS(vs, 2) + WS(rs, 2)]; | |
231 TS = TL + TM; | |
232 TN = KP866025403 * (TL - TM); | |
233 TT = FNMS(KP500000000, TS, TR); | |
234 TF = rio[WS(vs, 2)]; | |
235 TG = rio[WS(vs, 2) + WS(rs, 1)]; | |
236 TH = rio[WS(vs, 2) + WS(rs, 2)]; | |
237 TI = TG + TH; | |
238 TK = FNMS(KP500000000, TI, TF); | |
239 TQ = KP866025403 * (TH - TG); | |
240 } | |
241 } | |
242 rio[0] = T1 + T4; | |
243 iio[0] = Td + Te; | |
244 rio[WS(rs, 1)] = Tl + To; | |
245 iio[WS(rs, 1)] = Tx + Ty; | |
246 iio[WS(rs, 2)] = TR + TS; | |
247 rio[WS(rs, 2)] = TF + TI; | |
248 { | |
249 E Ta, Tg, T5, Tb; | |
250 Ta = T6 + T9; | |
251 Tg = Tc + Tf; | |
252 T5 = W[0]; | |
253 Tb = W[1]; | |
254 rio[WS(vs, 1)] = FMA(T5, Ta, Tb * Tg); | |
255 iio[WS(vs, 1)] = FNMS(Tb, Ta, T5 * Tg); | |
256 } | |
257 { | |
258 E TW, TY, TV, TX; | |
259 TW = TK - TN; | |
260 TY = TT - TQ; | |
261 TV = W[2]; | |
262 TX = W[3]; | |
263 rio[WS(vs, 2) + WS(rs, 2)] = FMA(TV, TW, TX * TY); | |
264 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(TX, TW, TV * TY); | |
265 } | |
266 { | |
267 E TC, TE, TB, TD; | |
268 TC = Tq - Tt; | |
269 TE = Tz - Tw; | |
270 TB = W[2]; | |
271 TD = W[3]; | |
272 rio[WS(vs, 2) + WS(rs, 1)] = FMA(TB, TC, TD * TE); | |
273 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TD, TC, TB * TE); | |
274 } | |
275 { | |
276 E Tu, TA, Tp, Tv; | |
277 Tu = Tq + Tt; | |
278 TA = Tw + Tz; | |
279 Tp = W[0]; | |
280 Tv = W[1]; | |
281 rio[WS(vs, 1) + WS(rs, 1)] = FMA(Tp, Tu, Tv * TA); | |
282 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(Tv, Tu, Tp * TA); | |
283 } | |
284 { | |
285 E TO, TU, TJ, TP; | |
286 TO = TK + TN; | |
287 TU = TQ + TT; | |
288 TJ = W[0]; | |
289 TP = W[1]; | |
290 rio[WS(vs, 1) + WS(rs, 2)] = FMA(TJ, TO, TP * TU); | |
291 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(TP, TO, TJ * TU); | |
292 } | |
293 { | |
294 E Ti, Tk, Th, Tj; | |
295 Ti = T6 - T9; | |
296 Tk = Tf - Tc; | |
297 Th = W[2]; | |
298 Tj = W[3]; | |
299 rio[WS(vs, 2)] = FMA(Th, Ti, Tj * Tk); | |
300 iio[WS(vs, 2)] = FNMS(Tj, Ti, Th * Tk); | |
301 } | |
302 } | |
303 } | |
304 } | |
305 | |
306 static const tw_instr twinstr[] = { | |
307 {TW_FULL, 0, 3}, | |
308 {TW_NEXT, 1, 0} | |
309 }; | |
310 | |
311 static const ct_desc desc = { 3, "q1_3", twinstr, &GENUS, {30, 18, 18, 0}, 0, 0, 0 }; | |
312 | |
313 void X(codelet_q1_3) (planner *p) { | |
314 X(kdft_difsq_register) (p, q1_3, &desc); | |
315 } | |
316 #endif |