comparison src/fftw-3.3.8/dft/indirect.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21
22
23 /* solvers/plans for vectors of small DFT's that cannot be done
24 in-place directly. Use a rank-0 plan to rearrange the data
25 before or after the transform. Can also change an out-of-place
26 plan into a copy + in-place (where the in-place transform
27 is e.g. unit stride). */
28
29 /* FIXME: merge with rank-geq2.c(?), since this is just a special case
30 of a rank split where the first/second transform has rank 0. */
31
32 #include "dft/dft.h"
33
34 typedef problem *(*mkcld_t) (const problem_dft *p);
35
36 typedef struct {
37 dftapply apply;
38 problem *(*mkcld)(const problem_dft *p);
39 const char *nam;
40 } ndrct_adt;
41
42 typedef struct {
43 solver super;
44 const ndrct_adt *adt;
45 } S;
46
47 typedef struct {
48 plan_dft super;
49 plan *cldcpy, *cld;
50 const S *slv;
51 } P;
52
53 /*-----------------------------------------------------------------------*/
54 /* first rearrange, then transform */
55 static void apply_before(const plan *ego_, R *ri, R *ii, R *ro, R *io)
56 {
57 const P *ego = (const P *) ego_;
58
59 {
60 plan_dft *cldcpy = (plan_dft *) ego->cldcpy;
61 cldcpy->apply(ego->cldcpy, ri, ii, ro, io);
62 }
63 {
64 plan_dft *cld = (plan_dft *) ego->cld;
65 cld->apply(ego->cld, ro, io, ro, io);
66 }
67 }
68
69 static problem *mkcld_before(const problem_dft *p)
70 {
71 return X(mkproblem_dft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_OS),
72 X(tensor_copy_inplace)(p->vecsz, INPLACE_OS),
73 p->ro, p->io, p->ro, p->io);
74 }
75
76 static const ndrct_adt adt_before =
77 {
78 apply_before, mkcld_before, "dft-indirect-before"
79 };
80
81 /*-----------------------------------------------------------------------*/
82 /* first transform, then rearrange */
83
84 static void apply_after(const plan *ego_, R *ri, R *ii, R *ro, R *io)
85 {
86 const P *ego = (const P *) ego_;
87
88 {
89 plan_dft *cld = (plan_dft *) ego->cld;
90 cld->apply(ego->cld, ri, ii, ri, ii);
91 }
92 {
93 plan_dft *cldcpy = (plan_dft *) ego->cldcpy;
94 cldcpy->apply(ego->cldcpy, ri, ii, ro, io);
95 }
96 }
97
98 static problem *mkcld_after(const problem_dft *p)
99 {
100 return X(mkproblem_dft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_IS),
101 X(tensor_copy_inplace)(p->vecsz, INPLACE_IS),
102 p->ri, p->ii, p->ri, p->ii);
103 }
104
105 static const ndrct_adt adt_after =
106 {
107 apply_after, mkcld_after, "dft-indirect-after"
108 };
109
110 /*-----------------------------------------------------------------------*/
111 static void destroy(plan *ego_)
112 {
113 P *ego = (P *) ego_;
114 X(plan_destroy_internal)(ego->cld);
115 X(plan_destroy_internal)(ego->cldcpy);
116 }
117
118 static void awake(plan *ego_, enum wakefulness wakefulness)
119 {
120 P *ego = (P *) ego_;
121 X(plan_awake)(ego->cldcpy, wakefulness);
122 X(plan_awake)(ego->cld, wakefulness);
123 }
124
125 static void print(const plan *ego_, printer *p)
126 {
127 const P *ego = (const P *) ego_;
128 const S *s = ego->slv;
129 p->print(p, "(%s%(%p%)%(%p%))", s->adt->nam, ego->cld, ego->cldcpy);
130 }
131
132 static int applicable0(const solver *ego_, const problem *p_,
133 const planner *plnr)
134 {
135 const S *ego = (const S *) ego_;
136 const problem_dft *p = (const problem_dft *) p_;
137 return (1
138 && FINITE_RNK(p->vecsz->rnk)
139
140 /* problem must be a nontrivial transform, not just a copy */
141 && p->sz->rnk > 0
142
143 && (0
144
145 /* problem must be in-place & require some
146 rearrangement of the data; to prevent
147 infinite loops with indirect-transpose, we
148 further require that at least some transform
149 strides must decrease */
150 || (p->ri == p->ro
151 && !X(tensor_inplace_strides2)(p->sz, p->vecsz)
152 && X(tensor_strides_decrease)(
153 p->sz, p->vecsz,
154 ego->adt->apply == apply_after ?
155 INPLACE_IS : INPLACE_OS))
156
157 /* or problem must be out of place, transforming
158 from stride 1/2 to bigger stride, for apply_after */
159 || (p->ri != p->ro && ego->adt->apply == apply_after
160 && !NO_DESTROY_INPUTP(plnr)
161 && X(tensor_min_istride)(p->sz) <= 2
162 && X(tensor_min_ostride)(p->sz) > 2)
163
164 /* or problem must be out of place, transforming
165 to stride 1/2 from bigger stride, for apply_before */
166 || (p->ri != p->ro && ego->adt->apply == apply_before
167 && X(tensor_min_ostride)(p->sz) <= 2
168 && X(tensor_min_istride)(p->sz) > 2)
169 )
170 );
171 }
172
173 static int applicable(const solver *ego_, const problem *p_,
174 const planner *plnr)
175 {
176 if (!applicable0(ego_, p_, plnr)) return 0;
177 {
178 const problem_dft *p = (const problem_dft *) p_;
179 if (NO_INDIRECT_OP_P(plnr) && p->ri != p->ro) return 0;
180 }
181 return 1;
182 }
183
184 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
185 {
186 const problem_dft *p = (const problem_dft *) p_;
187 const S *ego = (const S *) ego_;
188 P *pln;
189 plan *cld = 0, *cldcpy = 0;
190
191 static const plan_adt padt = {
192 X(dft_solve), awake, print, destroy
193 };
194
195 if (!applicable(ego_, p_, plnr))
196 return (plan *) 0;
197
198 cldcpy =
199 X(mkplan_d)(plnr,
200 X(mkproblem_dft_d)(X(mktensor_0d)(),
201 X(tensor_append)(p->vecsz, p->sz),
202 p->ri, p->ii, p->ro, p->io));
203
204 if (!cldcpy) goto nada;
205
206 cld = X(mkplan_f_d)(plnr, ego->adt->mkcld(p), NO_BUFFERING, 0, 0);
207 if (!cld) goto nada;
208
209 pln = MKPLAN_DFT(P, &padt, ego->adt->apply);
210 pln->cld = cld;
211 pln->cldcpy = cldcpy;
212 pln->slv = ego;
213 X(ops_add)(&cld->ops, &cldcpy->ops, &pln->super.super.ops);
214
215 return &(pln->super.super);
216
217 nada:
218 X(plan_destroy_internal)(cld);
219 X(plan_destroy_internal)(cldcpy);
220 return (plan *)0;
221 }
222
223 static solver *mksolver(const ndrct_adt *adt)
224 {
225 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
226 S *slv = MKSOLVER(S, &sadt);
227 slv->adt = adt;
228 return &(slv->super);
229 }
230
231 void X(dft_indirect_register)(planner *p)
232 {
233 unsigned i;
234 static const ndrct_adt *const adts[] = {
235 &adt_before, &adt_after
236 };
237
238 for (i = 0; i < sizeof(adts) / sizeof(adts[0]); ++i)
239 REGISTER_SOLVER(p, mksolver(adts[i]));
240 }