Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/doc/html/Complex-One_002dDimensional-DFTs.html @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
94:d278df1123f9 | 95:89f5e221ed7b |
---|---|
1 <html lang="en"> | |
2 <head> | |
3 <title>Complex One-Dimensional DFTs - FFTW 3.3.3</title> | |
4 <meta http-equiv="Content-Type" content="text/html"> | |
5 <meta name="description" content="FFTW 3.3.3"> | |
6 <meta name="generator" content="makeinfo 4.13"> | |
7 <link title="Top" rel="start" href="index.html#Top"> | |
8 <link rel="up" href="Tutorial.html#Tutorial" title="Tutorial"> | |
9 <link rel="prev" href="Tutorial.html#Tutorial" title="Tutorial"> | |
10 <link rel="next" href="Complex-Multi_002dDimensional-DFTs.html#Complex-Multi_002dDimensional-DFTs" title="Complex Multi-Dimensional DFTs"> | |
11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage"> | |
12 <!-- | |
13 This manual is for FFTW | |
14 (version 3.3.3, 25 November 2012). | |
15 | |
16 Copyright (C) 2003 Matteo Frigo. | |
17 | |
18 Copyright (C) 2003 Massachusetts Institute of Technology. | |
19 | |
20 Permission is granted to make and distribute verbatim copies of | |
21 this manual provided the copyright notice and this permission | |
22 notice are preserved on all copies. | |
23 | |
24 Permission is granted to copy and distribute modified versions of | |
25 this manual under the conditions for verbatim copying, provided | |
26 that the entire resulting derived work is distributed under the | |
27 terms of a permission notice identical to this one. | |
28 | |
29 Permission is granted to copy and distribute translations of this | |
30 manual into another language, under the above conditions for | |
31 modified versions, except that this permission notice may be | |
32 stated in a translation approved by the Free Software Foundation. | |
33 --> | |
34 <meta http-equiv="Content-Style-Type" content="text/css"> | |
35 <style type="text/css"><!-- | |
36 pre.display { font-family:inherit } | |
37 pre.format { font-family:inherit } | |
38 pre.smalldisplay { font-family:inherit; font-size:smaller } | |
39 pre.smallformat { font-family:inherit; font-size:smaller } | |
40 pre.smallexample { font-size:smaller } | |
41 pre.smalllisp { font-size:smaller } | |
42 span.sc { font-variant:small-caps } | |
43 span.roman { font-family:serif; font-weight:normal; } | |
44 span.sansserif { font-family:sans-serif; font-weight:normal; } | |
45 --></style> | |
46 </head> | |
47 <body> | |
48 <div class="node"> | |
49 <a name="Complex-One-Dimensional-DFTs"></a> | |
50 <a name="Complex-One_002dDimensional-DFTs"></a> | |
51 <p> | |
52 Next: <a rel="next" accesskey="n" href="Complex-Multi_002dDimensional-DFTs.html#Complex-Multi_002dDimensional-DFTs">Complex Multi-Dimensional DFTs</a>, | |
53 Previous: <a rel="previous" accesskey="p" href="Tutorial.html#Tutorial">Tutorial</a>, | |
54 Up: <a rel="up" accesskey="u" href="Tutorial.html#Tutorial">Tutorial</a> | |
55 <hr> | |
56 </div> | |
57 | |
58 <h3 class="section">2.1 Complex One-Dimensional DFTs</h3> | |
59 | |
60 <blockquote> | |
61 Plan: To bother about the best method of accomplishing an accidental result. | |
62 [Ambrose Bierce, <cite>The Enlarged Devil's Dictionary</cite>.] | |
63 <a name="index-Devil-15"></a></blockquote> | |
64 | |
65 <p>The basic usage of FFTW to compute a one-dimensional DFT of size | |
66 <code>N</code> is simple, and it typically looks something like this code: | |
67 | |
68 <pre class="example"> #include <fftw3.h> | |
69 ... | |
70 { | |
71 fftw_complex *in, *out; | |
72 fftw_plan p; | |
73 ... | |
74 in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N); | |
75 out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N); | |
76 p = fftw_plan_dft_1d(N, in, out, FFTW_FORWARD, FFTW_ESTIMATE); | |
77 ... | |
78 fftw_execute(p); /* <span class="roman">repeat as needed</span> */ | |
79 ... | |
80 fftw_destroy_plan(p); | |
81 fftw_free(in); fftw_free(out); | |
82 } | |
83 </pre> | |
84 <p>You must link this code with the <code>fftw3</code> library. On Unix systems, | |
85 link with <code>-lfftw3 -lm</code>. | |
86 | |
87 <p>The example code first allocates the input and output arrays. You can | |
88 allocate them in any way that you like, but we recommend using | |
89 <code>fftw_malloc</code>, which behaves like | |
90 <a name="index-fftw_005fmalloc-16"></a><code>malloc</code> except that it properly aligns the array when SIMD | |
91 instructions (such as SSE and Altivec) are available (see <a href="SIMD-alignment-and-fftw_005fmalloc.html#SIMD-alignment-and-fftw_005fmalloc">SIMD alignment and fftw_malloc</a>). [Alternatively, we provide a convenient wrapper function <code>fftw_alloc_complex(N)</code> which has the same effect.] | |
92 <a name="index-fftw_005falloc_005fcomplex-17"></a><a name="index-SIMD-18"></a> | |
93 | |
94 <p>The data is an array of type <code>fftw_complex</code>, which is by default a | |
95 <code>double[2]</code> composed of the real (<code>in[i][0]</code>) and imaginary | |
96 (<code>in[i][1]</code>) parts of a complex number. | |
97 <a name="index-fftw_005fcomplex-19"></a> | |
98 The next step is to create a <dfn>plan</dfn>, which is an object | |
99 <a name="index-plan-20"></a>that contains all the data that FFTW needs to compute the FFT. | |
100 This function creates the plan: | |
101 | |
102 <pre class="example"> fftw_plan fftw_plan_dft_1d(int n, fftw_complex *in, fftw_complex *out, | |
103 int sign, unsigned flags); | |
104 </pre> | |
105 <p><a name="index-fftw_005fplan_005fdft_005f1d-21"></a><a name="index-fftw_005fplan-22"></a> | |
106 The first argument, <code>n</code>, is the size of the transform you are | |
107 trying to compute. The size <code>n</code> can be any positive integer, but | |
108 sizes that are products of small factors are transformed most | |
109 efficiently (although prime sizes still use an <i>O</i>(<i>n</i> log <i>n</i>) algorithm). | |
110 | |
111 <p>The next two arguments are pointers to the input and output arrays of | |
112 the transform. These pointers can be equal, indicating an | |
113 <dfn>in-place</dfn> transform. | |
114 <a name="index-in_002dplace-23"></a> | |
115 | |
116 <p>The fourth argument, <code>sign</code>, can be either <code>FFTW_FORWARD</code> | |
117 (<code>-1</code>) or <code>FFTW_BACKWARD</code> (<code>+1</code>), | |
118 <a name="index-FFTW_005fFORWARD-24"></a><a name="index-FFTW_005fBACKWARD-25"></a>and indicates the direction of the transform you are interested in; | |
119 technically, it is the sign of the exponent in the transform. | |
120 | |
121 <p>The <code>flags</code> argument is usually either <code>FFTW_MEASURE</code> or | |
122 <a name="index-flags-26"></a><code>FFTW_ESTIMATE</code>. <code>FFTW_MEASURE</code> instructs FFTW to run | |
123 <a name="index-FFTW_005fMEASURE-27"></a>and measure the execution time of several FFTs in order to find the | |
124 best way to compute the transform of size <code>n</code>. This process takes | |
125 some time (usually a few seconds), depending on your machine and on | |
126 the size of the transform. <code>FFTW_ESTIMATE</code>, on the contrary, | |
127 does not run any computation and just builds a | |
128 <a name="index-FFTW_005fESTIMATE-28"></a>reasonable plan that is probably sub-optimal. In short, if your | |
129 program performs many transforms of the same size and initialization | |
130 time is not important, use <code>FFTW_MEASURE</code>; otherwise use the | |
131 estimate. | |
132 | |
133 <p><em>You must create the plan before initializing the input</em>, because | |
134 <code>FFTW_MEASURE</code> overwrites the <code>in</code>/<code>out</code> arrays. | |
135 (Technically, <code>FFTW_ESTIMATE</code> does not touch your arrays, but you | |
136 should always create plans first just to be sure.) | |
137 | |
138 <p>Once the plan has been created, you can use it as many times as you | |
139 like for transforms on the specified <code>in</code>/<code>out</code> arrays, | |
140 computing the actual transforms via <code>fftw_execute(plan)</code>: | |
141 <pre class="example"> void fftw_execute(const fftw_plan plan); | |
142 </pre> | |
143 <p><a name="index-fftw_005fexecute-29"></a> | |
144 The DFT results are stored in-order in the array <code>out</code>, with the | |
145 zero-frequency (DC) component in <code>out[0]</code>. | |
146 <a name="index-frequency-30"></a>If <code>in != out</code>, the transform is <dfn>out-of-place</dfn> and the input | |
147 array <code>in</code> is not modified. Otherwise, the input array is | |
148 overwritten with the transform. | |
149 | |
150 <p><a name="index-execute-31"></a>If you want to transform a <em>different</em> array of the same size, you | |
151 can create a new plan with <code>fftw_plan_dft_1d</code> and FFTW | |
152 automatically reuses the information from the previous plan, if | |
153 possible. Alternatively, with the “guru” interface you can apply a | |
154 given plan to a different array, if you are careful. | |
155 See <a href="FFTW-Reference.html#FFTW-Reference">FFTW Reference</a>. | |
156 | |
157 <p>When you are done with the plan, you deallocate it by calling | |
158 <code>fftw_destroy_plan(plan)</code>: | |
159 <pre class="example"> void fftw_destroy_plan(fftw_plan plan); | |
160 </pre> | |
161 <p><a name="index-fftw_005fdestroy_005fplan-32"></a>If you allocate an array with <code>fftw_malloc()</code> you must deallocate | |
162 it with <code>fftw_free()</code>. Do not use <code>free()</code> or, heaven | |
163 forbid, <code>delete</code>. | |
164 <a name="index-fftw_005ffree-33"></a> | |
165 FFTW computes an <em>unnormalized</em> DFT. Thus, computing a forward | |
166 followed by a backward transform (or vice versa) results in the original | |
167 array scaled by <code>n</code>. For the definition of the DFT, see <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>. | |
168 <a name="index-DFT-34"></a><a name="index-normalization-35"></a> | |
169 | |
170 <p>If you have a C compiler, such as <code>gcc</code>, that supports the | |
171 C99 standard, and you <code>#include <complex.h></code> <em>before</em> | |
172 <code><fftw3.h></code>, then <code>fftw_complex</code> is the native | |
173 double-precision complex type and you can manipulate it with ordinary | |
174 arithmetic. Otherwise, FFTW defines its own complex type, which is | |
175 bit-compatible with the C99 complex type. See <a href="Complex-numbers.html#Complex-numbers">Complex numbers</a>. | |
176 (The C++ <code><complex></code> template class may also be usable via a | |
177 typecast.) | |
178 <a name="index-C_002b_002b-36"></a> | |
179 To use single or long-double precision versions of FFTW, replace the | |
180 <code>fftw_</code> prefix by <code>fftwf_</code> or <code>fftwl_</code> and link with | |
181 <code>-lfftw3f</code> or <code>-lfftw3l</code>, but use the <em>same</em> | |
182 <code><fftw3.h></code> header file. | |
183 <a name="index-precision-37"></a> | |
184 | |
185 <p>Many more flags exist besides <code>FFTW_MEASURE</code> and | |
186 <code>FFTW_ESTIMATE</code>. For example, use <code>FFTW_PATIENT</code> if you're | |
187 willing to wait even longer for a possibly even faster plan (see <a href="FFTW-Reference.html#FFTW-Reference">FFTW Reference</a>). | |
188 <a name="index-FFTW_005fPATIENT-38"></a>You can also save plans for future use, as described by <a href="Words-of-Wisdom_002dSaving-Plans.html#Words-of-Wisdom_002dSaving-Plans">Words of Wisdom-Saving Plans</a>. | |
189 | |
190 <!-- --> | |
191 </body></html> | |
192 |