Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/buffered.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 | |
22 #include "dft/dft.h" | |
23 | |
24 typedef struct { | |
25 solver super; | |
26 size_t maxnbuf_ndx; | |
27 } S; | |
28 | |
29 static const INT maxnbufs[] = { 8, 256 }; | |
30 | |
31 typedef struct { | |
32 plan_dft super; | |
33 | |
34 plan *cld, *cldcpy, *cldrest; | |
35 INT n, vl, nbuf, bufdist; | |
36 INT ivs_by_nbuf, ovs_by_nbuf; | |
37 INT roffset, ioffset; | |
38 } P; | |
39 | |
40 /* transform a vector input with the help of bufs */ | |
41 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) | |
42 { | |
43 const P *ego = (const P *) ego_; | |
44 INT nbuf = ego->nbuf; | |
45 R *bufs = (R *)MALLOC(sizeof(R) * nbuf * ego->bufdist * 2, BUFFERS); | |
46 | |
47 plan_dft *cld = (plan_dft *) ego->cld; | |
48 plan_dft *cldcpy = (plan_dft *) ego->cldcpy; | |
49 plan_dft *cldrest; | |
50 INT i, vl = ego->vl; | |
51 INT ivs_by_nbuf = ego->ivs_by_nbuf, ovs_by_nbuf = ego->ovs_by_nbuf; | |
52 INT roffset = ego->roffset, ioffset = ego->ioffset; | |
53 | |
54 for (i = nbuf; i <= vl; i += nbuf) { | |
55 /* transform to bufs: */ | |
56 cld->apply((plan *) cld, ri, ii, bufs + roffset, bufs + ioffset); | |
57 ri += ivs_by_nbuf; ii += ivs_by_nbuf; | |
58 | |
59 /* copy back */ | |
60 cldcpy->apply((plan *) cldcpy, bufs+roffset, bufs+ioffset, ro, io); | |
61 ro += ovs_by_nbuf; io += ovs_by_nbuf; | |
62 } | |
63 | |
64 X(ifree)(bufs); | |
65 | |
66 /* Do the remaining transforms, if any: */ | |
67 cldrest = (plan_dft *) ego->cldrest; | |
68 cldrest->apply((plan *) cldrest, ri, ii, ro, io); | |
69 } | |
70 | |
71 | |
72 static void awake(plan *ego_, enum wakefulness wakefulness) | |
73 { | |
74 P *ego = (P *) ego_; | |
75 | |
76 X(plan_awake)(ego->cld, wakefulness); | |
77 X(plan_awake)(ego->cldcpy, wakefulness); | |
78 X(plan_awake)(ego->cldrest, wakefulness); | |
79 } | |
80 | |
81 static void destroy(plan *ego_) | |
82 { | |
83 P *ego = (P *) ego_; | |
84 X(plan_destroy_internal)(ego->cldrest); | |
85 X(plan_destroy_internal)(ego->cldcpy); | |
86 X(plan_destroy_internal)(ego->cld); | |
87 } | |
88 | |
89 static void print(const plan *ego_, printer *p) | |
90 { | |
91 const P *ego = (const P *) ego_; | |
92 p->print(p, "(dft-buffered-%D%v/%D-%D%(%p%)%(%p%)%(%p%))", | |
93 ego->n, ego->nbuf, | |
94 ego->vl, ego->bufdist % ego->n, | |
95 ego->cld, ego->cldcpy, ego->cldrest); | |
96 } | |
97 | |
98 static int applicable0(const S *ego, const problem *p_, const planner *plnr) | |
99 { | |
100 const problem_dft *p = (const problem_dft *) p_; | |
101 const iodim *d = p->sz->dims; | |
102 | |
103 if (1 | |
104 && p->vecsz->rnk <= 1 | |
105 && p->sz->rnk == 1 | |
106 ) { | |
107 INT vl, ivs, ovs; | |
108 X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); | |
109 | |
110 if (X(toobig)(p->sz->dims[0].n) && CONSERVE_MEMORYP(plnr)) | |
111 return 0; | |
112 | |
113 /* if this solver is redundant, in the sense that a solver | |
114 of lower index generates the same plan, then prune this | |
115 solver */ | |
116 if (X(nbuf_redundant)(d[0].n, vl, | |
117 ego->maxnbuf_ndx, | |
118 maxnbufs, NELEM(maxnbufs))) | |
119 return 0; | |
120 | |
121 /* | |
122 In principle, the buffered transforms might be useful | |
123 when working out of place. However, in order to | |
124 prevent infinite loops in the planner, we require | |
125 that the output stride of the buffered transforms be | |
126 greater than 2. | |
127 */ | |
128 if (p->ri != p->ro) | |
129 return (d[0].os > 2); | |
130 | |
131 /* | |
132 * If the problem is in place, the input/output strides must | |
133 * be the same or the whole thing must fit in the buffer. | |
134 */ | |
135 if (X(tensor_inplace_strides2)(p->sz, p->vecsz)) | |
136 return 1; | |
137 | |
138 if (/* fits into buffer: */ | |
139 ((p->vecsz->rnk == 0) | |
140 || | |
141 (X(nbuf)(d[0].n, p->vecsz->dims[0].n, | |
142 maxnbufs[ego->maxnbuf_ndx]) | |
143 == p->vecsz->dims[0].n))) | |
144 return 1; | |
145 } | |
146 | |
147 return 0; | |
148 } | |
149 | |
150 static int applicable(const S *ego, const problem *p_, const planner *plnr) | |
151 { | |
152 if (NO_BUFFERINGP(plnr)) return 0; | |
153 if (!applicable0(ego, p_, plnr)) return 0; | |
154 | |
155 if (NO_UGLYP(plnr)) { | |
156 const problem_dft *p = (const problem_dft *) p_; | |
157 if (p->ri != p->ro) return 0; | |
158 if (X(toobig)(p->sz->dims[0].n)) return 0; | |
159 } | |
160 return 1; | |
161 } | |
162 | |
163 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | |
164 { | |
165 P *pln; | |
166 const S *ego = (const S *)ego_; | |
167 plan *cld = (plan *) 0; | |
168 plan *cldcpy = (plan *) 0; | |
169 plan *cldrest = (plan *) 0; | |
170 const problem_dft *p = (const problem_dft *) p_; | |
171 R *bufs = (R *) 0; | |
172 INT nbuf = 0, bufdist, n, vl; | |
173 INT ivs, ovs, roffset, ioffset; | |
174 | |
175 static const plan_adt padt = { | |
176 X(dft_solve), awake, print, destroy | |
177 }; | |
178 | |
179 if (!applicable(ego, p_, plnr)) | |
180 goto nada; | |
181 | |
182 n = X(tensor_sz)(p->sz); | |
183 | |
184 X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); | |
185 | |
186 nbuf = X(nbuf)(n, vl, maxnbufs[ego->maxnbuf_ndx]); | |
187 bufdist = X(bufdist)(n, vl); | |
188 A(nbuf > 0); | |
189 | |
190 /* attempt to keep real and imaginary part in the same order, | |
191 so as to allow optimizations in the the copy plan */ | |
192 roffset = (p->ri - p->ii > 0) ? (INT)1 : (INT)0; | |
193 ioffset = 1 - roffset; | |
194 | |
195 /* initial allocation for the purpose of planning */ | |
196 bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist * 2, BUFFERS); | |
197 | |
198 /* allow destruction of input if problem is in place */ | |
199 cld = X(mkplan_f_d)(plnr, | |
200 X(mkproblem_dft_d)( | |
201 X(mktensor_1d)(n, p->sz->dims[0].is, 2), | |
202 X(mktensor_1d)(nbuf, ivs, bufdist * 2), | |
203 TAINT(p->ri, ivs * nbuf), | |
204 TAINT(p->ii, ivs * nbuf), | |
205 bufs + roffset, | |
206 bufs + ioffset), | |
207 0, 0, (p->ri == p->ro) ? NO_DESTROY_INPUT : 0); | |
208 if (!cld) | |
209 goto nada; | |
210 | |
211 /* copying back from the buffer is a rank-0 transform: */ | |
212 cldcpy = X(mkplan_d)(plnr, | |
213 X(mkproblem_dft_d)( | |
214 X(mktensor_0d)(), | |
215 X(mktensor_2d)(nbuf, bufdist * 2, ovs, | |
216 n, 2, p->sz->dims[0].os), | |
217 bufs + roffset, | |
218 bufs + ioffset, | |
219 TAINT(p->ro, ovs * nbuf), | |
220 TAINT(p->io, ovs * nbuf))); | |
221 if (!cldcpy) | |
222 goto nada; | |
223 | |
224 /* deallocate buffers, let apply() allocate them for real */ | |
225 X(ifree)(bufs); | |
226 bufs = 0; | |
227 | |
228 /* plan the leftover transforms (cldrest): */ | |
229 { | |
230 INT id = ivs * (nbuf * (vl / nbuf)); | |
231 INT od = ovs * (nbuf * (vl / nbuf)); | |
232 cldrest = X(mkplan_d)(plnr, | |
233 X(mkproblem_dft_d)( | |
234 X(tensor_copy)(p->sz), | |
235 X(mktensor_1d)(vl % nbuf, ivs, ovs), | |
236 p->ri+id, p->ii+id, p->ro+od, p->io+od)); | |
237 } | |
238 if (!cldrest) | |
239 goto nada; | |
240 | |
241 pln = MKPLAN_DFT(P, &padt, apply); | |
242 pln->cld = cld; | |
243 pln->cldcpy = cldcpy; | |
244 pln->cldrest = cldrest; | |
245 pln->n = n; | |
246 pln->vl = vl; | |
247 pln->ivs_by_nbuf = ivs * nbuf; | |
248 pln->ovs_by_nbuf = ovs * nbuf; | |
249 pln->roffset = roffset; | |
250 pln->ioffset = ioffset; | |
251 | |
252 pln->nbuf = nbuf; | |
253 pln->bufdist = bufdist; | |
254 | |
255 { | |
256 opcnt t; | |
257 X(ops_add)(&cld->ops, &cldcpy->ops, &t); | |
258 X(ops_madd)(vl / nbuf, &t, &cldrest->ops, &pln->super.super.ops); | |
259 } | |
260 | |
261 return &(pln->super.super); | |
262 | |
263 nada: | |
264 X(ifree0)(bufs); | |
265 X(plan_destroy_internal)(cldrest); | |
266 X(plan_destroy_internal)(cldcpy); | |
267 X(plan_destroy_internal)(cld); | |
268 return (plan *) 0; | |
269 } | |
270 | |
271 static solver *mksolver(size_t maxnbuf_ndx) | |
272 { | |
273 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; | |
274 S *slv = MKSOLVER(S, &sadt); | |
275 slv->maxnbuf_ndx = maxnbuf_ndx; | |
276 return &(slv->super); | |
277 } | |
278 | |
279 void X(dft_buffered_register)(planner *p) | |
280 { | |
281 size_t i; | |
282 for (i = 0; i < NELEM(maxnbufs); ++i) | |
283 REGISTER_SOLVER(p, mksolver(i)); | |
284 } |