comparison src/fftw-3.3.3/threads/ct.c @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
94:d278df1123f9 95:89f5e221ed7b
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21
22 #include "threads.h"
23
24 typedef struct {
25 plan_dft super;
26 plan *cld;
27 plan **cldws;
28 int nthr;
29 INT r;
30 } P;
31
32 typedef struct {
33 plan **cldws;
34 R *r, *i;
35 } PD;
36
37 static void *spawn_apply(spawn_data *d)
38 {
39 PD *ego = (PD *) d->data;
40 INT thr_num = d->thr_num;
41
42 plan_dftw *cldw = (plan_dftw *) (ego->cldws[thr_num]);
43 cldw->apply((plan *) cldw, ego->r, ego->i);
44 return 0;
45 }
46
47 static void apply_dit(const plan *ego_, R *ri, R *ii, R *ro, R *io)
48 {
49 const P *ego = (const P *) ego_;
50 plan_dft *cld;
51
52 cld = (plan_dft *) ego->cld;
53 cld->apply(ego->cld, ri, ii, ro, io);
54
55 {
56 PD d;
57
58 d.r = ro; d.i = io;
59 d.cldws = ego->cldws;
60
61 X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*)&d);
62 }
63 }
64
65 static void apply_dif(const plan *ego_, R *ri, R *ii, R *ro, R *io)
66 {
67 const P *ego = (const P *) ego_;
68 plan_dft *cld;
69
70 {
71 PD d;
72
73 d.r = ri; d.i = ii;
74 d.cldws = ego->cldws;
75
76 X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*)&d);
77 }
78
79 cld = (plan_dft *) ego->cld;
80 cld->apply(ego->cld, ri, ii, ro, io);
81 }
82
83 static void awake(plan *ego_, enum wakefulness wakefulness)
84 {
85 P *ego = (P *) ego_;
86 int i;
87 X(plan_awake)(ego->cld, wakefulness);
88 for (i = 0; i < ego->nthr; ++i)
89 X(plan_awake)(ego->cldws[i], wakefulness);
90 }
91
92 static void destroy(plan *ego_)
93 {
94 P *ego = (P *) ego_;
95 int i;
96 X(plan_destroy_internal)(ego->cld);
97 for (i = 0; i < ego->nthr; ++i)
98 X(plan_destroy_internal)(ego->cldws[i]);
99 X(ifree)(ego->cldws);
100 }
101
102 static void print(const plan *ego_, printer *p)
103 {
104 const P *ego = (const P *) ego_;
105 int i;
106 p->print(p, "(dft-thr-ct-%s-x%d/%D",
107 ego->super.apply == apply_dit ? "dit" : "dif",
108 ego->nthr, ego->r);
109 for (i = 0; i < ego->nthr; ++i)
110 if (i == 0 || (ego->cldws[i] != ego->cldws[i-1] &&
111 (i <= 1 || ego->cldws[i] != ego->cldws[i-2])))
112 p->print(p, "%(%p%)", ego->cldws[i]);
113 p->print(p, "%(%p%))", ego->cld);
114 }
115
116 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
117 {
118 const ct_solver *ego = (const ct_solver *) ego_;
119 const problem_dft *p;
120 P *pln = 0;
121 plan *cld = 0, **cldws = 0;
122 INT n, r, m, v, ivs, ovs;
123 INT block_size;
124 int i, nthr, plnr_nthr_save;
125 iodim *d;
126
127 static const plan_adt padt = {
128 X(dft_solve), awake, print, destroy
129 };
130
131 if (plnr->nthr <= 1 || !X(ct_applicable)(ego, p_, plnr))
132 return (plan *) 0;
133
134 p = (const problem_dft *) p_;
135 d = p->sz->dims;
136 n = d[0].n;
137 r = X(choose_radix)(ego->r, n);
138 m = n / r;
139
140 X(tensor_tornk1)(p->vecsz, &v, &ivs, &ovs);
141
142 block_size = (m + plnr->nthr - 1) / plnr->nthr;
143 nthr = (int)((m + block_size - 1) / block_size);
144 plnr_nthr_save = plnr->nthr;
145 plnr->nthr = (plnr->nthr + nthr - 1) / nthr;
146
147 cldws = (plan **) MALLOC(sizeof(plan *) * nthr, PLANS);
148 for (i = 0; i < nthr; ++i) cldws[i] = (plan *) 0;
149
150 switch (ego->dec) {
151 case DECDIT:
152 {
153 for (i = 0; i < nthr; ++i) {
154 cldws[i] = ego->mkcldw(ego,
155 r, m * d[0].os, m * d[0].os,
156 m, d[0].os,
157 v, ovs, ovs,
158 i*block_size,
159 (i == nthr - 1) ?
160 (m - i*block_size) : block_size,
161 p->ro, p->io, plnr);
162 if (!cldws[i]) goto nada;
163 }
164
165 plnr->nthr = plnr_nthr_save;
166
167 cld = X(mkplan_d)(plnr,
168 X(mkproblem_dft_d)(
169 X(mktensor_1d)(m, r * d[0].is, d[0].os),
170 X(mktensor_2d)(r, d[0].is, m * d[0].os,
171 v, ivs, ovs),
172 p->ri, p->ii, p->ro, p->io)
173 );
174 if (!cld) goto nada;
175
176 pln = MKPLAN_DFT(P, &padt, apply_dit);
177 break;
178 }
179 case DECDIF:
180 case DECDIF+TRANSPOSE:
181 {
182 INT cors, covs; /* cldw ors, ovs */
183 if (ego->dec == DECDIF+TRANSPOSE) {
184 cors = ivs;
185 covs = m * d[0].is;
186 /* ensure that we generate well-formed dftw subproblems */
187 /* FIXME: too conservative */
188 if (!(1
189 && r == v
190 && d[0].is == r * cors))
191 goto nada;
192
193 /* FIXME: allow in-place only for now, like in
194 fftw-3.[01] */
195 if (!(1
196 && p->ri == p->ro
197 && d[0].is == r * d[0].os
198 && cors == d[0].os
199 && covs == ovs
200 ))
201 goto nada;
202 } else {
203 cors = m * d[0].is;
204 covs = ivs;
205 }
206
207 for (i = 0; i < nthr; ++i) {
208 cldws[i] = ego->mkcldw(ego,
209 r, m * d[0].is, cors,
210 m, d[0].is,
211 v, ivs, covs,
212 i*block_size,
213 (i == nthr - 1) ?
214 (m - i*block_size) : block_size,
215 p->ri, p->ii, plnr);
216 if (!cldws[i]) goto nada;
217 }
218
219 plnr->nthr = plnr_nthr_save;
220
221 cld = X(mkplan_d)(plnr,
222 X(mkproblem_dft_d)(
223 X(mktensor_1d)(m, d[0].is, r * d[0].os),
224 X(mktensor_2d)(r, cors, d[0].os,
225 v, covs, ovs),
226 p->ri, p->ii, p->ro, p->io)
227 );
228 if (!cld) goto nada;
229
230 pln = MKPLAN_DFT(P, &padt, apply_dif);
231 break;
232 }
233
234 default: A(0);
235
236 }
237
238 pln->cld = cld;
239 pln->cldws = cldws;
240 pln->nthr = nthr;
241 pln->r = r;
242 X(ops_zero)(&pln->super.super.ops);
243 for (i = 0; i < nthr; ++i) {
244 X(ops_add2)(&cldws[i]->ops, &pln->super.super.ops);
245 pln->super.super.could_prune_now_p |= cldws[i]->could_prune_now_p;
246 }
247 X(ops_add2)(&cld->ops, &pln->super.super.ops);
248 return &(pln->super.super);
249
250 nada:
251 if (cldws) {
252 for (i = 0; i < nthr; ++i)
253 X(plan_destroy_internal)(cldws[i]);
254 X(ifree)(cldws);
255 }
256 X(plan_destroy_internal)(cld);
257 return (plan *) 0;
258 }
259
260 ct_solver *X(mksolver_ct_threads)(size_t size, INT r, int dec,
261 ct_mkinferior mkcldw,
262 ct_force_vrecursion force_vrecursionp)
263 {
264 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
265 ct_solver *slv = (ct_solver *) X(mksolver)(size, &sadt);
266 slv->r = r;
267 slv->dec = dec;
268 slv->mkcldw = mkcldw;
269 slv->force_vrecursionp = force_vrecursionp;
270 return slv;
271 }