comparison src/fftw-3.3.8/dft/scalar/codelets/n1_9.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:04:10 EDT 2018 */
23
24 #include "dft/codelet-dft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 9 -name n1_9 -include dft/scalar/n.h */
29
30 /*
31 * This function contains 80 FP additions, 56 FP multiplications,
32 * (or, 24 additions, 0 multiplications, 56 fused multiply/add),
33 * 41 stack variables, 10 constants, and 36 memory accesses
34 */
35 #include "dft/scalar/n.h"
36
37 static void n1_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39 DK(KP954188894, +0.954188894138671133499268364187245676532219158);
40 DK(KP363970234, +0.363970234266202361351047882776834043890471784);
41 DK(KP852868531, +0.852868531952443209628250963940074071936020296);
42 DK(KP492403876, +0.492403876506104029683371512294761506835321626);
43 DK(KP984807753, +0.984807753012208059366743024589523013670643252);
44 DK(KP777861913, +0.777861913430206160028177977318626690410586096);
45 DK(KP839099631, +0.839099631177280011763127298123181364687434283);
46 DK(KP176326980, +0.176326980708464973471090386868618986121633062);
47 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
48 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
49 {
50 INT i;
51 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(36, is), MAKE_VOLATILE_STRIDE(36, os)) {
52 E T5, TL, Tm, Tl, T1f, TM, Ta, T1c, TF, TW, TI, TX, Tf, T1d, Ts;
53 E TZ, Tx, T10;
54 {
55 E T1, T2, T3, T4;
56 T1 = ri[0];
57 T2 = ri[WS(is, 3)];
58 T3 = ri[WS(is, 6)];
59 T4 = T2 + T3;
60 T5 = T1 + T4;
61 TL = FNMS(KP500000000, T4, T1);
62 Tm = T3 - T2;
63 }
64 {
65 E Th, Ti, Tj, Tk;
66 Th = ii[0];
67 Ti = ii[WS(is, 3)];
68 Tj = ii[WS(is, 6)];
69 Tk = Ti + Tj;
70 Tl = FNMS(KP500000000, Tk, Th);
71 T1f = Th + Tk;
72 TM = Ti - Tj;
73 }
74 {
75 E T6, Tz, T9, TE, TC, TH, TD, TG;
76 T6 = ri[WS(is, 1)];
77 Tz = ii[WS(is, 1)];
78 {
79 E T7, T8, TA, TB;
80 T7 = ri[WS(is, 4)];
81 T8 = ri[WS(is, 7)];
82 T9 = T7 + T8;
83 TE = T7 - T8;
84 TA = ii[WS(is, 4)];
85 TB = ii[WS(is, 7)];
86 TC = TA + TB;
87 TH = TB - TA;
88 }
89 Ta = T6 + T9;
90 T1c = Tz + TC;
91 TD = FNMS(KP500000000, TC, Tz);
92 TF = FNMS(KP866025403, TE, TD);
93 TW = FMA(KP866025403, TE, TD);
94 TG = FNMS(KP500000000, T9, T6);
95 TI = FNMS(KP866025403, TH, TG);
96 TX = FMA(KP866025403, TH, TG);
97 }
98 {
99 E Tb, Tt, Te, Tw, Tr, Tu, To, Tv;
100 Tb = ri[WS(is, 2)];
101 Tt = ii[WS(is, 2)];
102 {
103 E Tc, Td, Tp, Tq;
104 Tc = ri[WS(is, 5)];
105 Td = ri[WS(is, 8)];
106 Te = Tc + Td;
107 Tw = Td - Tc;
108 Tp = ii[WS(is, 5)];
109 Tq = ii[WS(is, 8)];
110 Tr = Tp - Tq;
111 Tu = Tp + Tq;
112 }
113 Tf = Tb + Te;
114 T1d = Tt + Tu;
115 To = FNMS(KP500000000, Te, Tb);
116 Ts = FMA(KP866025403, Tr, To);
117 TZ = FNMS(KP866025403, Tr, To);
118 Tv = FNMS(KP500000000, Tu, Tt);
119 Tx = FMA(KP866025403, Tw, Tv);
120 T10 = FNMS(KP866025403, Tw, Tv);
121 }
122 {
123 E T1e, Tg, T1b, T1i, T1g, T1h;
124 T1e = T1c - T1d;
125 Tg = Ta + Tf;
126 T1b = FNMS(KP500000000, Tg, T5);
127 ro[0] = T5 + Tg;
128 ro[WS(os, 3)] = FMA(KP866025403, T1e, T1b);
129 ro[WS(os, 6)] = FNMS(KP866025403, T1e, T1b);
130 T1i = Tf - Ta;
131 T1g = T1c + T1d;
132 T1h = FNMS(KP500000000, T1g, T1f);
133 io[WS(os, 3)] = FMA(KP866025403, T1i, T1h);
134 io[0] = T1f + T1g;
135 io[WS(os, 6)] = FNMS(KP866025403, T1i, T1h);
136 }
137 {
138 E Tn, TN, TK, TS, TQ, TU, TR, TT;
139 Tn = FMA(KP866025403, Tm, Tl);
140 TN = FMA(KP866025403, TM, TL);
141 {
142 E Ty, TJ, TO, TP;
143 Ty = FNMS(KP176326980, Tx, Ts);
144 TJ = FNMS(KP839099631, TI, TF);
145 TK = FNMS(KP777861913, TJ, Ty);
146 TS = FMA(KP777861913, TJ, Ty);
147 TO = FMA(KP176326980, Ts, Tx);
148 TP = FMA(KP839099631, TF, TI);
149 TQ = FMA(KP777861913, TP, TO);
150 TU = FNMS(KP777861913, TP, TO);
151 }
152 io[WS(os, 1)] = FNMS(KP984807753, TK, Tn);
153 ro[WS(os, 1)] = FMA(KP984807753, TQ, TN);
154 TR = FNMS(KP492403876, TQ, TN);
155 ro[WS(os, 4)] = FMA(KP852868531, TS, TR);
156 ro[WS(os, 7)] = FNMS(KP852868531, TS, TR);
157 TT = FMA(KP492403876, TK, Tn);
158 io[WS(os, 7)] = FNMS(KP852868531, TU, TT);
159 io[WS(os, 4)] = FMA(KP852868531, TU, TT);
160 }
161 {
162 E TV, T17, T12, T1a, T16, T18, T13, T19;
163 TV = FNMS(KP866025403, TM, TL);
164 T17 = FNMS(KP866025403, Tm, Tl);
165 {
166 E TY, T11, T14, T15;
167 TY = FMA(KP176326980, TX, TW);
168 T11 = FNMS(KP363970234, T10, TZ);
169 T12 = FNMS(KP954188894, T11, TY);
170 T1a = FMA(KP954188894, T11, TY);
171 T14 = FNMS(KP176326980, TW, TX);
172 T15 = FMA(KP363970234, TZ, T10);
173 T16 = FNMS(KP954188894, T15, T14);
174 T18 = FMA(KP954188894, T15, T14);
175 }
176 ro[WS(os, 2)] = FMA(KP984807753, T12, TV);
177 io[WS(os, 2)] = FNMS(KP984807753, T18, T17);
178 T13 = FNMS(KP492403876, T12, TV);
179 ro[WS(os, 5)] = FNMS(KP852868531, T16, T13);
180 ro[WS(os, 8)] = FMA(KP852868531, T16, T13);
181 T19 = FMA(KP492403876, T18, T17);
182 io[WS(os, 5)] = FNMS(KP852868531, T1a, T19);
183 io[WS(os, 8)] = FMA(KP852868531, T1a, T19);
184 }
185 }
186 }
187 }
188
189 static const kdft_desc desc = { 9, "n1_9", {24, 0, 56, 0}, &GENUS, 0, 0, 0, 0 };
190
191 void X(codelet_n1_9) (planner *p) {
192 X(kdft_register) (p, n1_9, &desc);
193 }
194
195 #else
196
197 /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 9 -name n1_9 -include dft/scalar/n.h */
198
199 /*
200 * This function contains 80 FP additions, 40 FP multiplications,
201 * (or, 60 additions, 20 multiplications, 20 fused multiply/add),
202 * 39 stack variables, 8 constants, and 36 memory accesses
203 */
204 #include "dft/scalar/n.h"
205
206 static void n1_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
207 {
208 DK(KP939692620, +0.939692620785908384054109277324731469936208134);
209 DK(KP342020143, +0.342020143325668733044099614682259580763083368);
210 DK(KP984807753, +0.984807753012208059366743024589523013670643252);
211 DK(KP173648177, +0.173648177666930348851716626769314796000375677);
212 DK(KP642787609, +0.642787609686539326322643409907263432907559884);
213 DK(KP766044443, +0.766044443118978035202392650555416673935832457);
214 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
215 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
216 {
217 INT i;
218 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(36, is), MAKE_VOLATILE_STRIDE(36, os)) {
219 E T5, TO, Th, Tk, T1g, TR, Ta, T1c, Tq, TW, Tv, TX, Tf, T1d, TB;
220 E T10, TG, TZ;
221 {
222 E T1, T2, T3, T4;
223 T1 = ri[0];
224 T2 = ri[WS(is, 3)];
225 T3 = ri[WS(is, 6)];
226 T4 = T2 + T3;
227 T5 = T1 + T4;
228 TO = KP866025403 * (T3 - T2);
229 Th = FNMS(KP500000000, T4, T1);
230 }
231 {
232 E TP, Ti, Tj, TQ;
233 TP = ii[0];
234 Ti = ii[WS(is, 3)];
235 Tj = ii[WS(is, 6)];
236 TQ = Ti + Tj;
237 Tk = KP866025403 * (Ti - Tj);
238 T1g = TP + TQ;
239 TR = FNMS(KP500000000, TQ, TP);
240 }
241 {
242 E T6, Ts, T9, Tr, Tp, Tt, Tm, Tu;
243 T6 = ri[WS(is, 1)];
244 Ts = ii[WS(is, 1)];
245 {
246 E T7, T8, Tn, To;
247 T7 = ri[WS(is, 4)];
248 T8 = ri[WS(is, 7)];
249 T9 = T7 + T8;
250 Tr = KP866025403 * (T8 - T7);
251 Tn = ii[WS(is, 4)];
252 To = ii[WS(is, 7)];
253 Tp = KP866025403 * (Tn - To);
254 Tt = Tn + To;
255 }
256 Ta = T6 + T9;
257 T1c = Ts + Tt;
258 Tm = FNMS(KP500000000, T9, T6);
259 Tq = Tm + Tp;
260 TW = Tm - Tp;
261 Tu = FNMS(KP500000000, Tt, Ts);
262 Tv = Tr + Tu;
263 TX = Tu - Tr;
264 }
265 {
266 E Tb, TD, Te, TC, TA, TE, Tx, TF;
267 Tb = ri[WS(is, 2)];
268 TD = ii[WS(is, 2)];
269 {
270 E Tc, Td, Ty, Tz;
271 Tc = ri[WS(is, 5)];
272 Td = ri[WS(is, 8)];
273 Te = Tc + Td;
274 TC = KP866025403 * (Td - Tc);
275 Ty = ii[WS(is, 5)];
276 Tz = ii[WS(is, 8)];
277 TA = KP866025403 * (Ty - Tz);
278 TE = Ty + Tz;
279 }
280 Tf = Tb + Te;
281 T1d = TD + TE;
282 Tx = FNMS(KP500000000, Te, Tb);
283 TB = Tx + TA;
284 T10 = Tx - TA;
285 TF = FNMS(KP500000000, TE, TD);
286 TG = TC + TF;
287 TZ = TF - TC;
288 }
289 {
290 E T1e, Tg, T1b, T1f, T1h, T1i;
291 T1e = KP866025403 * (T1c - T1d);
292 Tg = Ta + Tf;
293 T1b = FNMS(KP500000000, Tg, T5);
294 ro[0] = T5 + Tg;
295 ro[WS(os, 3)] = T1b + T1e;
296 ro[WS(os, 6)] = T1b - T1e;
297 T1f = KP866025403 * (Tf - Ta);
298 T1h = T1c + T1d;
299 T1i = FNMS(KP500000000, T1h, T1g);
300 io[WS(os, 3)] = T1f + T1i;
301 io[0] = T1g + T1h;
302 io[WS(os, 6)] = T1i - T1f;
303 }
304 {
305 E Tl, TS, TI, TN, TM, TT, TJ, TU;
306 Tl = Th + Tk;
307 TS = TO + TR;
308 {
309 E Tw, TH, TK, TL;
310 Tw = FMA(KP766044443, Tq, KP642787609 * Tv);
311 TH = FMA(KP173648177, TB, KP984807753 * TG);
312 TI = Tw + TH;
313 TN = KP866025403 * (TH - Tw);
314 TK = FNMS(KP642787609, Tq, KP766044443 * Tv);
315 TL = FNMS(KP984807753, TB, KP173648177 * TG);
316 TM = KP866025403 * (TK - TL);
317 TT = TK + TL;
318 }
319 ro[WS(os, 1)] = Tl + TI;
320 io[WS(os, 1)] = TS + TT;
321 TJ = FNMS(KP500000000, TI, Tl);
322 ro[WS(os, 7)] = TJ - TM;
323 ro[WS(os, 4)] = TJ + TM;
324 TU = FNMS(KP500000000, TT, TS);
325 io[WS(os, 4)] = TN + TU;
326 io[WS(os, 7)] = TU - TN;
327 }
328 {
329 E TV, T14, T12, T13, T17, T1a, T18, T19;
330 TV = Th - Tk;
331 T14 = TR - TO;
332 {
333 E TY, T11, T15, T16;
334 TY = FMA(KP173648177, TW, KP984807753 * TX);
335 T11 = FNMS(KP939692620, T10, KP342020143 * TZ);
336 T12 = TY + T11;
337 T13 = KP866025403 * (T11 - TY);
338 T15 = FNMS(KP984807753, TW, KP173648177 * TX);
339 T16 = FMA(KP342020143, T10, KP939692620 * TZ);
340 T17 = T15 - T16;
341 T1a = KP866025403 * (T15 + T16);
342 }
343 ro[WS(os, 2)] = TV + T12;
344 io[WS(os, 2)] = T14 + T17;
345 T18 = FNMS(KP500000000, T17, T14);
346 io[WS(os, 5)] = T13 + T18;
347 io[WS(os, 8)] = T18 - T13;
348 T19 = FNMS(KP500000000, T12, TV);
349 ro[WS(os, 8)] = T19 - T1a;
350 ro[WS(os, 5)] = T19 + T1a;
351 }
352 }
353 }
354 }
355
356 static const kdft_desc desc = { 9, "n1_9", {60, 20, 20, 0}, &GENUS, 0, 0, 0, 0 };
357
358 void X(codelet_n1_9) (planner *p) {
359 X(kdft_register) (p, n1_9, &desc);
360 }
361
362 #endif