Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/rdft/simd/common/hc2cfdftv_8.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
94:d278df1123f9 | 95:89f5e221ed7b |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dit -name hc2cfdftv_8 -include hc2cfv.h */ | |
29 | |
30 /* | |
31 * This function contains 41 FP additions, 40 FP multiplications, | |
32 * (or, 23 additions, 22 multiplications, 18 fused multiply/add), | |
33 * 52 stack variables, 2 constants, and 16 memory accesses | |
34 */ | |
35 #include "hc2cfv.h" | |
36 | |
37 static void hc2cfdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
40 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
41 { | |
42 INT m; | |
43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) { | |
44 V T3, Tc, Tl, Ts, Tf, Tg, Te, Tp, T7, Ta, T1, T2, Tb, Tj, Tk; | |
45 V Ti, Tr, T5, T6, T4, T9, Th, Tq, TC, T8, Td, TF, Tm, TG, TD; | |
46 V Tt, Tu, Tn, TH, TL, TE, TK, Tz, Tv, Ty, To, TJ, TI, TN, TM; | |
47 V TB, TA, Tx, Tw; | |
48 T1 = LD(&(Rp[0]), ms, &(Rp[0])); | |
49 T2 = LD(&(Rm[0]), -ms, &(Rm[0])); | |
50 Tb = LDW(&(W[0])); | |
51 Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | |
52 Tk = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | |
53 Ti = LDW(&(W[TWVL * 12])); | |
54 Tr = LDW(&(W[TWVL * 10])); | |
55 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | |
56 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | |
57 T3 = VFMACONJ(T2, T1); | |
58 Tc = VZMULIJ(Tb, VFNMSCONJ(T2, T1)); | |
59 T4 = LDW(&(W[TWVL * 6])); | |
60 T9 = LDW(&(W[TWVL * 8])); | |
61 Tl = VZMULIJ(Ti, VFNMSCONJ(Tk, Tj)); | |
62 Ts = VZMULJ(Tr, VFMACONJ(Tk, Tj)); | |
63 Tf = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | |
64 Tg = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | |
65 Te = LDW(&(W[TWVL * 4])); | |
66 Tp = LDW(&(W[TWVL * 2])); | |
67 T7 = VZMULJ(T4, VFMACONJ(T6, T5)); | |
68 Ta = VZMULIJ(T9, VFNMSCONJ(T6, T5)); | |
69 Th = VZMULIJ(Te, VFNMSCONJ(Tg, Tf)); | |
70 Tq = VZMULJ(Tp, VFMACONJ(Tg, Tf)); | |
71 TC = VADD(T3, T7); | |
72 T8 = VSUB(T3, T7); | |
73 Td = VSUB(Ta, Tc); | |
74 TF = VADD(Tc, Ta); | |
75 Tm = VSUB(Th, Tl); | |
76 TG = VADD(Th, Tl); | |
77 TD = VADD(Tq, Ts); | |
78 Tt = VSUB(Tq, Ts); | |
79 Tu = VSUB(Tm, Td); | |
80 Tn = VADD(Td, Tm); | |
81 TH = VSUB(TF, TG); | |
82 TL = VADD(TF, TG); | |
83 TE = VSUB(TC, TD); | |
84 TK = VADD(TC, TD); | |
85 Tz = VFMA(LDK(KP707106781), Tu, Tt); | |
86 Tv = VFNMS(LDK(KP707106781), Tu, Tt); | |
87 Ty = VFNMS(LDK(KP707106781), Tn, T8); | |
88 To = VFMA(LDK(KP707106781), Tn, T8); | |
89 TJ = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TH, TE))); | |
90 TI = VMUL(LDK(KP500000000), VFMAI(TH, TE)); | |
91 TN = VCONJ(VMUL(LDK(KP500000000), VADD(TL, TK))); | |
92 TM = VMUL(LDK(KP500000000), VSUB(TK, TL)); | |
93 TB = VMUL(LDK(KP500000000), VFMAI(Tz, Ty)); | |
94 TA = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tz, Ty))); | |
95 Tx = VCONJ(VMUL(LDK(KP500000000), VFMAI(Tv, To))); | |
96 Tw = VMUL(LDK(KP500000000), VFNMSI(Tv, To)); | |
97 ST(&(Rm[WS(rs, 1)]), TJ, -ms, &(Rm[WS(rs, 1)])); | |
98 ST(&(Rp[WS(rs, 2)]), TI, ms, &(Rp[0])); | |
99 ST(&(Rm[WS(rs, 3)]), TN, -ms, &(Rm[WS(rs, 1)])); | |
100 ST(&(Rp[0]), TM, ms, &(Rp[0])); | |
101 ST(&(Rp[WS(rs, 3)]), TB, ms, &(Rp[WS(rs, 1)])); | |
102 ST(&(Rm[WS(rs, 2)]), TA, -ms, &(Rm[0])); | |
103 ST(&(Rm[0]), Tx, -ms, &(Rm[0])); | |
104 ST(&(Rp[WS(rs, 1)]), Tw, ms, &(Rp[WS(rs, 1)])); | |
105 } | |
106 } | |
107 VLEAVE(); | |
108 } | |
109 | |
110 static const tw_instr twinstr[] = { | |
111 VTW(1, 1), | |
112 VTW(1, 2), | |
113 VTW(1, 3), | |
114 VTW(1, 4), | |
115 VTW(1, 5), | |
116 VTW(1, 6), | |
117 VTW(1, 7), | |
118 {TW_NEXT, VL, 0} | |
119 }; | |
120 | |
121 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cfdftv_8"), twinstr, &GENUS, {23, 22, 18, 0} }; | |
122 | |
123 void XSIMD(codelet_hc2cfdftv_8) (planner *p) { | |
124 X(khc2c_register) (p, hc2cfdftv_8, &desc, HC2C_VIA_DFT); | |
125 } | |
126 #else /* HAVE_FMA */ | |
127 | |
128 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dit -name hc2cfdftv_8 -include hc2cfv.h */ | |
129 | |
130 /* | |
131 * This function contains 41 FP additions, 23 FP multiplications, | |
132 * (or, 41 additions, 23 multiplications, 0 fused multiply/add), | |
133 * 57 stack variables, 3 constants, and 16 memory accesses | |
134 */ | |
135 #include "hc2cfv.h" | |
136 | |
137 static void hc2cfdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
138 { | |
139 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
140 DVK(KP353553390, +0.353553390593273762200422181052424519642417969); | |
141 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
142 { | |
143 INT m; | |
144 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) { | |
145 V Ta, TE, Tr, TF, Tl, TK, Tw, TG, T1, T6, T3, T8, T2, T7, T4; | |
146 V T9, T5, To, Tq, Tn, Tp, Tc, Th, Te, Tj, Td, Ti, Tf, Tk, Tb; | |
147 V Tg, Tt, Tv, Ts, Tu, Ty, Tz, Tm, Tx, TC, TD, TA, TB, TI, TO; | |
148 V TL, TP, TH, TJ, TM, TR, TN, TQ; | |
149 T1 = LD(&(Rp[0]), ms, &(Rp[0])); | |
150 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | |
151 T2 = LD(&(Rm[0]), -ms, &(Rm[0])); | |
152 T3 = VCONJ(T2); | |
153 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | |
154 T8 = VCONJ(T7); | |
155 T4 = VADD(T1, T3); | |
156 T5 = LDW(&(W[TWVL * 6])); | |
157 T9 = VZMULJ(T5, VADD(T6, T8)); | |
158 Ta = VADD(T4, T9); | |
159 TE = VMUL(LDK(KP500000000), VSUB(T4, T9)); | |
160 Tn = LDW(&(W[0])); | |
161 To = VZMULIJ(Tn, VSUB(T3, T1)); | |
162 Tp = LDW(&(W[TWVL * 8])); | |
163 Tq = VZMULIJ(Tp, VSUB(T8, T6)); | |
164 Tr = VADD(To, Tq); | |
165 TF = VSUB(To, Tq); | |
166 Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | |
167 Th = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | |
168 Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | |
169 Te = VCONJ(Td); | |
170 Ti = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | |
171 Tj = VCONJ(Ti); | |
172 Tb = LDW(&(W[TWVL * 2])); | |
173 Tf = VZMULJ(Tb, VADD(Tc, Te)); | |
174 Tg = LDW(&(W[TWVL * 10])); | |
175 Tk = VZMULJ(Tg, VADD(Th, Tj)); | |
176 Tl = VADD(Tf, Tk); | |
177 TK = VSUB(Tf, Tk); | |
178 Ts = LDW(&(W[TWVL * 4])); | |
179 Tt = VZMULIJ(Ts, VSUB(Te, Tc)); | |
180 Tu = LDW(&(W[TWVL * 12])); | |
181 Tv = VZMULIJ(Tu, VSUB(Tj, Th)); | |
182 Tw = VADD(Tt, Tv); | |
183 TG = VSUB(Tv, Tt); | |
184 Tm = VADD(Ta, Tl); | |
185 Tx = VADD(Tr, Tw); | |
186 Ty = VCONJ(VMUL(LDK(KP500000000), VSUB(Tm, Tx))); | |
187 Tz = VMUL(LDK(KP500000000), VADD(Tm, Tx)); | |
188 ST(&(Rm[WS(rs, 3)]), Ty, -ms, &(Rm[WS(rs, 1)])); | |
189 ST(&(Rp[0]), Tz, ms, &(Rp[0])); | |
190 TA = VSUB(Ta, Tl); | |
191 TB = VBYI(VSUB(Tw, Tr)); | |
192 TC = VCONJ(VMUL(LDK(KP500000000), VSUB(TA, TB))); | |
193 TD = VMUL(LDK(KP500000000), VADD(TA, TB)); | |
194 ST(&(Rm[WS(rs, 1)]), TC, -ms, &(Rm[WS(rs, 1)])); | |
195 ST(&(Rp[WS(rs, 2)]), TD, ms, &(Rp[0])); | |
196 TH = VMUL(LDK(KP353553390), VADD(TF, TG)); | |
197 TI = VADD(TE, TH); | |
198 TO = VSUB(TE, TH); | |
199 TJ = VMUL(LDK(KP707106781), VSUB(TG, TF)); | |
200 TL = VMUL(LDK(KP500000000), VBYI(VSUB(TJ, TK))); | |
201 TP = VMUL(LDK(KP500000000), VBYI(VADD(TK, TJ))); | |
202 TM = VCONJ(VSUB(TI, TL)); | |
203 ST(&(Rm[0]), TM, -ms, &(Rm[0])); | |
204 TR = VADD(TO, TP); | |
205 ST(&(Rp[WS(rs, 3)]), TR, ms, &(Rp[WS(rs, 1)])); | |
206 TN = VADD(TI, TL); | |
207 ST(&(Rp[WS(rs, 1)]), TN, ms, &(Rp[WS(rs, 1)])); | |
208 TQ = VCONJ(VSUB(TO, TP)); | |
209 ST(&(Rm[WS(rs, 2)]), TQ, -ms, &(Rm[0])); | |
210 } | |
211 } | |
212 VLEAVE(); | |
213 } | |
214 | |
215 static const tw_instr twinstr[] = { | |
216 VTW(1, 1), | |
217 VTW(1, 2), | |
218 VTW(1, 3), | |
219 VTW(1, 4), | |
220 VTW(1, 5), | |
221 VTW(1, 6), | |
222 VTW(1, 7), | |
223 {TW_NEXT, VL, 0} | |
224 }; | |
225 | |
226 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cfdftv_8"), twinstr, &GENUS, {41, 23, 0, 0} }; | |
227 | |
228 void XSIMD(codelet_hc2cfdftv_8) (planner *p) { | |
229 X(khc2c_register) (p, hc2cfdftv_8, &desc, HC2C_VIA_DFT); | |
230 } | |
231 #endif /* HAVE_FMA */ |