Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/bluestein.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 #include "dft/dft.h" | |
22 | |
23 typedef struct { | |
24 solver super; | |
25 } S; | |
26 | |
27 typedef struct { | |
28 plan_dft super; | |
29 INT n; /* problem size */ | |
30 INT nb; /* size of convolution */ | |
31 R *w; /* lambda k . exp(2*pi*i*k^2/(2*n)) */ | |
32 R *W; /* DFT(w) */ | |
33 plan *cldf; | |
34 INT is, os; | |
35 } P; | |
36 | |
37 static void bluestein_sequence(enum wakefulness wakefulness, INT n, R *w) | |
38 { | |
39 INT k, ksq, n2 = 2 * n; | |
40 triggen *t = X(mktriggen)(wakefulness, n2); | |
41 | |
42 ksq = 0; | |
43 for (k = 0; k < n; ++k) { | |
44 t->cexp(t, ksq, w+2*k); | |
45 /* careful with overflow */ | |
46 ksq += 2*k + 1; while (ksq > n2) ksq -= n2; | |
47 } | |
48 | |
49 X(triggen_destroy)(t); | |
50 } | |
51 | |
52 static void mktwiddle(enum wakefulness wakefulness, P *p) | |
53 { | |
54 INT i; | |
55 INT n = p->n, nb = p->nb; | |
56 R *w, *W; | |
57 E nbf = (E)nb; | |
58 | |
59 p->w = w = (R *) MALLOC(2 * n * sizeof(R), TWIDDLES); | |
60 p->W = W = (R *) MALLOC(2 * nb * sizeof(R), TWIDDLES); | |
61 | |
62 bluestein_sequence(wakefulness, n, w); | |
63 | |
64 for (i = 0; i < nb; ++i) | |
65 W[2*i] = W[2*i+1] = K(0.0); | |
66 | |
67 W[0] = w[0] / nbf; | |
68 W[1] = w[1] / nbf; | |
69 | |
70 for (i = 1; i < n; ++i) { | |
71 W[2*i] = W[2*(nb-i)] = w[2*i] / nbf; | |
72 W[2*i+1] = W[2*(nb-i)+1] = w[2*i+1] / nbf; | |
73 } | |
74 | |
75 { | |
76 plan_dft *cldf = (plan_dft *)p->cldf; | |
77 /* cldf must be awake */ | |
78 cldf->apply(p->cldf, W, W+1, W, W+1); | |
79 } | |
80 } | |
81 | |
82 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) | |
83 { | |
84 const P *ego = (const P *) ego_; | |
85 INT i, n = ego->n, nb = ego->nb, is = ego->is, os = ego->os; | |
86 R *w = ego->w, *W = ego->W; | |
87 R *b = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS); | |
88 | |
89 /* multiply input by conjugate bluestein sequence */ | |
90 for (i = 0; i < n; ++i) { | |
91 E xr = ri[i*is], xi = ii[i*is]; | |
92 E wr = w[2*i], wi = w[2*i+1]; | |
93 b[2*i] = xr * wr + xi * wi; | |
94 b[2*i+1] = xi * wr - xr * wi; | |
95 } | |
96 | |
97 for (; i < nb; ++i) b[2*i] = b[2*i+1] = K(0.0); | |
98 | |
99 /* convolution: FFT */ | |
100 { | |
101 plan_dft *cldf = (plan_dft *)ego->cldf; | |
102 cldf->apply(ego->cldf, b, b+1, b, b+1); | |
103 } | |
104 | |
105 /* convolution: pointwise multiplication */ | |
106 for (i = 0; i < nb; ++i) { | |
107 E xr = b[2*i], xi = b[2*i+1]; | |
108 E wr = W[2*i], wi = W[2*i+1]; | |
109 b[2*i] = xi * wr + xr * wi; | |
110 b[2*i+1] = xr * wr - xi * wi; | |
111 } | |
112 | |
113 /* convolution: IFFT by FFT with real/imag input/output swapped */ | |
114 { | |
115 plan_dft *cldf = (plan_dft *)ego->cldf; | |
116 cldf->apply(ego->cldf, b, b+1, b, b+1); | |
117 } | |
118 | |
119 /* multiply output by conjugate bluestein sequence */ | |
120 for (i = 0; i < n; ++i) { | |
121 E xi = b[2*i], xr = b[2*i+1]; | |
122 E wr = w[2*i], wi = w[2*i+1]; | |
123 ro[i*os] = xr * wr + xi * wi; | |
124 io[i*os] = xi * wr - xr * wi; | |
125 } | |
126 | |
127 X(ifree)(b); | |
128 } | |
129 | |
130 static void awake(plan *ego_, enum wakefulness wakefulness) | |
131 { | |
132 P *ego = (P *) ego_; | |
133 | |
134 X(plan_awake)(ego->cldf, wakefulness); | |
135 | |
136 switch (wakefulness) { | |
137 case SLEEPY: | |
138 X(ifree0)(ego->w); ego->w = 0; | |
139 X(ifree0)(ego->W); ego->W = 0; | |
140 break; | |
141 default: | |
142 A(!ego->w); | |
143 mktwiddle(wakefulness, ego); | |
144 break; | |
145 } | |
146 } | |
147 | |
148 static int applicable(const solver *ego, const problem *p_, | |
149 const planner *plnr) | |
150 { | |
151 const problem_dft *p = (const problem_dft *) p_; | |
152 UNUSED(ego); | |
153 return (1 | |
154 && p->sz->rnk == 1 | |
155 && p->vecsz->rnk == 0 | |
156 /* FIXME: allow other sizes */ | |
157 && X(is_prime)(p->sz->dims[0].n) | |
158 | |
159 /* FIXME: avoid infinite recursion of bluestein with itself. | |
160 This works because all factors in child problems are 2, 3, 5 */ | |
161 && p->sz->dims[0].n > 16 | |
162 | |
163 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > BLUESTEIN_MAX_SLOW) | |
164 ); | |
165 } | |
166 | |
167 static void destroy(plan *ego_) | |
168 { | |
169 P *ego = (P *) ego_; | |
170 X(plan_destroy_internal)(ego->cldf); | |
171 } | |
172 | |
173 static void print(const plan *ego_, printer *p) | |
174 { | |
175 const P *ego = (const P *)ego_; | |
176 p->print(p, "(dft-bluestein-%D/%D%(%p%))", | |
177 ego->n, ego->nb, ego->cldf); | |
178 } | |
179 | |
180 static INT choose_transform_size(INT minsz) | |
181 { | |
182 while (!X(factors_into_small_primes)(minsz)) | |
183 ++minsz; | |
184 return minsz; | |
185 } | |
186 | |
187 static plan *mkplan(const solver *ego, const problem *p_, planner *plnr) | |
188 { | |
189 const problem_dft *p = (const problem_dft *) p_; | |
190 P *pln; | |
191 INT n, nb; | |
192 plan *cldf = 0; | |
193 R *buf = (R *) 0; | |
194 | |
195 static const plan_adt padt = { | |
196 X(dft_solve), awake, print, destroy | |
197 }; | |
198 | |
199 if (!applicable(ego, p_, plnr)) | |
200 return (plan *) 0; | |
201 | |
202 n = p->sz->dims[0].n; | |
203 nb = choose_transform_size(2 * n - 1); | |
204 buf = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS); | |
205 | |
206 cldf = X(mkplan_f_d)(plnr, | |
207 X(mkproblem_dft_d)(X(mktensor_1d)(nb, 2, 2), | |
208 X(mktensor_1d)(1, 0, 0), | |
209 buf, buf+1, | |
210 buf, buf+1), | |
211 NO_SLOW, 0, 0); | |
212 if (!cldf) goto nada; | |
213 | |
214 X(ifree)(buf); | |
215 | |
216 pln = MKPLAN_DFT(P, &padt, apply); | |
217 | |
218 pln->n = n; | |
219 pln->nb = nb; | |
220 pln->w = 0; | |
221 pln->W = 0; | |
222 pln->cldf = cldf; | |
223 pln->is = p->sz->dims[0].is; | |
224 pln->os = p->sz->dims[0].os; | |
225 | |
226 X(ops_add)(&cldf->ops, &cldf->ops, &pln->super.super.ops); | |
227 pln->super.super.ops.add += 4 * n + 2 * nb; | |
228 pln->super.super.ops.mul += 8 * n + 4 * nb; | |
229 pln->super.super.ops.other += 6 * (n + nb); | |
230 | |
231 return &(pln->super.super); | |
232 | |
233 nada: | |
234 X(ifree0)(buf); | |
235 X(plan_destroy_internal)(cldf); | |
236 return (plan *)0; | |
237 } | |
238 | |
239 | |
240 static solver *mksolver(void) | |
241 { | |
242 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; | |
243 S *slv = MKSOLVER(S, &sadt); | |
244 return &(slv->super); | |
245 } | |
246 | |
247 void X(dft_bluestein_register)(planner *p) | |
248 { | |
249 REGISTER_SOLVER(p, mksolver()); | |
250 } |